騰 文
(貴州財經(jīng)大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,貴州 貴陽 550025)
半群POIn,r的秩
騰 文
(貴州財經(jīng)大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,貴州 貴陽 550025)
設(shè)Xn={1,2,…,n}(n>3)并賦予自然序.POIn為Xn上的保序部分一一變換半群,引入一類新的POIn的子半群POIn,r,討論了半群POIn,r的生成秩,所得結(jié)果推廣了有關(guān)文獻(xiàn)中相應(yīng)的結(jié)論.
部分保序一一變換;半群;秩
設(shè)α∈POIn,r,用Dom(α)表示α的定義域,定義Dα[r]=[r]?Dom(α),用Dα[r]α表示α在Dα[r]下的像,用Im(α)表示α的值域.對任意的α∈POIn,r(|Im(α)|=k≤r),則由保序性易驗證α有如下表示法(稱為α的標(biāo)準(zhǔn)表示):
[1]Gomes GM,Howie JM.On the ranks of certain sem igroup of order-preserving transformations[J].Sem igroup Forum,1992,45(3): 272-282.
[2]Vitor H Fernandes.Themonoid ofall injective order preserving partial transformationson a finite chain[J].Sem igroup forum,2001, 62(1):178-204.
[3]SommaneeW,Sanwong J.Rank and idem potent rank of finite full transformation semigroupsw ith restricted range[J].Sem igroup Forum,2013,87(1):230-242.
[4]高榮海.單調(diào)壓縮部分變換半群的秩[J].常熟理工學(xué)院學(xué)報,2013,27(2):35-38.
[5]How ie JM.Fundamentals of Semigroup Theory[M].Oxford:Oxford University Press,1995.
On the Rank of the Sem igroup POIn,r
TENG Wen
(School of Mathematics and Statistics,Guizhou University of Finance and Econom ics,Guiyang 550025,China)
Let Xn={1,2,…,n}(n>3)be natural order set.POInbe of all injective order-preserving partial transformation semigroup on Xn.We introduced a new class subsemigroups POIn,rof semigroup POIn.The generated rank of the sem igroup POIn,rwas characterized.The theorem is an extension of corresponding conclusions for other relevant literature.
all injective order-preserving partial transformation;semigroup;rank
O152.7
A
1008-2794(2014)02-0028-04
2013-08-12
騰文,助教,碩士,研究方向:半群代數(shù)理論,E-mail:tengwengznu@126.com.