黨永輝,劉仲偉,陳 峰,郭 坤,王家蓓
1西安交通大學(xué)醫(yī)學(xué)部法醫(yī)學(xué)院 衛(wèi)生部法醫(yī)學(xué)重點實驗室 教育部環(huán)境與疾病相關(guān)基因重點實驗室,西安710061
含三聯(lián)組氨酸 (histidine triad,HIT)域的蛋白構(gòu)成酶類超家族,共享組氨酸-x-組氨酸-x-組氨酸-xx基序 (x為疏水性氨基酸)。按酶活性分類,HIT蛋白分為核苷氨基磷酸酯水解酶、二核苷酸水解酶、核苷轉(zhuǎn)移酶。HIT蛋白以組氨酸-x-組氨酸-x-組氨酸-xx活性位點正對底物的α-磷酸結(jié)合核苷酸。HIT蛋白在進(jìn)化中較為保守,其超家族中超過35個成員已在包括細(xì)菌、古細(xì)菌、酵母、植物、線蟲、果蠅和哺乳動物的29個物種中得以發(fā)現(xiàn),表明它行使著基本而重要的生理功能[1]。人類基因組編碼7個HIT蛋白,可被分為5類,即三聯(lián)組氨酸核苷結(jié)合蛋白 (histidine triad nucleotide-binding protein,HINT)、半乳糖-1-磷酸尿苷?;D(zhuǎn)移酶、Aprataxin、DcpS/DCS-1以及脆性組氨酸三聯(lián)體蛋白,主要發(fā)揮核苷轉(zhuǎn)移酶和水解酶的作用[2-5]。
HINT(包括人類HINT和非人類HINT)是HIT超家族中的第1類。已經(jīng)發(fā)現(xiàn)在得到全長測序的所有基因組中至少存在1個HINT/Hint。人類基因組包括3個獨立的基因,分別編碼Hint1、Hint2及Hint3基因產(chǎn)物。HINT1蛋白編碼基因位于人類染色體5q31.2,其基因序列全長6 160 bp,含有3個外顯子,mRNA序列由782個堿基組成,編碼產(chǎn)物是含126個氨基酸的細(xì)胞溶質(zhì)蛋白,相對分子質(zhì)量約 14 ×103[2,6]。晶體學(xué)和核磁共振波譜法結(jié)構(gòu)研究結(jié)果表明,HINT1屬嘌呤核苷酸結(jié)合蛋白[7-9]。HINT1形成同源二聚體,每一個亞單位結(jié)合1個核苷酸。1990年HINT1被首度發(fā)現(xiàn)是蛋白激酶抑制劑[10],在早期文獻(xiàn)中一直被當(dāng)作蛋白激酶C抑制劑-1[11-12]。然而其蛋白激酶C抑制作用現(xiàn)在被認(rèn)為是存疑的,也正因為如此,蛋白激酶C抑制劑-1被重新命名為HINT1[7]。
研究顯示HINT1能夠水解在很多真核生物由AMP-SO4和NH3合成的細(xì)胞內(nèi)溶質(zhì)AMP-NH2[13-15]。而組氨酸—丙氨酸突變使該酶的活性喪失,因此其單胺磷酸酯酶活性依賴于HIT域中的第2個組氨酸殘基[13]。AMP-NH2的生理作用未知,可能不是HINT1的天然底物。HINT1能夠水解結(jié)合于腺苷酸化蛋白賴氨酸殘基的AMP加成化合物,因而可能調(diào)控蛋白底物的核苷酸化[2]。Chou等[16]應(yīng)用敏感、連續(xù)的熒光方法測定氨基磷酸酯的水解活性以研究HINT1的底物特異性,HINT1表現(xiàn)出對嘧啶氨基磷酸酯上嘌呤的優(yōu)先結(jié)合特性。
使用純化的賴氨酰-tRNA合成酶,Chou和Wagner[17]證實賴氨酰-AMP是HINT1的底物,這產(chǎn)生了酶的腺苷酸化形式。這一發(fā)現(xiàn)使人們注意到HINT1參與一系列細(xì)胞功能。氨酰-tRNA合成酶是聯(lián)合氨基酸與其相應(yīng)同工tRNA形成氨酰-tRNAs的重要酶,這一反應(yīng)通過形成氨酰-AMP中間產(chǎn)物而進(jìn)行。氨酰-tRNA合成酶在調(diào)控轉(zhuǎn)錄、翻譯、剪切、炎癥、血管發(fā)生和凋亡中具有多種生理功能[18]。幾種氨酰-tRNA合成酶 (E、I、L、R、Q、M、K、D)與3種氨酰-tRNA合成酶相互作用多功能蛋白 (aminoacyl-tRNA synthetase-interacting multifunctional proteins,AIMP)1/p43、 AIMP2/p38以及AIMP3/p18關(guān)聯(lián)而形成大分子復(fù)合物。AIMP1是內(nèi)皮單核細(xì)胞活化多肽Ⅱ的前體,是一種致炎性細(xì)胞因子,可以增加成纖維細(xì)胞的增殖和膠原生成,誘導(dǎo)內(nèi)皮細(xì)胞的遷移,并可激活巨噬細(xì)胞[19]。AIMP2是一種與p53相互作用的致凋亡因子[20]。AIMP3則是一種腫瘤抑制因子,可以激活對受損DNA的修復(fù)[18]。賴氨酰-tRNA合成酶對于增加前述復(fù)合物的穩(wěn)定性是必需的[21]。研究顯示人類賴氨酰-tRNA合成酶可由多種細(xì)胞系分泌,并與細(xì)胞表面趨化因子受體相互作用刺激腫瘤壞死因子的生成。色氨?;?和酪氨?;?tRNA合成酶也可產(chǎn)生細(xì)胞因子,但與以上復(fù)合物作用無關(guān)[21-22]。
自HINT1發(fā)現(xiàn)以來,首先發(fā)現(xiàn)其與腫瘤具有相關(guān)性,因而該領(lǐng)域的研究相對較為深入。
HINT1的抑癌基因作用 Su等[23]報道給予致癌物,Hint1基因敲除小鼠更容易罹患腫瘤。不只是Hint1基因敲除 (KO,-/-)小鼠,雜合 (+/-)小鼠同樣比野生型 (WT,+/+)小鼠更容易被誘導(dǎo)出乳腺和卵巢腫瘤,這意味著HINT1是單倍劑量不足腫瘤抑制因子[24]。
有研究表明在HINT1、賴氨酰-tRNA合成酶、黑色素瘤癌基因小眼畸形轉(zhuǎn)錄因子 (microphthalmia transcription factor,MITF)(MITF表達(dá)可以轉(zhuǎn)化人類原初黑素細(xì)胞,并增加其化學(xué)抗性[25])以及在真核細(xì)胞廣泛表達(dá)的癌基因上游刺激因子2(upstream stimulatory factor 2,USF2)[26-27]之間存在著一種功能性的多種蛋白交互作用。賴氨酰-tRNA合成酶除了在tRNA氨?;邪l(fā)揮作用,同時還能產(chǎn)生信號分子二腺苷四磷酸鹽[28]。HINT1與MITF和USF2相互作用并抑制其活性,進(jìn)而發(fā)揮抑制腫瘤發(fā)生的作用,而二腺苷四磷酸鹽結(jié)合于HINT1,使HINT1從MITF、USF2上解離進(jìn)而被激活。
HINT1的啟動子在肝細(xì)胞癌中通常高度甲基化,保持HINT1在腫瘤組織中的低表達(dá)狀態(tài)[29]。因此HINT1名列易受DNA啟動子區(qū)甲基化狀態(tài)影響 (使轉(zhuǎn)錄失活)的腫瘤抑制基因名單[30]。HINT1啟動子區(qū)高甲基化的程度與肝細(xì)胞癌的預(yù)后相關(guān)[31]。HINT1基因的甲基化程度越高,HINT1蛋白的表達(dá)水平越低,肝細(xì)胞癌的預(yù)后越差。Calvisi等[31]的研究表明HINT1影響S期激酶相關(guān)蛋白2的活性,進(jìn)而促進(jìn)細(xì)胞周期調(diào)節(jié)蛋白p27KIP1降解,這些都是肝細(xì)胞癌預(yù)后不良的特征。另外,HINT1參與DNA雙鏈斷裂修復(fù)[32],而這一發(fā)現(xiàn)很可能會改變HINT1腫瘤抑制因子的屬性。在電離輻射誘導(dǎo)DNA受損后小鼠Hint1與γ-組蛋白2AX和運動失調(diào)性毛細(xì)血管擴(kuò)張癥變異蛋白激酶復(fù)合物相互作用,導(dǎo)致兩種蛋白被活化并募集于DNA斷裂點參與DNA的損傷修復(fù)。Hint1敲除使得胚胎成纖維細(xì)胞對于電離輻射造成的細(xì)胞毒性和細(xì)胞凋亡效應(yīng)更加耐受[23],這可能與Hint1對γ-組蛋白2AX和運動失調(diào)性毛細(xì)血管擴(kuò)張癥變異的調(diào)控作用缺失有關(guān)[32]。
HINT1介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路及對腫瘤細(xì)胞周期機(jī)制的影響 腫瘤是一類多步驟發(fā)生、多基因突變所致的細(xì)胞克隆性、進(jìn)化性疾病,同時也是一類細(xì)胞周期疾病。Hint1的抑癌機(jī)制與許多細(xì)胞內(nèi)的信號轉(zhuǎn)導(dǎo)通路以及腫瘤細(xì)胞周期機(jī)制有關(guān)。有研究顯示Hint1結(jié)合于富含SH3結(jié)構(gòu)域蛋白 (protein“plenty of SH3 domains”,POSH),POSH是一種支架蛋白,參與由Rac-1、混合譜系激酶3(mixed lineage kinase 3,MLK3)、促分裂原活化蛋白激酶激酶4/7和Jun氨基末端激酶1/2形成的復(fù)合物[33-34]。POSH能夠激活JNK并引起細(xì)胞凋亡,同時它的異位表達(dá)可以激活細(xì)胞核因子-κB信號通路,從而促進(jìn)p65往核內(nèi)轉(zhuǎn)運,增強(qiáng)目的基因的表達(dá)[35]。另有研究表明,POSH的過度表達(dá)能夠促進(jìn)神經(jīng)元的凋亡[36],而用反義寡核苷酸和siRNA沉默POSH能抑制JNK活性和由撤回神經(jīng)生長因子介導(dǎo)的神經(jīng)元細(xì)胞凋亡[36],同時可通過抑制混合譜系激酶3-促分裂原活化蛋白激酶激酶4-Jun氨基末端激酶信號通路和細(xì)胞凋亡蛋白酶3活性來預(yù)防局部缺血性損傷[37]。從另一個方面看,凋亡也可以增加POSH和MLKs在細(xì)胞內(nèi)的表達(dá)[38]。Hint1/POSH的交互作用顯著降低JNK2磷酸化活化蛋白1(癌細(xì)胞中的一種重要轉(zhuǎn)錄因子[33])的能力從而抑制癌細(xì)胞的增殖。除了抑制活化蛋白-1的轉(zhuǎn)錄活性之外,HINT1也可以與S期激酶相關(guān)蛋白2-SCF泛素連接酶復(fù)合物相互作用,并抑制這一復(fù)合物的形成,調(diào)控細(xì)胞周期調(diào)節(jié)蛋白p27KIP1的泛素化水平影響細(xì)胞周期[39]。
HINT1通過與細(xì)胞周期調(diào)節(jié)蛋白依賴激酶Cdk7相互作用而調(diào)控基礎(chǔ)轉(zhuǎn)錄因子TFIIH與靶基因的結(jié)合[13,40]。利用酵母雜交實驗也證實了 Hint1和 Kin28之間 (在哺乳動物分別是HINT1和Cdk7)相互作用,同時破壞Hint1和Kin28之間的相互作用會導(dǎo)致細(xì)胞周期延長和菌落形成減少[40]。但是,Hint1-/-小鼠未能表現(xiàn)出與Hint1調(diào)控Cdk7活性作用相一致的表型[41]。
Weiske 和 Huber[42]證實 HINT1 與 β-連環(huán)蛋白配體Pontin和Reptin之間存在相互作用,從而抑制三元復(fù)合物因子 (ternary complex factor,TCF)-β-連環(huán)蛋白的轉(zhuǎn)錄活性,進(jìn)而抑制Wnt信號通路靶基因,如axin2和細(xì)胞周期蛋白D1的表達(dá)。免疫沉淀實驗結(jié)果顯示,HINT1不能直接與β-連環(huán)蛋白或者LEF-1結(jié)合,不影響LEF-1/β-連環(huán)蛋白的相互作用,也不干擾Pontin或 Reptin與 β-連環(huán)蛋白的結(jié)合,確切來說,HINT1干擾Pontin/Reptin復(fù)合物,能夠結(jié)合于組蛋白乙酰轉(zhuǎn)移酶Tip60[43]。這個結(jié)果表明HINT1/Tip60復(fù)合物至少對一部分TCF/β-連環(huán)蛋白靶基因具有抑制作用。
將HINT1瞬時轉(zhuǎn)染于SW480和MCF-7細(xì)胞,可以引起p53、Bax表達(dá)增加以及Bcl-2表達(dá)減少,促進(jìn)細(xì)胞凋亡,而HINT1蛋白的下調(diào)則降低p53和Bax的表達(dá),進(jìn)一步研究表明HINT1與Tip60形成復(fù)合物可以與Bax的啟動子結(jié)合而激活其轉(zhuǎn)錄活性[44]。
HINT1在中樞神經(jīng)系統(tǒng)廣泛表達(dá)[45-47],提示它在正常神經(jīng)元生理功能或在神經(jīng)精神疾病病理條件下可能發(fā)揮重要作用。HINT1基因位于5q31.2遺傳位點內(nèi),這一區(qū)域與精神分裂癥關(guān)聯(lián)[48-49]。Vawter等[50-51]采用芯片技術(shù)篩選顯示HINT1 mRNA在精神分裂癥患者背外側(cè)前額皮質(zhì) (dorsolateral prefrontal cortex,DLPFC)表達(dá)水平較低,這一發(fā)現(xiàn)為其隨后的RT-PCR和原位雜交實驗所進(jìn)一步證實[52]。另一項對染色體5q22-33區(qū)域進(jìn)行的精細(xì)定位研究顯示SPEC2/PDZ-GEF2/ACSL6區(qū)域單體型與精神分裂癥關(guān)聯(lián),而Hint1基因位于這一區(qū)域中[53]。此后利用患者群體和患者死后腦組織的多項研究均提示這種關(guān)聯(lián)的存在[6,54-55],而這種關(guān)聯(lián)呈性別特異性,僅與男性患者有關(guān)[6,52-53]。缺乏Hint1的小鼠對甲基苯丙胺和多巴胺受體激動劑阿撲嗎啡的自主活動反應(yīng)增強(qiáng),表明缺乏Hint1導(dǎo)致突觸后水平多巴胺傳遞的異常[56],這也是精神分裂癥可能的發(fā)病原因之一[57]。
最近,人類Hint功能喪失已被認(rèn)為是遺傳性周圍神經(jīng)病的原因。一項對33個無關(guān)核心家庭50例患者的全基因組單核苷酸多態(tài)性分析表明,人類Hint1活性的喪失與具有神經(jīng)肌強(qiáng)直表現(xiàn)的常染色體隱性軸突神經(jīng)病變這一遺傳性周圍神經(jīng)病存在強(qiáng)烈關(guān)聯(lián),成為第1個被發(fā)現(xiàn)與人類Hint1酶活性相關(guān)的疾病表型[45]。此外還發(fā)現(xiàn)HINT1調(diào)制精神活性物質(zhì)的效應(yīng)。HINT1與μ阿片受體特異性相互作用,緩和蛋白激酶C調(diào)節(jié)的μ阿片受體的磷酸化和脫敏[58]?;蜿P(guān)聯(lián)研究表明Hint1基因變異與尼古丁依賴有關(guān)[59]。缺乏HINT1的小鼠基礎(chǔ)痛閾增加,嗎啡誘導(dǎo)的鎮(zhèn)痛效應(yīng)增強(qiáng),對嗎啡的耐受增加[58]。
HINT1在調(diào)制情緒行為中也發(fā)揮重要作用。HINT1在雙相障礙患者DLPFC腦組織中表達(dá)下降[60],在抑郁癥患者DLPFC表達(dá)上升[61];而HINT1-/-小鼠則存在躁狂樣表現(xiàn)[62],且焦慮樣行為增加,在不良環(huán)境條件下,情緒喚醒程度升高[62-64]。另外,HINT1蛋白還被發(fā)現(xiàn)在Down’s綜合征胎兒腦中下調(diào)[65]。
糖尿病 Chu等[66]采用弱陽離子交換磁珠法純化樣本,基質(zhì)輔助激光解吸電離飛行時間質(zhì)譜方法檢測來自28份2型糖尿病患者和29份健康個體隨機(jī)尿樣本,結(jié)果顯示與健康對照相比,3種不同表達(dá)的肽在2型糖尿病中減少,其中一種被鑒定為HINT1,研究人員據(jù)此認(rèn)為HINT1可被視為區(qū)分2型糖尿病患者和健康對照的潛在生物標(biāo)志物。
肝臟缺血/再灌注 在醫(yī)學(xué)研究中,尋求能夠降低缺血/再灌注 (ischemia/reperfusion,I/R)損傷的細(xì)胞通路一直是個前沿問題,其臨床需求十分迫切。Martin等[67]對 Hint1 KO以及 WT小鼠 (外購)進(jìn)行70%肝臟缺血后再灌注3或24 h,結(jié)果顯示與對照組相比,I/R后,Hint1 KO小鼠血清轉(zhuǎn)氨酶、肝實質(zhì)壞死、肝細(xì)胞凋亡顯著減少,細(xì)胞凋亡蛋白Bax表達(dá)減少2倍以上;而WT小鼠活性氧和血紅素加氧酶-1表達(dá)增加,KO小鼠未見增加;KO小鼠磷酸化Src和p65核轉(zhuǎn)運增加,磷酸化c-Jun核表達(dá)減少。Hint1 KO小鼠保護(hù)性細(xì)胞因子白細(xì)胞介素6和白細(xì)胞介素-10水平增加,增加KO小鼠I/R后的存活率,KO小鼠Kupffer細(xì)胞受脂多糖類刺激后活化細(xì)胞數(shù)比對照細(xì)胞少,這一實驗說明Hint1蛋白能夠影響I/R損傷過程,在治療過程中降低Kupffer細(xì)胞中Hint1的表達(dá)可能會發(fā)揮限制損傷程度的作用。
肝纖維化 轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)/Smad是參與肝纖維化的主要信號通路,而Wnt信號通路在肝纖維化的發(fā)展中也發(fā)揮重要作用。因此,Wu等[68]利用人類Hint1重組蛋白對四氯化碳誘發(fā)的大鼠肝纖維化進(jìn)行干預(yù)并探討其機(jī)制:實驗中大鼠被隨機(jī)分為正常對照組、肝纖維化模型組以及重組人類Hint1(50、100 μg/kg)干預(yù)組,4周干預(yù)后,對重組人類Hint1干預(yù)組大鼠的組織病理學(xué)分析表明肝纖維化顯著減少,羥脯氨酸水平較低,其潛在機(jī)制可能與重組人類Hint1抑制肝組織α-平滑肌肌動蛋白表達(dá),降低TGF-β1/Smad3和β-連環(huán)蛋白/細(xì)胞周期蛋白D1信號通路活性有關(guān);然而,研究也顯示重組人類Hint1能夠激活TGF-β1信號通路Smad7的表達(dá),可能是一種代償機(jī)制,這一研究結(jié)果表明Hint1或可作為治療肝纖維化的靶點分子。
綜上,HINT1廣泛參與腫瘤、神經(jīng)精神疾病等人類疾病的病理生理過程。其中,探究HINT1酶活性、腫瘤抑制、神經(jīng)病理之間的內(nèi)在聯(lián)系是一個重要的研究方向。
[1] Seraphin B.The HIT protein family:a new family of proteins present in prokaryotes,yeast and mammals[J].DNA Seq,1992,3(3):177-179.
[2] Brenner C.Hint,F(xiàn)hit,and GalT:function,structure,e-volution,and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases[J].Biochemistry,2002,41(29):9003-9014.
[3] Kijas AW,Harris JL,Harris JM.Aprataxin forms a discrete branch in the HIT(histidine triad)superfamily of proteins with both DNA/RNA binding and nucleotide hydrolase activities[J].J Biol Chem,2006,281(20):13939-13948.
[4] Liu HD,Rodgers ND,Jiao X,et al.The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases[J].EMBO J,2002,21(17):4699-4708.
[5] Kwasnicka DA,Krakowiak A,Thacker C,et al.Coordinate expression of NADPH-dependent flavin reductase,F(xiàn)re-1,and Hint-related 7meGMP-directed hydrolase,DCS-1 [J].J Biol Chem,2003,278(40):39051-39058.
[6] Chen Q,Wang X,O’neill FA,et al.Is the histidine triad nucleotide-binding protein 1(HINT1)gene a candidate for schizophrenia?[J].Schizophr Res,2008,106(2/3):200-207.
[7] Brenner C,Garrison P,Gilmour J,et al.Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins [J].Nat Struct Biol,1997,4(3):231-238.
[8] Gilmour J,Liang N,Lowenstein JM.Isolation,cloning and characterization of a low-molecular-mass purine nucleosideand nucleotide-binding protein [J].Biochem J,1997,326(Pt 2):471-477.
[9] Bai GY,F(xiàn)eng B,Wang JB,et al.Studies on ligand binding to histidine triad nucleotide binding protein 1 [J].Bioorg Med Chem,2010,18(18):6756-6762.
[10] Pearson JD,Dewald DB,Mathews WR,et al.Amino acid sequence and characterization of a protein inhibitor of protein kinase C [J].J Biol Chem,1990,265(8):4583-4591.
[11] Huebner K,Saldivar JC,Sun J,et al.Hits,fhits and Nits:beyond enzymatic function [J].Adv Enzyme Regul,2011,51(1):208-217.
[12] Martin J,St-Pierre MV,Dufour JF.Hit proteins,mitochondria and cancer[J].Biochim Biophys Acta,2011,1807(6):626-632.
[13] Bieganowski P,Garrison PN,Hodawadekar SC,et al.A-denosine monophosphoramidase activity of Hint and Hnt1 supports function of Kin28,Ccl1,and Tfb3 [J].J Biol Chem,2002,277(13):10852-10860.
[14] Fankhauser H,Berkowitz GA,Schiff JA.A nucleotide with the properties of adenosine 5’phosphoramidate from chlorella cells[J].Biochem Biophys Res Commun,1981,101(2):524-532.
[15] Fankhauser H,Schiff JA,Garber LJ.Purification and properties of adenylyl sulphate:ammonia adenylyltransferase from chlorella catalysing the formation of adenosine 5’-phosphoramidate from adenosine 5’-phosphosulphate and ammonia[J].Biochem J,1981,195(3):545-560.
[16] Chou TF,Baraniak J,Kaczmarek R,et al.Phosphoramidate pronucleotides:a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins[J].Mol Pharm,2007,4(2):208-217.
[17] Chou TF,Wagner CR.Lysyl-tRNA synthetase-generated lysyl-adenylate is a substrate for histidine triad nucleotide binding proteins[J].J Biol Chem,2007,282(7):4719-4727.
[18] Park SG,Ewalt KL,Kim S.Functional expansion of aminoacyl-tRNA synthetases and their interacting factors:new perspectives on housekeepers [J].Trends Biochem Sci,2005,30(10):569-574.
[19] Shalak V,Kaminska M,Mitnacht-Kraus R,et al.The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component[J].J Biol Chem,2001,276(26):23769-23776.
[20] Han JM,Park BJ,Park SG,et al.AIMP2/p38,the scaffold for the multi-tRNA synthetase complex,responds to genotoxic stresses via p53 [J].Proc Natl Acad Sci U S A,2008,105(32):11206-11211.
[21] Han JM,Lee MJ,Park SG,et al.Hierarchical network between the components of the multi-tRNA synthetase complex:implications for complex formation[J].J Biol Chem,2006,281(50):38663-38667.
[22] Park SG,Kim HJ,Min YH,et al.Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response [J].Proc Natl Acad Sci U S A,2005,102(18):6356-6361.
[23] Su T,Suzui M,Wang L,et al.Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis[J].Proc Natl Acad Sci U S A,2003,100(13):7824-7829.
[24] Li H,Zhang Y,Su T,et al.Hint1 is a haplo-insufficient tumor suppressor in mice[J].Oncogene,2006,25(5):713-721.
[25] Garraway LA,Widlund HR,Rubin MA,et al.Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma [J].Nature,2005,436(747):117-122.
[26] Yannay-Cohen N,Razin E.Translation and transcription:the dual functionality of LysRS in mast cells [J].Mol Cells,2006,22(2):127-132.
[27] Szentirmay MN,Yang HX,Pawar SA,et al.The IGF2 receptor is a USF2-specific target in nontumorigenic mammary epithelial cells but not in breast cancer cells[J].J Biol Chem,2003,278(39):37231-37240.
[28] Wahab SZ,Yang DC.Synthesis of diadenosine 5’,5’’’-P1,P4-tetraphosphate by lysyl-tRNA synthetase and a multienzyme complex of aminoacyl-tRNA synthetases from rat liver[J].J Biol Chem,1985,260(9):5286-5289.
[29] Zhang YJ,Li HY,Wu HC,et al.Silencing of hint1,a novel tumor suppressor gene,by promoter hypermethylation in hepatocellular carcinoma [J].Cancer Lett,2009,275(2):277-284.
[30] Yang B,Guo M,Herman JG,et al.Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma [J].Am J Pathol,2003,163(3):1101-1107.
[31] Calvisi DF,Ladu S,Pinna F,et al.SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis[J].Gastroenterology,2009,137(5):1816-1826.
[32] Li HY,Balajee AS,Su T,et al.The HINT1 tumor suppressor regulates both gamma-H2AX and ATM in response to DNA damage [J].J Cell Biol,2008,183(2):253-265.
[33] Wang L,Zhang Y,Li H,et al.Hint1 inhibits growth and activator protein-1 activity in human colon cancer cells [J].Cancer Res,2007,67(10):4700-4708.
[34] Kukekov NV,Xu Z,Greene LA.Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs[J].J Biol Chem,2006,281(22):15517-15524.
[35] Tapon N,Nagata K,Lamarche N,et al.A new Rac target POSH is an SHS-containing scaffold protein involved in the JNK and NF-kappa B signalling pathways [J].EMBO J,1998,17(5):1395-1404.
[36] Xu Z,Kukekov NV,Greene LA.POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis[J].EMBO J,2003,22(2):252-261.
[37] Zhang QG,Wang RM,Yin XH,et al.Knock-down of POSH expression is neuroprotective through down-regulating activation of the MLK3-MKK4-JNK pathway following cerebral ischaemia in the rat hippocampal CA1 subfield [J].J Neurochem,2005,95(3):784-795.
[38] Xu ZH,Kukekov NV,Greene LA.Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feedforward loop [J].Mol Cell Biol,2005,25(22):9949-9959.
[39] Cen B,Deguchi A,Weinstein IB.Activation of protein kinase G increases the expression of p21CIP1,p27KIP1,and histidine triad protein 1 through Sp1 [J].Cancer Res,2008,68(13):5355-5362.
[40] Korsisaari N,Makela TP.Interactions of Cdk7 and kin28 with hint/PKCI-1 and Hnt1 histidine triad proteins[J].J Biol Chem,2000,275(45):34837-34840.
[41] Korsisaari N,Rossi DJ,Luukko K,et al.The histidine triad protein Hint is not required for murine development or Cdk7 function [J].Mol Cell Biol,2003,23(11):3929-3935.
[42] Weiske J,Huber O.The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-cateninmediated transcription [J].J Cell Sci,2005,118(Pt 14):3117-3129.
[43] Huber O,Weiske J.Beta-catenin takes a HIT [J].Cell Cycle,2008,7(10):1326-1331.
[44] Weiske J,Huber O.The histidine triad protein Hint1 triggers apoptosis independent of its enzymatic activity[J].J Biol Chem,2006,281(37):27356-27366.
[45] Zimon M,Baets J,Almeida-Souza L,et al.Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia [J].Nat Genet,2012,44(10):1080-1083.
[46] Klein MG,Yao Y,Slosberg ED,et al.Characterization of PKCI and comparative studies with FHIT,related members of the HIT protein family [J].Exp Cell Res,1998,244(1):26-32.
[47] Liu Q,Puche AC,Wang JB.Distribution and expression of protein kinase C interactive protein(PKCI/HINT1)in mouse central nervous system(CNS)[J].Neurochem Res,2008,33(7):1263-1276.
[48] Baron M.Genetics of schizophrenia and the new millennium:progress and pitfalls[J].Am J Hum Genet,2001,68(2):299-312.
[49] Straub RE,Maclean CJ,Oneill FA,et al.Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families[J].Mol Psychiatry,1997,2(2):148-155.
[50] Vawter MP,Barrett T,Cheadle C,et al.Application of cDNA microarrays to examine gene expression differences in schizophrenia [J].Brain Res Bull,2001,55(5):641-650.
[51] Vawter MP,Crook JM,Hyde TM,et al.Microarray analysis of gene expression in the prefrontal cortex in schizophrenia:a preliminary study [J].Schizophr Res,2002,58(1):11-20.
[52] Vawter MP,Shannon Weickert C,F(xiàn)erran E,et al.Gene expression of metabolic enzymes and a protease inhibitor in the prefrontal cortex are decreased in schizophrenia[J].Neurochem Res,2004,29(6):1245-1255.
[53] Chen XN,Wang X,Hossain S,et al.Haplotypes spanning SPEC2,PDZ-GEF2 and ACSL6 genes are associated with schizophrenia [J].Hum Mol Genet,2006,15(22):3329-3342.
[54] Varadarajulu J,Schmitt A,F(xiàn)alkai P,et al.Differential expression of HINT1 in schizophrenia brain tissue[J].Eur Arch Psychiatry Clin Neurosci,2012,262(2):167-172.
[55] Kurotaki N,Tasaki S,Mishima H,et al.Identification of novel schizophrenia loci by homozygosity mapping using DNA microarray analysis[J].PLoS One,2011,6(5):e20589.
[56] Barbier E,Zapata A,Oh E,et al.Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice[J].Neuropsychopharmacology,2007,32(8):1774-1782.
[57] Ross CA,Margolis RL,Reading SA,et al.Neurobiology of schizophrenia[J].Neuron,2006,52(1):139-153.
[58] Guang W,Wang HY,Su T,et al.Role of mPKCI,a novel mu-opioid receptor interactive protein,in receptor desensitization,phosphorylation,and morphine-induced analgesia [J].Mol Pharmacol,2004,66(5):1285-1292.
[59] Jackson KJ,Chen Q,Chen J,et al.Association of the histidine-triad nucleotide-binding protein-1(HINT1)gene variants with nicotine dependence [J].Pharmacogenomics J,2011,11(4):251-257.
[60] Elashoff M,Higgs BW,Yolken RH,et al.Meta-analysis of 12 genomic studies in bipolar disorder[J].J Mol Neurosci,2007,31(3):221-243.
[61] Martins-de-Souza D,Guest PC,Harris L,et al.Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients[J].Transl Psychiatry,2012,2(3):e87.
[62] Barbier E,Wang JB.Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level[J].BMC Neurosci,2009,10(1):132.
[63] Jackson KJ,Wang JB,Barbier E,et al.Acute behavioral effects of nicotine in male and female HINT1 knockout mice[J].Genes Brain Behav,2012,11(8):993-1000.
[64] Varadarajulu J,Lebar M,Krishnamoorthy GA,et al.Increased anxiety-related behaviour in Hint1 knockout mice[J].Behav Brain Res,2011,220(2):305-311.
[65] Weitzdoerfer R,Stolzlechner D,Dierssen M,et al.Reduction of nucleoside diphosphate kinase B,Rab GDP-dissociation inhibitor beta and histidine triad nucleotide-binding protein in fetal Down syndrome brain [J].J Neural Transm Suppl,2001,61:347-359.
[66] Chu L,F(xiàn)u G,Meng Q,et al.Identification of urinary biomarkers for type 2 diabetes using bead-based proteomic approach [J].Diabetes Res Clin Pract,2013,101(2):187-193.
[67] Martin J,Romanque P,Maurhofer O,et al.Ablation of the tumor suppressor histidine triad nucleotide binding protein 1 is protective against hepatic ischemia/reperfusion injury [J].Hepatology,2011,53(1):243-252.
[68] Wu F,Huang SF,Zhu NL,et al.Recombinant human histidine triad nucleotide-binding protein 1 attenuates liver fibrosis induced by carbon tetrachloride in rats [J].Mol Med Rep,2013,8(4):1023-1028.
中國醫(yī)學(xué)科學(xué)院學(xué)報2014年4期