劉書豪 費琴明
(復旦大學附屬中山醫(yī)院骨科,上海 200032)
椎間盤退化是導致椎間盤病變及腰部疼痛的主要原因之一。椎間盤退化的原因包括:髓核細胞的功能降低和數(shù)量減少以及蛋白聚糖、Ⅱ型膠原蛋白等基質(zhì)成分的減少[1-2];遺傳因素、機體衰老以及椎間盤營養(yǎng)缺失、過度受壓;椎間盤特殊的內(nèi)環(huán)境如高滲、低氧、低營養(yǎng)、高酸性等[3-6]。現(xiàn)就椎間盤細胞增殖和分化的研究進展作一綜述。
椎間盤細胞來源于胚胎時期的脊索,其在出生后不久,分化為脊索細胞和類軟骨細胞。McCann等[7]用Noto-cre鼠來追蹤脊索源性細胞,發(fā)現(xiàn)髓核細胞內(nèi)的脊索細胞以及軟骨樣細胞均起源于胚胎脊索。Dahia等[8]對出生后不同時間小鼠椎間盤細胞增殖分化的情況進行了研究,他們用磷酸化組蛋白H3對椎間盤細胞進行染色,發(fā)現(xiàn)出生后2~3周內(nèi)椎間盤細胞處于增殖狀態(tài),第1周達到峰值,3周后停止;而椎間盤細胞外基質(zhì)在出生3周后仍繼續(xù)增多,致使椎間盤體積不斷增大;纖維環(huán)細胞在出生后1周內(nèi)表現(xiàn)為圍繞髓核的連續(xù)性結構,1周后這些細胞逐漸分化為連接相鄰椎體的成熟纖維環(huán)細胞和覆蓋椎體表面并最終形成終板的逐漸鈣化的圓形細胞;TUNEL染色發(fā)現(xiàn),出生后2周時髓核細胞及生長板細胞即發(fā)生凋亡,而鈣化終板未發(fā)生凋亡。椎間盤伴隨著椎體一起生長,其調(diào)控機制可能是一致的。
Risbud等[9]證實在人退化的椎間盤內(nèi)存在骨髓間充質(zhì)干細胞(mesenchymal stem cell,MSC),可分化為成骨細胞、脂肪細胞、軟骨細胞。纖維環(huán)分離出來的細胞也被證實可以多向分化,甚至可分化為神經(jīng)細胞和內(nèi)皮細胞[10]。Blanco等[11]從人退化的椎間盤髓核中分離并擴增了MSC,通過流式細胞免疫表型檢測、細胞分化、反轉錄-聚合酶鏈反應等技術證實,髓核MSC與自體的骨髓MSC在形態(tài)學、擴增潛能、免疫表型、分子譜和分化潛能上相似。Erwin等[12]從狗椎間盤髓核中提取并培養(yǎng)出祖細胞,發(fā)現(xiàn)其在體外可分化為軟骨細胞、脂肪細胞、神經(jīng)細胞;在活體(髓磷脂缺乏鼠)內(nèi)有分化為少突膠質(zhì)細胞、神經(jīng)元、星形膠質(zhì)細胞的傾向,提示髓核祖細胞有用于神經(jīng)修復的潛能。Huang等[13]對恒河猴的研究發(fā)現(xiàn),在體外,髓核祖細胞的集落生成能力強于纖維環(huán)祖細胞;且其在體內(nèi)(裸小鼠皮下移植模型中)或體外擴增后,仍有分化潛能。原代髓核祖細胞和傳代髓核祖細胞有與骨髓MSC類似的分化能力,而纖維環(huán)祖細胞的分化能力相對弱于骨髓MSC。
人體多種組織都有干細胞龕,如腸、皮膚、腦等,干細胞龕的存在對相應組織細胞的擴增具有重大意義。Henriksson等[14]采用5-溴脫氧尿嘧啶核苷(5-bromo-2-Deoxyuridine,Brdu)標記法檢測兔的椎間盤細胞增殖情況,發(fā)現(xiàn)在纖維環(huán)和髓核內(nèi)有增殖細胞;髓核內(nèi)增殖細胞極少,纖維環(huán)近骨外緣有少量持續(xù)增殖的細胞,而在近韌帶區(qū)的纖維環(huán)外緣及軟骨膜區(qū)有大量增殖細胞。前者被認為可能是椎間盤的干細胞龕,可能對椎間盤的形態(tài)和功能起重要作用;同時,Henriksson等對鼠、豬、人的椎間盤上進行了研究并證實了這一結論。他們還采用免疫組化手段對用BrdU進行體內(nèi)標記的兔椎間盤進行觀察,發(fā)現(xiàn)在肝細胞轉移區(qū)域、BrdU標記區(qū)域都存在GDF-5、SMAD1/5、SOX-9細胞;此外,在這些區(qū)域還發(fā)現(xiàn)了SNAI1、SLUG和β1-INTEGRIN陽性的細胞,通過與小腸干細胞龕細胞的遷移進行對照,證實椎間盤內(nèi)細胞增殖是由干細胞龕內(nèi)細胞遷移引起的[15]。他們將MSC與椎間盤碎片共培養(yǎng)發(fā)現(xiàn),炎性物質(zhì)生成量下調(diào)。提示干細胞對減輕椎間盤炎癥有積極作用[16]。
雖然干細胞龕被證實對促進椎間盤細胞增殖有明顯效果,但其特異性標志物尚未被發(fā)現(xiàn)。目前多用各種軟骨細胞及MSC標志物來定位和提取椎間盤有增殖分化能力的細胞。Brisby等[17]證實,在基因?qū)用妫琌CT3/4、STRO-1、CD105、CD90和 Notch1在絕大多數(shù)退化的人體椎間盤標本中表達。Huang等[13]在mRNA層面發(fā)現(xiàn),恒河猴椎間盤細胞普遍表達骨髓MSC的表面標志物如 CD44、CD166、CD90、CD146、HLA-DR、Notch1等,其中 CD146在髓核增殖細胞的表達量高于骨髓MSC和纖維環(huán)增殖細胞,提示CD146可能是髓核增殖細胞的特異性標志物[13]。Sakai等[18]提取并培養(yǎng)了 C57BL/6 鼠的尾椎間盤髓核細胞,得到兩種集落群:黏附性成纖維細胞集落和球形集落;通過免疫組化染色發(fā)現(xiàn),后者大量表達Ⅱ型膠原蛋白和蛋白聚糖,而前者不表達,因此他們認為,球形集落是髓核表型細胞;他們還發(fā)現(xiàn),雙唾液酸神經(jīng)節(jié)苷脂(disialoganglioside 2,GD2)是與球形集落形成最為相關的表面標志物,且發(fā)現(xiàn)GD2+細胞的前體細胞是Tie+細胞;球形集落細胞在生長過程中呈現(xiàn)出如下變化:Tie2+GD2-CD24-(T/sp)細胞、Tie2+GD2+CD24-(TG/dp)細胞、Tie2-GD2+CD24-(G/sp)細胞,最后變?yōu)?Tie2-GD2-CD24+(24/sp)細胞。目前,尋找椎間盤干細胞特異性標志物仍是椎間盤基礎研究的重點之一。
隨著年齡增長,髓核內(nèi)細胞不斷減少,同時Ⅱ型膠原和蛋白多糖等細胞外基質(zhì)成分也減少,而金屬蛋白酶和膠原酶等含量增加。Brisby等[17]用骨髓-MSC細胞基質(zhì)和非退化椎間盤細胞基質(zhì)培養(yǎng)退化椎間盤的細胞,發(fā)現(xiàn)干細胞表面標志物的表達增加,說明MSC和椎間盤細胞產(chǎn)生的可溶性因子可以刺激退化椎間盤的修復過程[17]。He 等[19]通過滑膜源性干細胞獲得其細胞外基質(zhì),將髓核細胞在此基質(zhì)中培養(yǎng),然后與無基質(zhì)培養(yǎng)的髓核細胞進行比較,前者的擴增分化的能力顯著強于后者;將在無基質(zhì)環(huán)境下傳代5次后的髓核細胞移到細胞外基質(zhì)中進行第6次傳代,發(fā)現(xiàn)其增殖和分化能力也提高了,說明已退化的椎間盤細胞在合適的基質(zhì)中可恢復再生能力。
由于椎間盤內(nèi)高滲、低糖、低pH值、高機械壓力,植入椎間盤內(nèi)的干細胞在短期內(nèi)減少或死亡,更不能有效增殖與分化。Wuertz等[4]從不同年齡鼠中提取骨髓MSC,然后分別置于與椎間盤內(nèi)糖含量、滲透壓、pH值相同的環(huán)境下,發(fā)現(xiàn)在與椎間盤相同的低糖環(huán)境下,蛋白聚糖和膠原蛋白Ⅰ等生成增加,細胞也有少量擴增;但在與椎間盤相同的高滲環(huán)境和低pH環(huán)境以及三者都同的環(huán)境下,基質(zhì)和細胞擴增都減少。Liang等[20]在對脂肪性源性MSC的研究中也得到了類似的結論。Li等[5]證實了在缺氧條件下,SD大鼠髓核MSC和骨髓MSC的活性及增殖能力減弱,但分化為軟骨的能力增強。整體來說,髓核MSC比骨髓MSC更能耐受低氧環(huán)境。Tao等[6]將髓核細胞、髓核MSC在高滲環(huán)境下共培養(yǎng),發(fā)現(xiàn)高滲環(huán)境抑制了細胞活性、增殖及分化,減少了基質(zhì)的合成,但不影響凋亡率。因此,髓核-MSCs和髓核細胞共培養(yǎng)有望應用于椎間盤退化相關疾病的治療。
此外,衰老、缺乏運動、遺傳等基礎病因也會導致椎間盤細胞增殖、分化能力的降低。Yasen等[21]從基因和蛋白表達層面上證實,兔椎間盤內(nèi)增殖細胞和干細胞數(shù)量均隨年齡的增長而呈降低趨勢,椎間盤退變可能與椎間盤內(nèi)增殖細胞和干細胞的減少相關。Sasaki等[22]通過對比運動組大鼠和對照組大鼠腰椎間盤細胞的擴增情況發(fā)現(xiàn),運動組大鼠的腰椎間盤細胞在干細胞龕、纖維環(huán)內(nèi)部和外圍及骺軟骨的外圍區(qū)域均出現(xiàn)不同程度擴增,且運動可能對慢周期細胞和快周期細胞有促進作用。
在與椎間盤內(nèi)氧含量相同的條件下,椎間盤細胞增殖速率在5 d后突然降低。體外髓核細胞不能適應低氧環(huán)境,被認為可能是低氧誘導因子(hypoxia-inducible factor,HIF)無法上調(diào)。低氧條件下,相對于無基質(zhì)培養(yǎng)基,有蛋白聚糖時凋亡明顯降低,而HIF生成增加。蛋白聚糖可能是通過與轉化生長因子-β或BMP2信號系統(tǒng)相互作用而促進 HIF表達[13]。
椎間盤退化或創(chuàng)傷椎間盤細胞分泌的內(nèi)源性生長因子增加或終板破壞、血管生成等原因?qū)е峦庠葱陨L因子增加,兩者激活了ERK和Akt通路,啟動一系列磷酸化過程,進而使椎間盤內(nèi)細胞增殖加快。Pratsinis等[23]證實,在體外血小板衍生因子、堿性成纖維生長因子、胰島素樣生長因子-I等可以通過MEK/ERK和PI-3K/Akt通路刺激人的椎間盤細胞擴增;同時,在模擬體內(nèi)環(huán)境中也得到了相同的結果,并且發(fā)現(xiàn)自分泌生長因子可影響細胞擴增,并呈劑量依賴性。Sha’ban等[24]將纖維環(huán)和髓核細胞的可吸收多孔支架中加入纖維蛋白,發(fā)現(xiàn)其促進了細胞增殖和基質(zhì)的形成。Shen等[25]發(fā)現(xiàn),BMP-2通過轉化生長因子-β/Smad信號通路在軟骨細胞分化中起重要作用,同時還能促進軟骨細胞基質(zhì)的生成,因此,BMP-2也被用于對椎間盤細胞分化及基質(zhì)生成等方面的研究。
Lee等[26]研究發(fā)現(xiàn),脈沖式電磁場對椎間盤細胞的擴增有刺激作用,但對蛋白多糖的合成以及軟骨表型的表達無明顯作用。
綜上所述,本文從椎間盤細胞的起源、生長過程、干細胞龕、表面標志物等方面對椎間盤增殖分化的研究進行了總結,目的是探討激發(fā)椎間盤細胞自我更新及再生分化潛能的方法,從而尋求椎間盤退化相關疾病的新的治療策略。
[1]Adams MA,Roughley PJ.What is intervertebral disc degeneration,and what causes it[J].Spine(Phila Pa 1976),2006,31(18):2151-2161.
[2]Zhao CQ,Wang LM,Jiang LS,et al.The cell biology of intervertebral disc aging and degeneration[J].Ageing Res Rev,2007,6(3):247-261.
[3]Kalichman L,Hunter DJ.The genetics of intervertebral disc degeneration.Associated genes[J].Joint Bone Spine,2008,75(4):388-396.
[4]Wuertz K,Godburn K,Neidlinger-Wilke C,et al.Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc[J].Spine(Phila Pa 1976),2008,33(17):1843-1849.
[5]Li H,Tao YQ,Liang CZ,et al.Influence of hypoxia in the intervertebral disc on the biological behaviors of rat adipose-and nucleus pulposus-derived mesenchymal stem cells[J].Cells Tissues Organs,2013,198(4):266-277.
[6]Tao YQ,Liang CZ,Li H,et al.Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration[J].Cell Biol Int,2013,37(8):826-834.
[7]McCann MR,Tamplin OJ,Rossant J,et al.Tracing notochord-derived cells using a Noto-cre mouse:implications for intervertebral disc development[J].Dis Model Mech,2012,5(1):73-82.
[8]Dahia CL,Mahoney EJ,Durrani AA,et al.Postnatal growth,differentiation,and aging of the mouse intervertebral disc [J].Spine(Phila Pa 1976),2009,34(5):447-455.
[9]Risbud MV,Guttapalli A,Tsai TT,et al.Evidence for skeletal progenitor cells in the degenerate human intervertebral disc[J].Spine(Phila Pa 1976),2007,32(23):2537-2544.
[10]Feng G,Yang XL,Shang HL,et al.Multipotential differentiation of human anulus fibrosus cells:an in vitro study[J].J Bone Joint Surg Am,2010,92(3):675-685.
[11]Blanco JF,Graciani IF,Sanchez-Guijo FM,et al.Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus:comparison with bone marrow mesenchymal stromal cells from the same subjects[J].Spine(Phila Pa 1976),2010,35(26):2259-2265.
[12]Erwin WM,Islam D,Eftekarpour E,et al.Intervertebral discderived stem cells:implications for regenerative medicine and neural repair[J].Spine(Phila Pa 1976),2013,38(3):211-216.
[13]Huang S,Leung VYL,Long D,et al.Coupling of small leucinerich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc[J].Biomaterials,2013,34(28):6548-6558.
[14]Henriksson HB,Thornemo M,Karlsson C,et al.Identification of cell proliferation zones,progenitor cells and a potential stem cell niche in the intervertebral disc region:a study in four species[J].Spine(Phila Pa 1976),2009,34(21):2278-2287.
[15]Henriksson HB,Svala E,Skioldebrand E,et al.Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc:a descriptive study in the New Zealand white rabbit[J].Spine(Phila Pa 1976),2012,37(9):722-732.
[16]Bertolo A,Thiede T,Aebli N,et al.Human mesenchymal stem cell co-culture modulates the immunological properties of human intervertebral disc tissue fragments in vitro [J].Eur Spine J,2011,20(4):592-603.
[17]Brisby H,Papadimitriou N,Brantsing C,et al.The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro:a descriptive study in humans[J].Stem Cells Dev,2013,22(5):804-814.
[18]Sakai D,Nakamura Y,Nakai T,et al.Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc[J].Nat Commun,2012,3(5):1264.
[19]He F,Pei M.Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells[J].Spine(Phila Pa 1976),2012,37(6):459-469.
[20]Liang C,Li H,Tao Y,et al.Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc[J].J Transl Med,2012,10(13):49.
[21]Yasen M,F(xiàn)ei Q,Hutton WC,et al.Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs[J].Acta Biochim Biophys Sin(Shanghai),2013,45(5):368-376.
[22]Sasaki N,Henriksson HB,Runesson E,et al.Physical exercise affects cell proliferation in lumbar intervertebral disc regions in rats[J].Spine(Phila Pa 1976),2012,37(17):1440-1447.
[23]Pratsinis H,Constantinou V,Pavlakis K,et al.Exogenous and autocrine growth factors stimulate human intervertebral disc cell proliferation via the ERK and Akt pathways[J].J Orthop Res,2012,30(6):958-964.
[24]Sha'ban M,Yoon SJ,Ko YK,et al.Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid)scaffold[J].J Biomater Sci Polym Ed,2008,19(9):1219-1237.
[25]Shen B,Wei A,Tao H,et al.BMP-2 enhances TGF-beta3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate bead culture[J].Tissue Eng Part A,2009,15(6):1311-1320.
[26]Lee HM,Kwon UH,Kim H,et al.Pulsed electromagnetic field stimulates cellular proliferation in human intervertebral disc cells[J].Yonsei Med J,2010,51(6):954-959.