王連生,徐奇友
(中國水產(chǎn)科學研究院黑龍江水產(chǎn)研究所,哈爾濱 150070)
魚類精氨酸營養(yǎng)研究進展
王連生,徐奇友*
(中國水產(chǎn)科學研究院黑龍江水產(chǎn)研究所,哈爾濱 150070)
精氨酸(Arg)作為魚類必需氨基酸,參與機體蛋白質(zhì)合成,一氧化氮、多胺及肌酸的生成,在生長和免疫方面發(fā)揮重要作用。文章綜述近年來精氨酸對魚類生長、體成分及免疫功能影響及Arg和賴氨酸(Lys)平衡,為精氨酸在魚類生產(chǎn)中的應(yīng)用提供參考。
魚類;精氨酸;生長;免疫功能
目前,促進生長和控制疾病是魚類研究中兩個主要方面。蛋白質(zhì)和氨基酸在魚體組成和新陳代謝中起重要作用。魚類不能合成其所需所有氨基酸,必需氨基酸缺乏將導致魚類生長性能和飼料效率降低[1-2]。Arg是魚類10種必需氨基酸之一[3]。魚類Arg需要量在1.6%~3.1%,由于氨基酸類型、吸收率以及日糧能量不同影響氨基酸的吸收量[4-5]。此外,Arg在調(diào)節(jié)免疫功能方面具有重要作用[6]。
Arg是一種堿性氨基酸,分子式為C6H14N4O2,分子質(zhì)量為174.20 ku,學名2-氨基-5-胍基戊酸,白色晶體或晶體狀粉末,天然Arg主要以L-Arg形式存在。在水中結(jié)晶產(chǎn)物含2分子結(jié)晶水,105℃失去結(jié)晶水。在乙醇中結(jié)晶產(chǎn)物是無水物,238℃分解,溶于水,微溶于乙醇,不溶于乙醚。機體內(nèi)Arg主要來源是日糧、機體蛋白質(zhì)分解及機體內(nèi)其他氨基酸(谷氨酸、瓜氨酸等)合成。
Arg是機體內(nèi)唯一含有瞇基的氨基酸,代謝過程中可生成肌酸,同時存儲高能量磷酸鹽使肌肉三磷酸腺苷(ATP)再生[7]。Arg是合成一氧化氮(NO)的前體物質(zhì),在內(nèi)皮型一氧化氮合酶(eNOS)和誘導型一氧化氮合酶(iNOS)的作用下生成NO和瓜氨酸。日糧中添加Arg顯著提高魚血清中總一氧化氮合酶(T-NOS)的活性和肝臟中T-NOS和iNOS活性,生成更多NO[4]。NO在系統(tǒng)水平和細胞水平都是重要多效信號分子,參與機體免疫、血管生成及基因表達。Arg參與氮代謝,在精氨酸酶(是尿素循環(huán)中重要酶)作用下生產(chǎn)尿素氮和鳥氨酸(Ornithine,Orn),研究表明,Arg水平增加可顯著提高肝臟中精氨酸酶活性[7-9]。Berge等研究表明[10],高Arg組肌肉和血清中Orn的含量高于其他組,肌肉中Arg和Orn呈正相關(guān)(Orn=-0.0013+0.1484×Arg,r= 0.925)。Orn在鳥氨酸脫羧酶作用下生產(chǎn)多胺,也可在吡咯啉-5-羧酸還原酶和吡咯啉-5-羧酸脫氨酶作用下生成脯氨酸和谷氨酰胺。日糧中添加Arg顯著提高血清中谷氨酰胺含量,脯氨酸含量也有提高趨勢[11]。Pohlenz等研究表明[12],隨著日糧Arg添加量的增加,血清中Orn、脯氨酸、瓜氨酸、谷氨酸及谷氨酰胺含量顯著提高。精氨酸代謝見圖1[13]。
圖1 精氨酸代謝Fig.1 Diagram of arginine metabolites
日糧中添加精氨酸促進魚生長,一方面是由于精氨酸能夠改善魚腸道形態(tài)結(jié)構(gòu),研究表明,1%精氨酸能提高腸道末端絨毛高度和腸上皮細胞高度,2%精氨酸提高腸道中段和末端褶皺高度[14];另一方面是由于精氨酸能提高胃、前腸及中腸胃蛋白酶和胰蛋白酶活性,可提高胃和前腸中淀粉酶活性,提高飼料的消化和吸收率[15]。精氨酸促進生長激素和胰島素的分泌,促進魚類生長[16]。
日糧中添加1%Arg顯著提高雜交條紋鱸末重、特定生長率及飼料轉(zhuǎn)化率,成活率具有提高的趨勢[14]。印度鯰魚日糧中Arg含量在1.60%時,增重率、飼料效率及蛋白質(zhì)效率最高,以增重率、飼料效率、蛋白質(zhì)效率及魚體蛋白質(zhì)含量分別進行二元回歸分析,Arg的需要量分別是1.68%、1.63%、1.61%和1.61%,結(jié)果得出印度鯰魚日糧Arg最適含量是1.63%[17]。印度鯉魚日糧中Arg含量在1.75%時增重率、蛋白質(zhì)沉積率、飼料系數(shù)及Arg沉積量顯著高于其他組[18]。Khan研究表明印度囊鰓鯰日糧Arg含量在1.75%時[19],飼料效率和蛋白質(zhì)沉積率最高。石斑魚基礎(chǔ)日糧中添加0、0.30%、0.60%、0.90%、1.2%及1.5%晶體Arg,配制成含Arg 2.01%~3.27%6種日糧,研究結(jié)果表明,Arg含量在2.01%~2.83%時,增重率、特定生長率及蛋白質(zhì)效率隨Arg添加量增加而提高,以增重率和特定生長率進行二元回歸分析,Arg最適含量為2.8%[4]。Ren等以特定生長率和飼料效率進行二元回歸分析[20],表明軍曹魚最適Arg含量為2.85%和2.82%。相反,研究表明Arg對魚類生長性能無影響[20-22],原因可能主要有兩方面,一方面由于試驗魚品種不同,另一方面由于試驗持續(xù)時間不同。
RNA/DNA比值是反映魚類生長的可靠指標。動物細胞DNA含量相對恒定,但RNA的含量與機體蛋白質(zhì)合成率密切相關(guān)[23]。蛋白質(zhì)合成量與RNA的含量變化一致,魚類試驗用RNA/DNA比值反映生長[24-25]。Zehra和Khan研究表明[18],Arg添加量在1%~1.75%時,肌肉DNA含量線性降低,RNA含量及RNA/DNA比值提高,這與Abidi研究結(jié)果一致[26]。
3.1 Arg對魚體粗蛋白、粗脂肪、水分及粗灰分含量的影響
Arg含量低于最適量時,魚體粗蛋白含量隨日糧Arg增加而提高,但Arg含量高于最適量時,魚體粗蛋白含量隨Arg添加量的增加而降低。Zhou等研究表明[4],日糧Arg含量在2.01%~3.08%時,肌肉中粗蛋白含量隨著Arg增加而提高;但Arg含量在3.08%~3.27%時,隨著Arg含量增加而降低。Zehra和Khan研究表明[18],魚體蛋白質(zhì)含量與Arg添加量呈二次曲線關(guān)系,Arg含量在1.75%時蛋白質(zhì)沉積量最高。Ren等研究表明[20],日糧中Arg含量在1.76%時,魚體粗蛋白含量最低,2.96%時,魚體蛋白質(zhì)含量最高,高于2.96%時,粗蛋白含量又降低。Luo等研究表明[27],Arg對全魚粗蛋白含量的影響沒有達到顯著水平,但肌肉和肝臟粗蛋白含量顯著提高。Arg提高蛋白質(zhì)含量的原因可能是由于精氨酸及代謝產(chǎn)生的谷氨酰胺和NO可以激活肌肉中動物雷帕霉素靶蛋白(mTOR)信號途徑,mTOR激活后會促進磷酸化核糖體S6蛋白激酶(p70s6激酶)和真核生物啟動子4E-結(jié)合蛋白1(eIF4E-BP1)磷酸化,形成用于多肽合成的激活啟動復合物,促進蛋白質(zhì)合成[28-29]。
魚體粗脂肪含量隨著日糧Arg添加量的增加而降低。Zehra和Khan研究表明[18],粗脂肪含量與Arg添加量呈線性關(guān)系,隨著Arg添加量的增加(1%~2.25%),粗脂肪含量線性降低(4.68%~2.84%),對粗灰分的含量無影響。Khan等研究表明[30],日糧Arg含量在1.5%~2.5%時,與魚體粗脂肪含量呈負相關(guān)(R2=-0.969),與水分含量也呈負相關(guān)(R2=-0.994)。Luo等研究表明[27],日糧添加Arg顯著降低魚體粗脂肪含量,肝臟水分含量顯著降低。Arg通過內(nèi)分泌信號調(diào)節(jié)腺苷酸活化蛋白激酶(AMPK)抑制脂肪酸和類固醇的合成,降低粗脂肪含量[29]。Ren等研究表明[20],Arg對水分和粗脂肪含量無顯著影響。
3.2 Arg對魚體氨基酸組成的影響
Zhou等研究表明[15],日糧中添加Arg提高黑鯛肌肉中亮氨酸、異亮氨酸和Arg含量,對其他必需氨基酸的量無顯著影響,總必需氨基酸含量顯著提高;非必需氨基酸中谷氨酸、丙氨酸及絲氨酸含量顯著提高,對非必需氨基酸總含量的影響沒有達到顯著水平。Luo等研究表明[27],Arg顯著提高全魚必需氨基酸、非必需氨基酸及總氨基酸的含量,氨基酸沉積率也顯著提高(除纈氨酸和異亮氨酸外)。Zhou等研究表明[4],Arg對石斑魚肝臟必需氨基酸組成沒有顯著影響,日糧Arg含量3.08%時,肌肉必需氨基酸和Arg的含量顯著高于2.01%組。
3.3 Arg對肝體指數(shù)、臟體指數(shù)及肥滿度的影響
Zhou等研究表明[4],2.01%和2.28%Arg組肝體指數(shù)顯著高于其他組,3.08%Arg組肥滿度顯著高于2.4%組,臟體指數(shù)各組間差異未達到顯著水平。Tulli等研究表明[9],日糧中添加Arg顯著降低肝體指數(shù)。Khan等研究表明[30],Arg含量在2.1%~2.5%時,肝體指數(shù)和臟體指數(shù)隨著Arg添加量的增加而線性提高;Arg含量在1.5%~2.1%時,肥滿度隨著Arg添加量的增加而提高,Arg含量高于2.1%時,隨著添加量的增加而降低。Zhou等研究表明[31],不同Arg水平對黑鯛肝體指數(shù)影響未達到顯著水平。
4.1 Arg對非特異性免疫系統(tǒng)的影響
非特異性免疫系統(tǒng)防御機理包括吞噬作用和氧自由基產(chǎn)生,在免疫刺激劑作用下迅速激活,防御病原菌入侵[32]。高Arg能提高天然殺傷細胞毒性及白介素-2含量,提高T-細胞CD3的蛋白表達[33-34]。Arg還能夠提高巨噬細胞和中性粒細胞的吞噬作用和殺傷能力,調(diào)節(jié)淋巴細胞亞群的粘附分子、趨藥性及細胞增殖[35-36]。巨噬細胞是魚體中最重要免疫活性細胞,活性是反映和評價魚類免疫水平重要指標。巨噬細胞作用的提高主要是由于超氧陰離子產(chǎn)生增加,超氧陰離子被認為是巨噬細胞殺菌的主要成分[37]。Cheng等研究表明[14],Arg顯著提高細胞外超氧陰離子和中性粒細胞氧自由基的產(chǎn)生,細胞內(nèi)超氧陰離子的含量也有提高的趨勢,但差異沒有達到顯著水平。Arg缺乏導致腎臟巨噬細胞產(chǎn)生的超氧離子和血液中性粒細胞產(chǎn)生的氧自由基量顯著降低[12]。
研究表明日糧Arg含量影響魚類血液組成[31,38],如血細胞壓積、紅細胞數(shù)及白細胞數(shù),這些指標可以反映機體的造血功能和免疫功能[39]。日糧添加4%Arg顯著提高血液中血紅蛋白含量、血細胞壓積及紅細胞數(shù)[38]。相反,Zhou等研究表明[4],Arg對血紅蛋白含量、血細胞壓積及紅細胞數(shù)都沒有顯著影響。Cheng等研究表明[14],1%Arg能顯著提高雜交條紋鱸血清溶菌酶的活性,溶菌酶是激活補體系統(tǒng)和吞噬細胞的免疫調(diào)理素。
4.2 Arg對特異性免疫系統(tǒng)的影響
Pohlenz等究表明[40],斑點叉尾接種愛德華氏菌7 d后,添加4%Arg組血清愛德華氏菌抗體效價顯著提高,且脾臟和頭腎中蛋白質(zhì)含量提高;14 d后,Arg組脾臟和頭腎淋巴細胞抗愛德華氏菌功能提高。Buentello和Gatlin研究表明[35],斑點叉尾感染愛德華氏菌后,2%Arg日糧能顯著提高其成活率。
必需氨基酸包括Arg能提高魚類的生長性能。必需氨基酸含量過高導致氨排放增加,破壞水質(zhì),影響生長[41]。因此,平衡氨基酸才能促進魚類生長。Kaushik和Fauconeau研究表明[42],Arg和Lys在腸道利用同一種轉(zhuǎn)運載體進行轉(zhuǎn)運。因此,在吸收、轉(zhuǎn)運及代謝方面存在競爭抑制現(xiàn)象。虹鱒血清Arg水平隨著Lys添加量的增加降低[42]。Zhou等以黑鯛最適Arg和Lys(2.83/3.25)比例為對照組[31],試驗2、3組Lys的含量在對照組基礎(chǔ)上分別提高20%,Arg提高或降低20%,4,5組Lys的含量在對照組基礎(chǔ)上降低20%,Arg提高或降低20%,6,7,8組Arg的含量與對照組一致,Lys的含量分別提高20%,40%和60%。研究結(jié)果表明,對照組最適Arg和Lys比例增重率顯著高于其他組,原因是由于飼料攝入量降低、Arg和Lys利用率降低以及吸收的氨基酸分解量增加;添加Arg能部分改善高Lys對黑鯛生長性能、飼料利用率及肝臟精氨酸酶活性的負面影響,表明黑鯛Arg和Lys之間可能存在拮抗作用。軍曹魚飼喂Lys和Arg比例為0.8、1.1和1.8的高植物蛋白飼糧,結(jié)果表明,Lys和Arg比例為1.1組魚的體重、體長及增重率都高于0.8和1.8組[43]。封福鮮等采用3×3雙因子試驗設(shè)計[44],Arg水平為2.41%、4.86%和6.81%,在每個Arg水平分別設(shè)1.95%、5.84%和8.27%3個Lys水平,當Arg/Lys為6.81/5.84時,瓦氏黃顙魚生長最佳,且Arg和Lys水平對瓦氏黃顙魚的生長有顯著的交互作用;在低Arg水平2.41%時,隨著日糧中Lys水平升高,瓦氏黃顙魚特定生長率逐漸升高,且在高Lys水平8.27%時顯著高于對照組;在Arg較高水平4.86%和6.81%時,特定生長率隨日糧中Lys水平升高呈現(xiàn)先升高后降低趨勢,且均在適中Lys水平5.84%組顯著高于其他兩組1.95%和8.27%。研究表明,日糧過量Lys對斑點叉尾、歐洲鱸魚及牙鲆的生長性能及血清Arg水平無負面影響[1,45-46]。使用不同品種的魚得出Arg和Lys關(guān)系,不能肯定得出Arg和Lys之間存在拮抗作用[3]。實際生產(chǎn)中配制飼料時須考慮Arg和Lys平衡,既有利于魚類生長,又可節(jié)約飼料成本。
適量添加Arg能夠提高魚類生長性能,改善魚體營養(yǎng)成分,提高機體免疫力。在添加Arg同時,要考慮Arg與Lys及其他氨基酸之間平衡。目前,關(guān)于Arg促進生長及提高免疫功能機理研究相對較少,Arg是通過哪些信號通路或改變哪些基因的表達而影響魚類的生理與代謝,有待進一步研究。
[1]Alam M S,Teshima S,Koshio S,etal.Arginine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by growth and biochemical parameters[J].Aquaculture,2002,205: 127-140.
[2]Masagounder K,Hayward R S,Firman J D.Comparison of dietary essential amino acid requirements determined from group-housed versus individually-housed juvenile bluegill,Lepomis macrochirus [J].Aquaculture Nutrition,2010,17:559-571.
[3]NRC(National Research Council).Nutrient requirements of fish and shrimps[S].Washington,D.C.National Academy Press,2011.
[4]Zhou Q C,Zeng W P,Wang H L,et al.Dietary arginine requirement of juvenile yellow grouper Epinephelus awoara[J].Aquaculture, 2012,350-353:175-182.
[5]Simmons L,Moccia R D,Bureau D P.Dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus[J].Aquaculture Nutrition,1999,5:93-100.
[6]Jobgen W S,Fried S K,Fu W J,et al.Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates [J].The Journal of Nutritional Biochemistry,2006,17:571-588.
[7]Denis E,Frcsi M D,Lieberman M D,et al.Immunonutrition:the role of arginine[J].Nutrition,1998,14:7-8.
[8]Berge G E,Lied E,Sveier H.Nutrition of Atlantic salmon(Salmo salar):the requirement and metabolism of arginine[J].Comparative Biochemistry and Physiology part A,1997,117:501-509.
[9]Tulli F,Vachot C,Tibaldi E,et al.Contribution of dietary arginine tonitrogenutilizationandexcretioninjuvenileseabass (Dicentrarchus labrax)fed diets differing in protein source[J]. Comparative Biochemistry and Physiology Part A,2007,147: 179-188.
[10]Berge G E,Sveier H,Lied E.Effects of feeding Atlantic salmon (Salmo salar)imbalanced levels of lysine and arginine[J].Aquaculture Nutrition,2002,8:239-248.
[11]Tesser M B,Terjesen B F,Zhang Y,et al.Free-and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus)[J].Aquaculture Nutrition,2005,11: 443-453.
[12]Pohlenz C,Buentello A,Helland S J,et al.Effects of dietary arginine supplementation on growth,protein optimization and innate immune response of channel catfish Ictalurus punctatus (Rafinesque 1818)[J].Aquaculture Research,2014,45:491-500.
[13]Carmelo N J,Bobbi L H.Arginine and immunity:a unique perspective[J].Biomed Pharmacother,2002,56:471-482.
[14]Cheng Z,Gatlin D M,Buentello A.Dietary supplementation of arginine and/or glutamine influences growth performance,immune responses and intestinal morphology of hybrid striped bass (Morone chrysops×Morone saxatilis)[J].Aquaculture,2012,362-363:39-43.
[15]Zhou F,Zhou J,Shao Q J,et al.Effects of Arginine-deficient and replete diets on growth performance,digestive enzyme activities and genes expression of black sea bream,Acanthopagrus schlegelii,Juveniles[J].Journal of The World Aquaculture Society,2012, 43:828-839.
[16]Flynn N E,Meininger C J,Haynes T E,et al.The metabolic basis of arginine nutrition and pharmacotherapy[J].Biomedicine and Pharmacotherapy,2002,56:427-438.
[17]Ahmed I.Dietary arginine requirement of fingerling Indian catfish (Heteropneustes fossilis,Bloch)[J].Aquaculture International,2013,21: 255-271.
[18]Zehra S,Khan M A.Dietary arginine requirement of fingerling indian major carp,Catla catla(Hamilton)[J].Journal of The World Aquaculture Society,2013,44:363-373.
[19]Khan M A.Effects of dietary arginine levels on growth,feed conversion,protein productive value and carcass composition of stinging catfish fingerling Heteropneustes fossilis(Bloch)[J].Aquaculture International,2012,20:935-950.
[20]Ren M C,Ai Q H,Mai K S.Dietary arginine requirement of juvenile cobia(Rachycentron canadum)[J].Aquaculture Research, 2014,45:225-233.
[21]Cheng Z Y,Buentello J A,Gatlin D M.Effects of dietary arginine and glutamine on growth performance,immune responses and intestinal structure of red drum,Sciaenops ocellatus[J].Aquaculture,2011,319:247-252.
[22]Fournier V,Gouillou-coustans M F,Metailler R,et al.Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima[J].Aquaculture,2003,217:559-576.
[23]Tanaka Y,Gwak W S,Tanaka M,et al.Ontogenetic changes in RNA,DNA and protein contents of laboratory-reared Pacific bluefin tuna Thunnus orientalis[J].Fisheries Science,2007,73: 378-384.
[24]Peck M A,Buckley L J,Caldarone M,et al.Effects of foodconsumption and temperature on growth rate and biochemicalbased indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J].Marine Ecology Progress Series,2003,251:233-243.
[25]Mercaldo-allen R,Kuropat C,Caldarone E M.An RNA:DNA-based growth model for young-of-the-year winter flounder Pseudopleuronectes americanus(Walbaum)[J].Journal of Fish Biology, 2008,72:1321-1331.
[26]Abidi S F,Khan M A.Dietary arginine requirement of fingerling Indian major carp,Labeo rohita(Hamilton)based on growth, nutrient retention efficiencies,RNA/DNA ratio and body composition[J].Journal of Applied Ichthyology,2009,25:707-714.
[27]Luo Z,Liu Y J,Mai K S,et al.Effects of dietary arginine levels on growth performance and body composition of juvenile grouper Epinephelus coioides[J].Journal of Applied Ichthyology,2007,23: 252-257.
[28]Pervin S,Singh R,Hernandez E,et al.Nitric oxide in physiological concentrations targets the translational machinery to increase the proliferation of human breast cancer cells:involvement of mammalian target of rapamycin/eIF4E pathway[J].Cancer Research, 2007,67:289-299.
[29]Yao K,Yin Y L,Chu W,et al.Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs[J].Journal of Nutrition,2008,138:867-872.
[30]Khan M A,Zehra S.Dietary arginine requirement of Heteropneustes fossilis fry(Bloch)based on growth,nutrient retention and haematoloical parameters[J].Aquaculture Nutrition,2011,17: 428-428.
[31]Zhou F,Shao Q J,Xiao J X,et al.Effects of dietary arginine and lysine levels on growth performance,nutrient utilization and tissue biochemical profile of black sea bream,Acanthopagrus schlegelii, fingerlings[J].Aquaculture,2010,319:72-80.
[32]Siwicki A K,Anderson D P,Rumsey G L,et al.Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis[J].Veterinary Immunology and Immunopathology,1994,41:125-139.
[33]Li P,Yin Y L,Li D,et al.Amino acids and immune function[J]. British Journal of Nutrition,2007,98:237-252.
[34]Choi B S,Martinez-falero I C,Corset C,et al.Differential impact of l-arginine deprivation on the activation and effector functions of T cells and macrophages[J].Journal of Leukocyte Biology, 2009,85:268-277.
[35]Buentello J A,Gatlin D M.Effects of elevated dietary arginine on resistance of channel catfish to exposure to Edwardsiella ictaluri [J].Journal of Aquatic Animal Health,2001,13:194-201.
[36]Abdukalykova S T,Zhao X,Ruiz-feria C A.Arginine and vitamin E modulate the subpopulations of T lymphocytes in broiler chickens[J].Poultry Science,2008,87:50-55.
[37]Secombes C J.Isolation of salmonid macrophages and analysis of their killing activity[M].In:Stolen J S,Fletcher T C,Anderson D, et al.Techniques in Fish Immunology,vol.I.SOS Publications, Fair,Haven,N J,1990:137-154.
[38]Buentello J A,Reyes-becerril M,Romero-geraldo M J,et al. Effects of dietary arginine on hematological parameters and innate immune function of channel catfish[J].Journal of Aquatic Animal Health,2007,19:195-203.
[39]Goldsby R A,Kindt T J,Osborne B A,et al.Immunology[M].5th ed.New York,NY:W.H.Freeman and Co,2003.
[40]Pohlenz C,Buentello A,Criscitiello M F,et al.Synergies between vaccination and dietary arginine and glutamine supplementation improvetheimmuneresponseofchannelcatfishagainst Edwardsiella ictaluri[J].Fish&Shellfish Immunology,2012,33: 543-551.
[41]Hart S D,Brown B J,Gould N L,et al.Predicting the optimal dietary essential amino acid profile for growth of juvenile yellow perch with whole body amino acid concentrations[J].Aquaculture Nutrition,2010,16:248-253.
[42]Kaushik S J,Fauconeau B.Effects of lysine administration on plasma arginine and on some nitrogenous catabolites in rainbow trout[J].Comparative Biochemistry and Physiology part A,1984, 79:459-462.
[43]Nguyen M V,R?nnestad I B L,Lai H V,et al.Imbalanced lysine to arginine ratios reduced performance in juvenile cobia(Rachycentron canadum)fed high pant protein diets[J].Aquacultre Nutrition,2014,20:25-35.
[44]封福鮮,艾慶輝,徐瑋,等.精氨酸和賴氨酸對瓦氏黃顙魚幼魚生長和非特異性免疫力的影響[J].水產(chǎn)學報,2011,35:1072-1080.
[45]Robinson E H,Wilson R P,Poe W E.Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish[J].The Journal of Nutrition,1981,111:46-52.
[46]Tibaldi E,Tulli F,Lanari D.Arginine requirement and effect of different dietary arginine and lysine levels for fingerling sea bass (Dicentrarchus labrax)[J].Aquaculture,1994,127:207-218.
Research advances in arginine nutrition of fish
WANG Liansheng,XU Qiyou(Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences,Harbin 150070,China)
Arginine has been shown to be an essential amino acid for fish,it is involved in protein, nitric oxide,polyamine and creatine synthesis and plays important roles in the growth and immune function.This review summarized the effects of arginine on growth,body composition and immune function of fish and the balance of arginine and lysine,in order to provide reference for the application of arginine in fish.
fish;arginine;growth;immune function
S932.4
A
1005-9369(2014)09-0123-06
2013-11-18
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金資助(CARS-46-16);黑龍江水產(chǎn)研究所基本科研業(yè)務(wù)費專項資金(HSY201408)
王連生(1984-),男,助理研究員,博士,研究方向為動物營養(yǎng)與飼料。E-mail:liansheng0429@163.com
*通訊作者:徐奇友,研究員,研究方向為水產(chǎn)動物營養(yǎng)。E-mail:xuqiyou@sina.com
時間2014-9-18 11:28:25[URL]http://www.cnki.net/kcms/detail/23.1391.S.20140918.1128.019.html
王連生,徐奇友.魚類精氨酸營養(yǎng)研究進展[J].東北農(nóng)業(yè)大學學報,2014,45(9):123-128.
Wang Liansheng,Xu Qiyou.Research advances in arginine nutrition of fish[J].Journal of Northeast Agricultural University, 2014,45(9):123-128.(in Chinese with English abstract)