劉 坤,王俊麗 ,李會(huì)宣,賈艷菊,楊 虹
1河北經(jīng)貿(mào)大學(xué)生物科學(xué)與工程學(xué)院,石家莊050061;2 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院,北京100081
大型真菌是一個(gè)古老的生物,種屬繁多,據(jù)Hawksworth(2001)估計(jì)全球約有大型真菌150000種,被描述的約20000 種[1,2],我國(guó)大型真菌約1 萬余種,已被描述的約3800-4000 種[3]。我國(guó)大型真菌的藥用歷史悠久,《神農(nóng)本草經(jīng)》和《本草綱目》均記載了真菌的藥用價(jià)值,其中靈芝(Ganderma lucidum)、茯苓(Poria cocos)和豬苓(Grifola umbellata)等被用于癌癥的治療[4]。抗癌真菌的現(xiàn)代文獻(xiàn)始于1903 年,對(duì)真菌抗腫瘤作用的大規(guī)模研究始于二十世紀(jì)60 年代[5,6],現(xiàn)已發(fā)現(xiàn)約650 種擔(dān)子菌具有抗腫瘤活性[7]。真菌的抗腫瘤物可分為兩大類,大分子物質(zhì)和小分子物質(zhì),大分子物質(zhì)主要是多糖和與蛋白相連的多糖,小分子主要有酚類化合物、聚酮類化合物、萜類化合物和甾體等,它們可進(jìn)入細(xì)胞膜,作用于特定的代謝途徑[4,8]。
1.1.1 單萜
Sontag 等[9]從圓瘤孢多孔菌(Bondarzewia montana)中分離得到的montadial A(1)是具細(xì)胞毒活性的單萜,它對(duì)小鼠淋巴性白血病細(xì)胞L1210 和早幼粒細(xì)胞性白血病細(xì)胞HL-60 的IC50(半數(shù)抑制濃度)分別為10 μg/mL 和5 μg/mL。
1.1.2 倍半萜
McMorris 等[10]從發(fā)光杯傘(Clitocybe illudens)中分離到未知的抗生素,后被鑒定為illudin M(2)和illudin S(3),它們對(duì)多種腫瘤細(xì)胞有非常好的抑制作用;其半合成的化合物acylfulvene(4)在體內(nèi)的抑制作用大大提高;由illudin M 和illudin S 派生的illudin 毒素類似物HMAF(6-hydroxymethylacylfulvene)(5)可望成為一個(gè)新的抗癌藥物,臨床試驗(yàn)證明它對(duì)多種腫瘤細(xì)胞有效[11-13]。St?rk 等[14]從北方小香菇(Lentinellus ursinus)中分離出的倍半萜lentinellic acid(6)具有細(xì)胞毒活性。Lorenzen 等[15]從Panus sp.分離出了兩個(gè)caryophyllane 型倍半萜naematolin(7)和naematolon(8),其中naematolon 的細(xì)胞毒活性是naematolin 的5 倍,naematolon 可通過抑制胸腺嘧啶加入到DNA 而抑制人食管癌細(xì)胞Eca-109 的增殖,其IC50值為2 μg/mL。Fabian 等[16]從Radulomyces confluens 中分離得到的倍半萜radulone A(9)有較強(qiáng)的抗腫瘤活性。Reina 等[17]從Coprinopsis episcopalis 中分離出了4 個(gè)有細(xì)胞毒作用的類似物:illudins I(10)、illudins I2(11)、illudins J(12)和illudins J2(13)。馬文哲等[18]從網(wǎng)紋斑褶菇(Panaeolus retirugis)固體培養(yǎng)的菌絲體中分離出的paneolic acid(14)對(duì)HL-60 細(xì)胞顯示一定的細(xì)胞毒活性,其IC50為18.9 μg/mL。Opatz 等[19]從Creolophus cirrhatus 中分出了五種norhirsutanes,被命名為creolophins A-E,其中creolophins E(15)和在純化過程中合成的二聚體neocreolophin(16)具有細(xì)胞毒活力。王雅琪等[20]從金針菇(Flammulina velutipes)固體培養(yǎng)物中分離的倍半萜Enokipodin J(17)2,5-cuparadiene-1,4-dione(18),enokipodins B(19),enokipodins D(20)都有抗人肝癌細(xì)胞HepG2、人乳腺癌細(xì)胞 MCF-7、人肺癌細(xì)胞 A549、人胃癌細(xì)胞SGC7901 的活性,其IC50范圍為22. 9~90. 9 μg/mL。
1.1.3 二萜
Mazura 等[21]從花臉香蘑(Lepista sordida)菌株發(fā)酵液分離出了二萜骨架化合物lepistal(21)和lepistol(22),lepistal 在濃度為0. 2 μg/mL 時(shí),能使20%的HL-60 細(xì)胞分化為單核粒細(xì)胞及18%的人急性白血病細(xì)胞U 937 細(xì)胞分化為單核細(xì)胞;lepistol 在濃度為20 μg/mL 時(shí)能使30%的HL-60 細(xì)胞分化,在10 μg/mL 時(shí)能使14%的U 937 細(xì)胞分化。
1.1.4 三萜
陳春雄[22]從牛樟芝(Antrodia camphorata)中分離的化合物zhankuic acids A(23)和zhankuic acids C(24)對(duì)鼠白血病細(xì)胞P-388 的IC50為1.8 和5.4 μg/mL;zhankuic acids A、zhankuic acids C 和methyl antcinate B(25)對(duì)結(jié)腸癌、乳腺癌、肝癌和肺癌細(xì)胞株有特異細(xì)胞毒性,IC50范圍為22.3~75.0 μM[23];另外Yeh 等[24]從樟芝中分出的antcin A(26)、antcin C(27)、dehydroeburicoic acid(28)、15a-Acetyldehydrosulphurenic acid(29)、eburicoic acid(30)和eburicol(31)對(duì)多種腫瘤細(xì)胞有抗性。Toth 等[25]報(bào)道從靈芝菌絲體中提取的具有細(xì)胞毒活性的三萜類化合物ganoderic acid W(32)、ganoderic acid X(33)和ganoderic acid Y(32~34),它們能明顯抑制小鼠肝肉瘤(HTC)細(xì)胞的增殖;Lin 等[26]從靈芝子實(shí)體中分離到靈芝醛A(35)和雙氫靈芝醛A(36),它們對(duì)人肝癌細(xì)胞PLC/PRE/5 和人口腔表皮樣癌細(xì)胞KB 有較強(qiáng)的抑制作用,ED50(半數(shù)有效量)范圍為1~11 μg/mL;Gao 等[27]從靈芝中分離出的lanostante 型三萜醛lucialdehydes A-C(37~39),對(duì)小鼠肺癌LLC 細(xì)胞株、小鼠纖維肉癌Meth-A 細(xì)胞株、人乳腺癌T-47D 細(xì)胞和肉瘤S-180 細(xì)胞株都有抑制作用,其中l(wèi)ucialdehydes C(39)的細(xì)胞毒活性最強(qiáng),對(duì)4 種腫瘤細(xì)胞的ED50分別為10.7、4.7、7.1 和3.8 μg/mL;Tang 等[28]報(bào)道從靈芝中分離的ganoderic acid T(40)可造成線粒體功能的紊亂和p53 蛋白的表達(dá),從而造成肺癌細(xì)胞95-D 的凋亡;Yue 等[29]報(bào)道從靈芝中分離的Ganoderic acid F、K、B、D 和AM1(41~45)可抑制人宮頸癌細(xì)CCL-2 增殖,其IC50分別為19. 5、15. 1、20. 3、17. 3 和19. 8 μM。Ukiya等[30]從茯苓中分出了3,4-secolanostane 型三萜poricoic acid G(46)和poricoic acid H(47),poricoic acid G 對(duì)HL-60 有顯著的細(xì)胞毒活力,其GI50(半數(shù)生長(zhǎng)抑制濃度)為39.3 μM。Handa 等[31]從樺褐孔菌(Inonotus obliquus)中分離了3 個(gè)三萜化合物spiroinonotsuoxodiol(48)、inonotsudiol A (49)和inonotsuoxodiol A(50),其中,spiroinonotsuoxodiol 為新骨架,這三種化合物對(duì)P388 細(xì)胞、L1210 細(xì)胞、HL-60細(xì)胞和KB 細(xì)胞都有一定的抗性。
Ohsawa 等[32]從豬苓中提取的polyporusterone A-G(51~57)對(duì)L1210 細(xì)胞有細(xì)胞毒活性,IC50范圍為10~64 μg/mL,其中polyporusterone A 和polyporusterone B 對(duì)2,2'-偶氮二(2-脒基丙烷)二鹽酸鹽(AAPH)誘導(dǎo)紅細(xì)胞的溶解有抑制作用[33]。Valisolalao 等[34]從彩絨革蓋菌(Trametes versicolor)中分離出含有細(xì)胞毒活性的多氧麥角甾3β,5α,9α-trihydroxyergosta-7,22-dien-6-one(58)和3β,5α,9α-trihydroxy-6β-methoxyergosta-7,22-diene (59 )。 Mizushina 等[35]從靈芝中分離的cerevisterol(60)、Lucidenic acid O(61)和Lucidenic lactone(62)有抗腫瘤活性,化合物60 有抑制DNA 聚合酶α 的活性,61和62 有抑制DNA 聚合酶α 和β 的活性。從冬蟲夏
草(Cordyceps sinensis)中分離的5,8-epidioxy-24(R)-methylcholesta-6,22-dien-3β-ol(63)、5,8-epidioxy-24(R)-methylcholesta-6,22-dien-3β-D-glucopyranoside(64)、5,6-epoxy-24(R)-methylcholesta-7,22-dien-3β-ol(65)有抗腫瘤活性[8,34,36]。從灰樹花和巴西蘑菇(Agaricus blazei)中分離的ergosterol(66),從灰樹花、樹舌(Ganoderma applanatum)、新日本靈芝(Ganoderma neojaponicum)中分離的ergosta-4,6,8(14),22-tetraen-3-one(67)具有環(huán)化酶抑制作用[8,37,38],它們可通過激活半胱天冬酶而促進(jìn)HepG2 細(xì)胞的凋亡[39]。
Liberra 等[40]從柏樹火焰層孔菌(Pyrofomes demidoffii)中分離出高度氧化的化合物fomecin A(48)和fomecin B(49),其中fomecin B 對(duì)HeLa 細(xì)胞和人羊膜FL 細(xì)胞有細(xì)胞毒活性,其IC50分別為20和7 μg/mL。丁智慧等[41]從地花菌(Albatrellus confluens)中提取分離到一個(gè)新骨架類型化合物Albaconol(50),它對(duì)人白血病細(xì)胞K562、人乳腺癌細(xì)胞Bcap-37、人胃癌細(xì)胞BGC-823 和A549 細(xì)胞的IC50分別為2.42、1.88、1.04 和1.18 μg/mL;在體外實(shí)驗(yàn)中,albaconol 在劑量為0.87、1.73 和3.46 mg/kg時(shí)對(duì)S180 的抑瘤率分別為28.2%、43.2%和47.4%,對(duì)小鼠肝癌H22 細(xì)胞的抑瘤率分別為15.6%、22.4%和37.8%[42]。莫順燕等[43]從火木層孔菌(Phellinus igniarius)中分離的化合物hispolon(47)和桑黃素C(47)對(duì)MCF-7 細(xì)胞和人肝癌細(xì)胞BeL-7402 有較好的細(xì)胞毒活性,hispolon 對(duì)兩種腫瘤細(xì)胞的IC50分別為5.57 和8.41 μg/mL,桑黃素C 對(duì)兩種腫瘤細(xì)胞的IC50分別為4.55 和3.71 μg/mL。劉非燕等[44]從白黃粘蓋牛肝菌(Suillus placidus)分離的Suillin(73)有誘導(dǎo)人類肝癌細(xì)胞株(HepG2、Hep3B、SK-Hep-1)、乳腺癌細(xì)胞(Bcap、MCF-7)、白血病細(xì)胞(K562)和結(jié)腸癌細(xì)胞(SW620)凋亡的活性,其IC50均小于10 μM。吳長(zhǎng)生等[45]從鮑氏針層孔菌(Phellinus baumii)分離到化合物phellibaumins A-E(74~78)、interfungin B(79)、phelligridin H(80)、methylphelligrin(81)、epi-methylphelligrin A(82)、methylphelligrin B(83)、epi-methylphelligrin B(84)、phelligrin A(85)和epi-phelligrin A(86),它們有阻礙人前列腺癌細(xì)胞中核轉(zhuǎn)錄因子NF-κB 的活力,其IC50分別為52. 96、41. 40、62. 28 、74. 62、52.92、71.19、84.90、36.44(81 和82)、22.46(83 和84)、54.50(85 和86)μM。Ye 等[46]從地花菌中分離的grifolin(87)強(qiáng)烈抑制鼻咽癌細(xì)胞(CNE1、MCF-7)、HeLa 細(xì)胞、人結(jié)腸癌細(xì)胞(SW480)、白血病細(xì)胞(K562)、人淋巴瘤Raji 細(xì)胞和B95-8 細(xì)胞的生長(zhǎng),IC50分別為24、30、33、27、18、27 和24μM;grifolin可活化轉(zhuǎn)錄因子p53,上調(diào)DAPK1 表達(dá),有效促進(jìn)ERK1/2 與DAPK1 蛋白間相互作用,抑制ERK1/2的核積聚,誘導(dǎo)腫瘤細(xì)胞凋亡;grifolin 還可調(diào)節(jié)ERK1/2 激酶活性,靶向ERK1/2-DAPK1-p21 通路,活化p21,誘導(dǎo)腫瘤細(xì)胞G0/G1 期阻滯[47,48]。Song等[49]從假美牛肝菌(Boletus pseudocalopus)甲醇提取中分離了三個(gè)新grifolin 衍生物(89~90),它們對(duì)A549 細(xì)胞和小鼠黑色素瘤細(xì)胞B16F1 都有細(xì)胞毒活性,其IC50的范圍是3.5~9.0 μg/mL。
Tringali 等[46,[50]從Sarcodon leucopu 分離出的對(duì)聯(lián)三苯類化合物2',3'-diacetoxy-3,4,4″,5',6'-pentdhydroxy-p-terphenyl(91)具有抗KB 細(xì)胞活性,ED50為22 μg/mL。從貝殼狀革耳菌(Panus conchatus)中分離的panepoxydone(92),從炭角菌(Xylaria strain)中分離的cycloepoxydon(93),從棒柄杯傘(Clitocybe clavipes)中分離的clavilactones CB(94)、clavilactones CD(95)和clavilactones CA(96),從雙孢菇中分離的490 Quinone(97),從樺滴孔菌(Piptoporus betulinus)中分離的(E)-2-(4-hydroxy-3-methyl-2-butenyl)-hydroquinone(98),都有抗腫瘤活性[51]。
Kawagishi 等[52]從猴頭菇(Hericium erinaceus)中得到了一個(gè)新穎的脂肪酸,8-oxo-9,10-dihydroxy-9(Z)-octadecenoic acid(99),該化合物對(duì)Hela 細(xì)胞有抑制作用。Gao 等[53]從靈芝中分離的十九烷酸(100)和順式-9-十九烯酸(101)有誘導(dǎo)HL-60 細(xì)胞凋亡的活性。
Takahashi 等[54]從黑斑絨蓋牛肝菌(xerocomus nigromaculatus)中分離得到一種具有強(qiáng)抗腫瘤活性的化合物1-beta-D-arabinofuranosylcytosine(102),它對(duì)P388 細(xì)胞的IC50為0. 004 μg/mL。Takahashi等[55]從卷緣齒菌(Hydnum repandum)中分離的化合物repandiol(103)對(duì)多種腫瘤細(xì)胞具有細(xì)胞毒活力。Gehrt 等[56]從明亮松氏孔菌(Junghuhnia nitida)中分離出的nitidon(104)有細(xì)胞毒活性,并可在毫摩爾濃度使腫瘤細(xì)胞發(fā)生形態(tài)和生理上的改變,nitidon 在0.46 μM 可使25%-30%的HL-60 細(xì)胞成為類似粒-單核細(xì)胞集落形成細(xì)胞(granulocyte-monocyte-like cells),并使20%的U-937 細(xì)胞成為monocyte-like cells。Yoshkawa 等[57]從硫磺孔菌雞冠變種(Laetiporus sulphureus var. miniatus)提取出egonol(105)、demethoxyegonol(106)和egonol glucoside(107),它們對(duì)人胃癌細(xì)胞Kato III 都表現(xiàn)出抗性,其IC50分別為28. 8、27. 5 和24. 9 μg/mL。León等[58]從謙遜栓菌(Trametes menziesii)中分離出了神經(jīng)酰胺trametenamides A(108)和trametenamides B(109),乙酰化的trametenamides A 對(duì)人皮膚黑色素瘤細(xì)胞SK-MEL-1 有較好的細(xì)胞毒活力,IC50為8 μM,導(dǎo)致細(xì)胞凋亡的機(jī)制是DNA 斷裂,多聚(ADP-核糖)聚合酶裂解和凋亡蛋白(procaspase-9 和procaspase-8)的增加。Clericuzio 等[59]從黃粘銹傘(Pholiota spumosa)中分離出的2-hydroxyputrescine-1,4-dicinnamamide(110)和pholiotic acid(111),都有一定的細(xì)胞毒活力。鄭永標(biāo)等[[60]從巴西革耳(Lentinus striguellus)中分離的striguellone A(112)有引起HeLa 細(xì)胞凋亡的活性,MTT 試驗(yàn)表明該化合物有較好的細(xì)胞毒活性,對(duì)HeLa 細(xì)胞的IC50為38.9 μM。Das 等[61]從冬蟲夏草中分離的蟲草素(3'-deoxyadenosine)(113)有抗腫瘤活性。
綜上所述,大型真菌中的多種小分子化合物具有抗瘤作用,因此,我們應(yīng)加強(qiáng)小分子化合物的提取、分離和藥理等研究,從中發(fā)現(xiàn)新的抗腫瘤活性物質(zhì),擴(kuò)大藥源。越來越多的真菌學(xué)家、化學(xué)家、藥學(xué)家和醫(yī)學(xué)家的加入將大大加快這一進(jìn)程。高等真菌不僅可以直接用子實(shí)體作為研究材料,而且可以收藏菌種,很多種類可以發(fā)酵培養(yǎng),一旦發(fā)現(xiàn)有應(yīng)用價(jià)值的化合物,就有可能通過發(fā)酵解決工業(yè)化生產(chǎn)的資源來源問題。此外,與其他生物資源相比,大型真菌的研究工作相對(duì)較少,許多珍貴具有抗腫瘤活性的大型真菌的化學(xué)成分和生物活性研究還未被涉及,有待進(jìn)一步研究和挖掘,且從大型真菌中尋找抗腫瘤活性化合物具有廣闊的前景,有待深入研究。
1 Hawksworth DL.Mushrooms:the extent of the unexplored potential.Int J Med Mushrooms,2001,31:333-337.
2 Mueller GM Schmit JP. Fungal biodiversity:what do we know?What can we predict. Biodivers Conserv,2007,16:1-5.
3 Mao XL (卯曉嵐).The Macrofungi in China (中國(guó)大型真菌). Zhengzhou:Henan Science and Technology Press,2000.1.
4 Mahajna J,et al.Pharmacological values of medicinal mushrooms for prostate cancer therapy:the case of Ganoderma lucidum.Nutr Cancer,2009,61:16-26.
5 Ren G (任剛).Studies on evaluation of antitumor-activity of polypores and the isolation,structure elucidation of and molecular mechanisms of apoptosis in HeLa induced by antitumor-active substance from Grifola Gigantea (Pers.)Karst.Hangzhou:Zhejiang University (浙江大學(xué)),PhD.2006.
6 Shen LL(沈玲玲),Huang XX (黃幸纖).Screening on the resources of antitumor fungi to be used as drug.Resource Development & Market (資源開發(fā)與市場(chǎng)),1997,13:203-205.
7 Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol,2002,60:258-274.
8 Zaidman BZ,et al.Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol,2005,67:453-468.
9 Sontag B,et al. Montadial A,a cytotoxic metabolite from Bondarzewia montana.J Nat Prod,1999,62:1425-1426.
10 McMorris TC Anchel M.The structures of the basidiomycete metabolites illudin S and illudin M. J Am Chem Soc,1963,85:831-832.
11 Kelner MJ,et al.Characterization of acylfulvene histiospecific toxicity in human tumor cell lines. Cancer Chemoth Pharm,1997,41:237-242.
12 Wiltshire T,et al.BRCA1 contributes to cell cycle arrest and chemoresistance in response to the anticancer agent irofulven.Mol Pharmacol,2007,71:1051-1060.
13 Anchel M,Hervey A Robbins WJ.Antibiotic substances from basidiomycetes VII.Clitocybe illudens.Proc Natl Acad Sci U S A,1950,36:300-305.
14 St?rk A,et al.Lentinellic acid,a biologically active protoilludane derivative from Lentinellus species (Basidiomycetes).Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1988,43:177-183.
15 Lorenzen K,et al.Two inhibitors of platelet aggregation from a Panus species (Basidiomycetes).Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1994,49:132-138.
16 Fabian K,et al. Five new bioactive sesquiterpenes from the fungus Radulomyces confluens (Fr.)Christ. Zeitschrift fur Naturforschung Teil C Biochemie Biophysik Biologie Virologie,1998,53:939-945.
17 Reina Ma,et al.Four illudane sesquiterpenes from Coprinopsis episcopalis.Phytochemistry,2004,65:381-385.
18 Ma WZ,et al.Two new biologically active illudane sesquiterpenes from the mycelial cultures of Panaeolus retirugis.J Antibiot,2004,57:721-725.
19 Opatz T,et al.The creolophins:a family of linear triquinanes from Creolophus cirrhatus (Basidiomycete). Eur J Org Chem,2007,33:5546-5550.
20 Wang Y,et al.Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice.Food Chem,2012,132:1346-1353.
21 Mazura X,et al. Two new bioactive diterpenes from Lepista sordida.Phytochemistry,1996,43:405-407.
22 Chen CH,et al. New steroid acids from Antrodia cinnamomea,a fungal parasite of Cinnamomum micranthum.J Nat Prod,1995,58:1655-1661.
23 Yeh CT,et al.Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells.Cancer Letters,2009,285:73-79.
24 Yeh CT,et al.Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells.Cancer Lett,2009,285:73-79.
25 O.Toth J,et al.Les ac ides ganoderiques tàz :triterpenes cytotoxiques de Ganoderma lucidum (Polyporacée). Tetrahedron Letters,1983,24:1081-1084.
26 Lin CN,et al.Novel Cytotoxic Principles of Formosan Ganoderma lucidum.J Nat Prod,1991,54:998-1002.
27 Gao JJ,et al.New triterpene aldehydes,lucialdehydes A—C,from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem Pharm Bull(Tokyo),2002,50:837-840.
28 Tang W,et al. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells.Life Sci,2006,80:205-211.
29 Yue QX,et al.Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine,2010,17:606-613.
30 Ukiya M,et al.Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from Poria cocos.J Nat Prod,2002,65:462-465.
31 Handa N,et al. An unusual lanostane-type triterpenoid,spiroinonotsuoxodiol,and other triterpenoids from Inonotus obliquus.Phytochemistry,2010,71:1774-1779.
32 Ohsawa T,et al.Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity. Chem Pharm Bull (Tokyo),1992,40:143-147.
33 Lee WY,et al.Cytotoxic activity of ergosta-4,6,8(14),22-tetraen-3-one from the sclerotia of Polyporus umbellatus.Bulletin of the Korean Chemical Society,2005,26:1464-1466.
34 Valisolalao J,Luu B Ourisson G. Steroides cytotoxiques de Polyporus versicolor.Tetrahedron,1983,39:2779-2785.
35 Mizushina Y,et al. Lucidenic acid O and lactone,new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete,Ganoderma lucidum. Bioorg Med Chem,1999,7:2047-2052.
36 Rhee YH,et al.Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer,2012,doi:10.1186/1471-2407-12-28.
37 Zhang YJ,Mills GL Nair MG.Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J Agric Food Chem,2002,50:7581-7585.
38 Takaku T,Kimura Y Okuda H.Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action.J Nutr,2001,131:1409-1413.
39 Zhao YY,et al. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Bba-Gen Subjects,2011,1810:384-390.
40 Liberra K,et al.Fomecin B as a cytotoxic metabolite from the basidiomycete Tricholomopsis rutilans (Schaeff. ex. Fr.)Sing.Pharmazie,1995,50:370-371.
41 Ding ZH,Dong ZJ Liu JK.Albaconol,a novel prenylated resorcinol (=benzene-1,3-diol)from basidiomycetes Albatrellus confluens.Helvetica Chimica Acta,2001,84:259-262.
42 Liu MH,et al. Study on antitumor activity of albaconol extracted from Albatrellus confluens. Pharmacology and Clinics of Chinese Materia Medica (中藥藥理與臨床),2005,21:14-16.
43 Mo SY.Chemical constituents of the medicinal fungus Phellinus Baumii.Beijing:Peking Union Medical College (中國(guó)協(xié)和醫(yī)科大學(xué)),MSc.2003.
44 Liu FY,et al.Suillin from the mushroom Suillus placidus as potent apoptosis inducer in human hepatoma HepG2 cells.Chem Biol Interact,2009,181:168-174.
45 Wu CS,et al. Phenolic compounds with NF-κB inhibitory effects from the fungus Phellinus baumii. Bioorg Med Chem Lett,2011,21:3261-3267.
46 Ye M,et al. Grifolin,a potential antitumor natural product from the mushroom Albatrellus confluens,inhibits tumor cell growth by inducing apoptosis in vitro.FEBS Lett,2005,579:3437-3443.
47 Ye M,et al. Grifolin,a potential antitumor natural product from the mushroom Albatrellus confluens,induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett,2007,258:199-207.
48 Luo XJ,et al. Grifolin,a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells.Eur J Cancer,2011,47:316-325.
49 Song J,Manir MM Moon SS.Cytotoxic grifolin derivatives isolated from the wild mushroom Boletus pseudocalopus (Basidiomycetes).Chem Biodivers,2009,6:1435-1442.
50 Tringali C,et al. Previously unreported p-terphenyl derivatives with antibiotic properties from the fruiting bodies of Sarcodonleucopus (Basidiomycetes). A two-dimensional nuclear magnetic resonance study. Can J of Chem,1987,65:2369-2372.
51 Ferreira ICFR,et al. Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med Chem,2010,10:424-436.
52 Kawagishi H,et al.A novel fatty-acid from the mushroom Hericium erinaceum.Agric Biol Chem,1990,54:1329-1331.
53 Gao P,et al. Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom).Fitoterapia,2012,83:490-499.
54 Takahashi A,et al. Isolation of 1-beta-D-arabinofuranosylcytosine from the mushroom Xerocomus nigromaculatus Hongo.Chem Pharm Bull,1992,40:1313-1314.
55 Takahashi A,Endo T Nozoe S. Repandiol,a new cytotoxic diepoxide from the mushrooms Hydnum repandum and H.repandum var.album.Chem Pharm Bull(Tokyo),1992,40:3181-3184.
56 Gehrt A,et al. Nitidon,a new bioactive metabolite from the basidiomycete Junghuhnia nitida (Pers.:Fr.) Ryv.Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1998,53:89-92.
57 Yoshkawa K,et al.A Benzofuran glycoside and an acetylenic acid from the fungus Laetiporus sulphureus var. miniatus.Chem Pharm Bull (Tokyo),2001,49:327-329.
58 León F,et al.Isolation,structure elucidation,total synthesis,and evaluation of new natural and synthetic ceramides on human SK-MEL-1 melanoma cells. J Med Chem,2006,49:5830-5839.
59 Clericuzio M,et al.Non-phenolic dicinnamamides from Pholiota spumosa:isolation,synthesis and antitumour activity.Eur J Org Chem,2007,2007:5551-5559.
60 Zheng YB. Study on natural products from five edible and medicinal macrofungi. Shenzhen:Xiamen University (廈門大學(xué)),PhD.2008.
61 Das SK,et al.Medicinal uses of the mushroom Cordyceps militaris:Current state and prospects.Fitoterapia,2010,81:961-968.