詹求強(qiáng),劉 靜,趙宇翔,張 欣
(華南師范大學(xué)華南先進(jìn)光電子研究院光及電磁波研究中心,廣東廣州 510006)
隨著生物醫(yī)學(xué)的快速發(fā)展,光學(xué)生物成像技術(shù)在其中發(fā)揮的作用越來越重要,而熒光成像因?yàn)槠涓叻直媛省㈧`敏、快速的特點(diǎn)得到了非常廣泛的研究和應(yīng)用。目前的熒光標(biāo)記物主要是有機(jī)染料熒光團(tuán)、量子點(diǎn)(quantum dot,QD)、金屬納米顆粒、上轉(zhuǎn)換納米顆粒(upconversion nanoparticles,UCNPs)、碳納米顆粒等。這其中,有機(jī)染料熒光團(tuán)使用的最早也最廣泛,但其光穩(wěn)定性差,不能長時(shí)間連續(xù)觀察,且吸收和發(fā)光譜線寬;半導(dǎo)體量子點(diǎn)光穩(wěn)定性好,輻射譜線窄,但其可能存在的生物毒性和化學(xué)不穩(wěn)定性使其不能進(jìn)一步在生物熒光成像領(lǐng)域得到應(yīng)用。
UCNPs作為一種近期快速發(fā)展的熱門熒光標(biāo)記物,在某些方面比有機(jī)染料熒光團(tuán)和量子點(diǎn)有明顯的優(yōu)勢(shì)。圖1給出了UCNPs和QD這兩種材料在生物應(yīng)用上論文數(shù)量的比較,兩條曲線有著相似的走向,可以看出UCNPs的熱門程度不亞于QD,上轉(zhuǎn)換文章數(shù)量的快速增長正說明了這一材料的巨大潛力。UCNPs主要指摻雜了稀土(rare earth,RE)元素后能夠受兩個(gè)或多個(gè)低頻光子激發(fā)而輻射出一個(gè)高頻光子的納米級(jí)大小的粒子,它具有光穩(wěn)定性高、發(fā)射光譜譜線窄、熒光壽命長、化學(xué)穩(wěn)定性高等優(yōu)點(diǎn)。而且上轉(zhuǎn)換材料可以完全消除自發(fā)的背景熒光,能獲得超高的成像對(duì)比度。同時(shí),由于是多光子發(fā)光過程,它還有著非常好的成像分辨率。在近紅外光(near infrared,NIR)激發(fā)下UCNPs可發(fā)射出近紅外光,具有較好的光學(xué)穿透深度,并且對(duì)生物組織也幾乎沒有損傷。以上這些優(yōu)勢(shì)都使UCNPs在生物光子學(xué)領(lǐng)域有巨大的應(yīng)用可能。
上轉(zhuǎn)換發(fā)光納米材料是一種在納米晶體基質(zhì)中摻雜RE離子(以Er3+,Tm3+,Ho3+和Yb3+為主)的復(fù)合納米材料,RE離子普遍具有多能級(jí)結(jié)構(gòu)(圖2),在這幾種RE離子中,Yb3+充當(dāng)敏化離子(sensitizer)角色,而其他的RE離子充當(dāng)活化離子(activator)角色。整個(gè)上轉(zhuǎn)換發(fā)光過程包括敏化離子-活化離子之間的能量傳遞、敏化離子-敏化離子和激活離子-激活離子之間的能量轉(zhuǎn)移(圖2)。在這些能量轉(zhuǎn)移過程中會(huì)有雙光子和三光子過程,分別激發(fā)出綠光、紅光和藍(lán)光。上轉(zhuǎn)換的發(fā)光波長幾乎覆蓋了紫外、可見、以及紅外光區(qū)的光譜范圍[1,2]。
圖1 近年來發(fā)表有關(guān)QD和UCNPs在生物應(yīng)用研究中的論文數(shù)量比較Fig.1 A quantitative comparison of research activity in bio-applications of QD and UCNPs,measured as number of research articles per year
關(guān)于多種RE離子間能量轉(zhuǎn)移傳遞上轉(zhuǎn)換發(fā)光的過程機(jī)制,可以分為激發(fā)態(tài)吸收(excited state absorption,ESA)、能量傳遞上轉(zhuǎn)換(energy transfer upconversion,ETU)、交叉弛豫(cross relaxation,CR)、合作敏化上轉(zhuǎn)換(cooperative sensitization upconversion,CSU)和光子雪崩(photon avalanche,PA)等五種[2-4]。上轉(zhuǎn)換發(fā)光納米材料的發(fā)光機(jī)制主要是基于能量傳遞上轉(zhuǎn)換過程,其他幾個(gè)能量傳遞過程也存在,但發(fā)生幾率很小。
圖2 敏化離子Yb3+與活化離子Er3+,Tm3+的能級(jí)結(jié)構(gòu)以及他們之間通過能量轉(zhuǎn)移實(shí)現(xiàn)上轉(zhuǎn)換發(fā)光過程的能級(jí)躍遷機(jī)制2Fig.2 Energy level structure and proposed UC mechanisms of the Yb3+,Er3+/Tm3+co-doped UCNPs
圖3 三種不同UCNPs:NaYbF4:Yb3+/Ho3+(綠),NaFbF4:Yb3+/Er3+(紅),NaFbF4:Yb3+/Tm3+(藍(lán))的發(fā)光光譜和發(fā)光照片5Fig.3 Photoluminescence spectra of NaYbF4:Yb3+/Er3+(red emission),NaYbF4:Yb3+/Ho3+(green emission),and NaYbF4:Yb3+/Tm3+(blue emission).The insets show the visible photoluminescence imaging of the UCNP colloidal suspension
與傳統(tǒng)的熒光標(biāo)記物不同,UCNPs可以用近紅外光激發(fā)而不是紫外光,從而明顯的減小了生物樣品的光致?lián)p傷,同時(shí)增大了激發(fā)光的穿透深度。這種上轉(zhuǎn)換激發(fā)所采用的反斯托克斯機(jī)制可以去除自發(fā)熒光進(jìn)行探測(cè),從而帶來非常好的信噪比并且改善探測(cè)器的靈敏度。同時(shí)上轉(zhuǎn)換過程存在真實(shí)的直接能級(jí),相比普通的雙光子發(fā)光現(xiàn)象有著更高的效率,在低功率密度照射下可以產(chǎn)生生物研究中所需要的穩(wěn)定適中的光強(qiáng)。UCNPs可以用小巧、廉價(jià)、低功率的近紅外激光器激發(fā),重要的是在連續(xù)照射下不會(huì)產(chǎn)生閃爍、光漂白和光化學(xué)降解[6-8]。UCNPs的另一個(gè)優(yōu)勢(shì)是它包含窄而清晰的發(fā)射峰(半高線寬,F(xiàn)WHM<12 nm),具有較長的熒光壽命(μs~ ms)[9,10]。
上轉(zhuǎn)換納米粒子一般由無機(jī)主基質(zhì)和摻雜在主基質(zhì)晶格中的鑭系離子組成,具體可參考圖5,摻雜的離子又分為敏化劑和活化劑。
研究上轉(zhuǎn)換所用到的主基質(zhì)很多,理想的主基質(zhì)有低的晶格聲子能量,這樣將使非輻射損失最小化,同時(shí)主基質(zhì)的晶格也要和摻雜離子相匹配以達(dá)到最好的摻雜效果。本文主要介紹的主基質(zhì)為NaYF4。
圖4 UCNPs沒有光致漂白和光閃爍現(xiàn)象:(a)單UCNPs在長時(shí)間探測(cè)后有光穩(wěn)定性;(b)UCNPs的時(shí)間分辨輻射;(c)分別用405,543和980 nm連續(xù)激光在1.6,0.13和19 mW下同時(shí)激發(fā)得到的焦面成像[6-8]Fig.4 Nonbleaching and nonblinking behavior of UCNPs:(a)Photostability of a single UCNP under longtime monitoring;(b)Time-resolved emission of UCNP,suggesting no on/off behavior;(c)Simultaneous excitations was provided by CW lasers at 405,543,and 980 nm with powers of approximately 1.6,0.13,and 19 mW in the focal plane,respectively
理論上大部分的RE離子都可以進(jìn)行上轉(zhuǎn)換發(fā)射,但在低強(qiáng)度激發(fā)功率下,只有少數(shù)的RE離子可以進(jìn)行上轉(zhuǎn)換發(fā)射,如Er3+,Ho3+和Tm3+用來做為活化劑。它們有著階梯狀的能級(jí)結(jié)構(gòu),可以被近紅外光激發(fā)產(chǎn)生上轉(zhuǎn)換發(fā)光。活化劑的含量都相對(duì)較低(一般<2 mol%),這樣以減小交叉弛豫的能量損失。
為了提高上轉(zhuǎn)換發(fā)光效率并且使其在在近紅外區(qū)有足夠大的吸收截面,通常我們還需要一個(gè)敏化劑和活化劑共同摻雜。Yb3+相比于其他的鑭系元素離子,在900-1000 nm附近有一個(gè)較大的吸收截面,它作為敏化劑經(jīng)常與Er3+,Ho3+和Tm3+共同摻雜來提高上轉(zhuǎn)換發(fā)光效率(圖2)。
合適的尺寸和均一的形狀是上轉(zhuǎn)換納米粒子應(yīng)用于生物成像的前提。目前為止,有報(bào)道過多種合成高質(zhì)量UCNPs的方法,包括有共沉淀法[12]、水熱合成法[13]、熱分解法5、溶膠-凝膠法以及微乳液的合成方法。而在這些方法中,水熱合成法和熱分解法是最為常用來合成均一的、疏水性的納米粒子的方法。本綜述也主要介紹這兩個(gè)方法。
圖5 圖示為晶體主基質(zhì)和包含有鑭系離子的上轉(zhuǎn)換納米粒子示意圖(藍(lán)色及白色為主基質(zhì)分子,紅色為摻雜的離子)11Fig.5 Schematic illustration of UC nanoparticles composed of a crystalline host and lanthanide dopant ions embedded in the host lattice
2.2.1 水熱合成法 用水熱合成法合成上轉(zhuǎn)換納米粒子可以很好的控制納米粒子的大小和形狀,反應(yīng)是在密閉的高溫高壓環(huán)境中進(jìn)行的(如圖6)。一般在溶液中混合RE元素前驅(qū)體和氟化物前驅(qū)體,然后密閉在高壓容器中加熱反應(yīng)。經(jīng)常用到的RE元素前驅(qū)體為硝酸鹽、氯化物和氧化物,而較典型的氟化物前驅(qū)體為HF,NH4F,NaF和 NH4HF2,乙二胺四乙酸(EDTA)、溴化十六烷基三甲基銨硝酸鹽(CTAB)、油酸(OA)和檸檬酸三鈉鹽(TSC)為經(jīng)常用到的表面活性劑。Li[13-16]等人報(bào)道了一種簡單的相轉(zhuǎn)變及分離的方法(LSS),用這種LSS方法成功合成了不同主基質(zhì)、晶體結(jié)構(gòu)、大小和形狀的納米粒子,如,BaY2F8,Ba2YF7,Ba2YbF7。Zhang[20]等人報(bào)道了一種新穎的容易使用的水熱合成法合成純的六方晶型NaYF4:Yb,Er/Tm納米粒子,此方法合成的納米粒子形狀可控而且上轉(zhuǎn)換發(fā)光強(qiáng)。
2.2.2 熱分解法 在熱分解過程中,三氟乙酸鹽被用作前驅(qū)體來分解得到相應(yīng)的金屬氟化物。Yan[21,22]等人創(chuàng)新性地提出了用 OA/OM/1-十八烯(ODE)與三氟乙酸鹽共熱的方法,以達(dá)到熱分解法需要的高溫(300℃),并在反應(yīng)中調(diào)節(jié)前驅(qū)體的比例、反應(yīng)的溫度和時(shí)間、協(xié)調(diào)溶劑的屬性,來控制納米晶體的相、形態(tài)、大小,從而提高上轉(zhuǎn)換發(fā)光效率。但在熱反應(yīng)的過程中不可避免地會(huì)產(chǎn)生一些有毒的副產(chǎn)物,如三氟乙酸醋酸酐(CF3CO)2O,三氟乙酰氟CF3CF2COF,羰基二氟化物 COF2和四氟乙烯C2F4,Wei[23]等人報(bào)道了一個(gè)更好的熱分解方法,通過RE-油酸鹽和NaF混合作為前驅(qū)體進(jìn)行熱分解得到α-和β-NaYF4UCNPs。Chow[24]等人提出油胺(OM)是唯一能使UCNPs從四方晶型轉(zhuǎn)變?yōu)榱骄偷娜軇?,Cohen[25]等人用以上控制條件及晶相的方法合成了低于10 nm的六方晶型的UCNPs。
圖6 UCNPs水熱合成法的步驟示意圖Fig.6 The schematic diagram of hydro(solvo)thermal method of UCNPs
通過以上方法合成的UCNPs一般為疏水性的,而要用于標(biāo)記生物發(fā)光,則需要通過表面修飾使其轉(zhuǎn)變?yōu)橛H水性的。到目前為止報(bào)道的方法很多,主要有配體交換、配體去除、靜電層層自裝法、配體氧化法、層層疊加法、聚合物包覆法、硅烷化及主客體相互作用法(表1)。
對(duì)于上轉(zhuǎn)換材料而言,設(shè)計(jì)一個(gè)符合要求的晶體結(jié)構(gòu)是提高發(fā)光效率的關(guān)鍵性因素,這就需要考慮如何控制材料的晶相、粒度及離子摻雜等因素。
3.1.1 主基質(zhì)優(yōu)化 在熱分解和水熱法合成過程中,立方相的NaYF4首先形成,當(dāng)能量達(dá)到一定值時(shí),就能克服晶體相變所需的自由能,立方相就能向六方相轉(zhuǎn)變[22,25]。(1)延長時(shí)間有助于克服立方相的 NaYF4向六方相轉(zhuǎn)變的自由能[22,52]。如圖 7 所示,在我們的試驗(yàn)中,Gd3+摻雜的NaYF4:20%Yb3+/30%Gd3+/2%Er3+納米顆粒半小時(shí)后顆粒呈不規(guī)則球狀,一小時(shí)后樣品呈非常規(guī)則的的六方相。(2)調(diào)控Na+、RE3+及Y-之間的摩爾比例。在大多數(shù)情況下,六方相的NaYF4不如立方相的NaYF4穩(wěn)定,采用高的 Na+/RE3+和 F-/RE3+比例有利于六方相的NaYF4形成[22,53-55]。(3)配體調(diào)制相變。油胺可以調(diào)制NaYF4的晶相由立方相向六方相轉(zhuǎn)變[24,25]。
表1 UCNPs的表面修飾方法Tab.1 Methods of surface functionalization of hydrophobic UCNPs
圖7 利用溶膠-凝膠法分別烘烤(a)半小時(shí)、(b)1小時(shí)后得到的NaYF4:20%Yb3+/30%Gd3+/2%Er3+的透射電鏡圖Fig.7 TEM images of using sol-gel method after baking NaYF4:20%Yb3+/30%Gd3+/2%Er3+for(a)0.5 h,(b)1 h
UCNPs的粒徑越小,比表面積就越大,意味著更多的缺陷和配體將存在于表面,會(huì)降低上轉(zhuǎn)換發(fā)光效率。同時(shí),由于顆粒大小會(huì)極大影響生物組織對(duì)顆粒的吸收及在生物組織中的分布,因此上轉(zhuǎn)換納米材料顆粒不能太大,否則就不適用于生物成像,故合成足夠小的納米顆粒的同時(shí)保持足夠的發(fā)光亮度是我們面臨的一個(gè)挑戰(zhàn)。研究者們通過改變表面活性劑(油酸和油胺)的濃度、Y3+/F-比例以及反應(yīng)溫度來調(diào)控合成直徑從4.5 nm到15 nm大小的蛋白質(zhì)尺寸的六方相NaYF4[25],成功合成了小顆粒高亮度的UCNPs,這一進(jìn)展會(huì)拓展和深化UCNPs的生物應(yīng)用,特別是單分子成像中。
3.1.2 離子摻雜優(yōu)化 如圖8所示,上轉(zhuǎn)換發(fā)光材料的發(fā)光效率和摻雜RE離子的種類、RE離子間的摩爾比例有很大關(guān)系,發(fā)光強(qiáng)度最大的為Y3+:Yb3+:Tm3+(Er3+)=78:20:2。Li+摻雜到氧化物或氟化物上轉(zhuǎn)換納米材料中能增強(qiáng)上轉(zhuǎn)換發(fā)光[56-61],Ho3+摻雜離子能增強(qiáng)Tm3+的近紅外上轉(zhuǎn)換發(fā)光[62]。
3.1.3 表面包覆保護(hù)殼層優(yōu)化 在上轉(zhuǎn)換納米發(fā)光材料表面包覆上保護(hù)殼層,可以減少晶體缺陷、保護(hù)光學(xué)活性的離子,從而減少非輻射能量損失[63]。比較無殼層的BaGdF5:Yb3+/Er3+和包覆了活性殼層的BaGdF5:Yb3+/Er3+發(fā)光強(qiáng)度,發(fā)現(xiàn)包覆了活性殼層的納米顆粒的發(fā)光強(qiáng)度較之無殼的有幾百倍的增加[64]。此外,將摻雜離子用一種層狀結(jié)構(gòu)隔離,能抑制焠滅效應(yīng),有望使上轉(zhuǎn)換發(fā)光效率得到增強(qiáng)[44,65,66]。
圖8 水熱法合成的5個(gè)不同樣品的上轉(zhuǎn)換發(fā)光光譜及其對(duì)應(yīng)的圓薄片樣品圖Fig.8 Hydro(solvo)thermal method synthesis of 5 different samples of upconversion luminescence spectrum and its corresponding circular wafer sample diagram
眾所周知,金屬結(jié)構(gòu)獨(dú)特的表面等離子特性可以用來增強(qiáng)來自臨近熒光團(tuán)(有機(jī)染料和無機(jī)量子點(diǎn))的熒光[67,68]。同樣的,強(qiáng)局部場(chǎng)下的表面等離子共振也能用來增強(qiáng)上轉(zhuǎn)換輻射效率。Zhang[69]等人和Sudheendra[70]等人成功的將納米金顆粒吸附在UCNPs表面實(shí)現(xiàn)了上轉(zhuǎn)換輻射調(diào)制[71,72]。一種特制980 nm輻射金等離子表面對(duì)能明顯增強(qiáng)來自納米線層的從近紅外到可見光的上轉(zhuǎn)換發(fā)光[73]。對(duì)于有摻雜的上轉(zhuǎn)換納米顆粒和金屬納米顆粒的優(yōu)化設(shè)計(jì)來說,單納米顆粒表面等離子增強(qiáng)機(jī)理的研究是很重要的。然而,使用金屬納米顆粒增強(qiáng)上轉(zhuǎn)換輻射進(jìn)行生物探測(cè)仍面臨很大的挑戰(zhàn),如復(fù)雜的實(shí)驗(yàn)過程和苛刻的實(shí)驗(yàn)條件。
目前利用表面等離子對(duì)輻射的金屬增強(qiáng)上轉(zhuǎn)換主要集中在玻璃復(fù)合材料和薄膜上,科學(xué)家們將銀或金的納米顆粒附著在UCNPs上可以增強(qiáng)上轉(zhuǎn)換強(qiáng)度。Yan[74]等人第一次通過一種直接集合的方法將六方形NaYF4:Yb,Er納米顆粒和銀納米線配對(duì)觀察到了增強(qiáng)的上轉(zhuǎn)換輻射。紅光輻射(650 nm)比綠光輻射(550 nm)增強(qiáng)因數(shù)更大,并且可以使用聚集了銀顆粒的銀島得到進(jìn)一步的增強(qiáng)。Schietinger[75]等人用一個(gè)光學(xué)和原子力顯微鏡相結(jié)合的設(shè)備觀察并控制單 NaYF4:Yb,Er納米顆粒與金納米球(60 nm)的距離,發(fā)現(xiàn)綠光輻射的增強(qiáng)是4.8,而紅光輻射下是2.7。Kennedy[72]等人發(fā)現(xiàn)了一種新型的光子材料,它是一種有非定型金殼層(4-8 nm)的立方NaYF4:Yb,Er/Tm納米晶體。在這種有等離子金殼層的NaYF4:Yb,Tm納米顆粒下觀察到的從近紅外到可見光的上轉(zhuǎn)換增強(qiáng)達(dá)到了8。Duan[71]等人通過六方形NaYF4:Yb,Tm和金納米顆粒的等離子接觸調(diào)制了上轉(zhuǎn)換輻射,并且在452-476 nm的范圍內(nèi)得到了超過150%的輻射強(qiáng)度增強(qiáng),而647 nm處只有50%左右的增強(qiáng)。最近,Qin[76]等人通過將金納米顆粒(10 nm)吸附在NaYF4:Yb,Tm表面,觀察到對(duì)于這種納米復(fù)合材料上轉(zhuǎn)換輻射在波長291 nm和345 nm分別增強(qiáng)了73.7和109.0。
在它的所有應(yīng)用中,激發(fā)光都是采用的975 nm附近(如980 nm)的連續(xù)激光,但生物體內(nèi)的主要成分--水在這個(gè)波長附近吸收非常的強(qiáng),這樣就降低了成像深度并造成了明顯的熱效應(yīng)[77]。因此,對(duì)于上轉(zhuǎn)換效率在波長方面的優(yōu)化也有它的必要性,2011年 Zhan[27]等人在國際上首次提出了915 nm光作為上轉(zhuǎn)換材料的新激發(fā)光源波長,在生物成像中具有更深的成像深度和更低的熱損傷。使用同樣強(qiáng)度的500 mWcm-2的915 nm和980 nm連續(xù)脈沖激光照射3 min后,溫度分別達(dá)到32.2℃和45℃。
圖9 優(yōu)化上轉(zhuǎn)換成像中的激發(fā)模式實(shí)現(xiàn)低熱無損、深度組織成像Fig.9 The optimization of conversion imaging excitation mode to realize low thermal condition,depth tissue imaging
UCNPs生物成像由于具有無自發(fā)熒光、大的反斯托克斯位移、窄的發(fā)射峰、高耐光漂白、無光閃爍、探測(cè)深度大以及高的空間分辨率等優(yōu)良的光學(xué)特性,因此近幾年來很多人致力于UCNPs的生物光子學(xué)應(yīng)用。目前在細(xì)胞成像、動(dòng)物成像、生物傳感、漫射光成像、光動(dòng)力治療(PDT)、多模式成像(MRI/PET)等方面有眾多應(yīng)用。
圖10 UCNPs的生物應(yīng)用Fig.10 The biological application of UCNPs
近幾年來,隨著上轉(zhuǎn)換納米粒子性能的改進(jìn),基于UCNPs的顯微技術(shù)被廣泛應(yīng)用于高分辨和高對(duì)比的離體細(xì)胞的成像。
在無抗體標(biāo)記的細(xì)胞中,用UCNPs吸附在細(xì)胞膜上或被細(xì)胞內(nèi)吞來進(jìn)行成像。最近,Jin[78]等人制備了三種類型的聚合物包覆的UCNPs,發(fā)現(xiàn)了相比于中性和帶負(fù)電荷的聚合物,用帶正電荷的PEI包覆的UCNPs可以增強(qiáng)細(xì)胞對(duì)UCNPs的攝取能力。2008年 Nyk[79]等人成功將 MSA-UCNPs應(yīng)用到標(biāo)記Panc 1細(xì)胞進(jìn)行高對(duì)比成像(圖11)。
相比于無抗體標(biāo)記的細(xì)胞成像,有抗體標(biāo)記的成像會(huì)有更多優(yōu)點(diǎn),尤其是在腫瘤細(xì)胞靶向成像中有更廣泛的應(yīng)用。表面功能化的UCNPs通過生物分子識(shí)別與癌細(xì)胞特異性相結(jié)合,2009年 Wang[80]等人提出用anti-CEA8于UCNPs結(jié)合來進(jìn)行細(xì)胞成像(圖12)。Zhan[27]等人最近報(bào)道了一系列對(duì)比可控實(shí)驗(yàn),說明了將NaYF4:Yb3+/Er(Ho)3+與anti-CEA8的抗體相結(jié)合,可以特異性地與Hela癌細(xì)胞膜結(jié)合,從而進(jìn)行成像。
UCNPs的快速發(fā)展使得其實(shí)現(xiàn)了在活體中的成像,在早期的研究中,包括皮下注射和UCNPs在生物中的分布成像。Salthouse等[81]人研究了在老鼠的尾巴靜脈注射UCNPs后的積累,結(jié)果表明PEG-UCNPs沒有首先靶向積累在小鼠的肝、脾等處,另外長時(shí)間觀察發(fā)現(xiàn)在活體樣品中注射UCNPs 7天后,還可以觀察到體內(nèi)有其存在。
圖11 用UCNPs處理的Panc1細(xì)胞的透射成像(左)和光致發(fā)光成像(右)。插圖為局部細(xì)胞(紅色)和背景(黑色)的光致發(fā)光光譜圖[79]Fig.11 In vitro transmission(left)and PL(right)images of Panc 1 cells treated with UCNPs.Inset shows localized PL spectra taken from cells(red)and background(black)
圖12 用兔子的anti-CEA8與UCNPs結(jié)合后與He-La細(xì)胞培養(yǎng)進(jìn)行亮場(chǎng)成像(a),和用不同功率980 nm NIR激光激發(fā)(b)100,(c)300,(d)500,(e)700,和(f)900 mW[80]Fig.12 Fluorescence imaging of HeLa cells after incubated with rabbit anti-CEA8 Ab-conjugated UCNPs in bright field(a),and excited by a 980 nm NIR laser with different excitation powers:(b)100,(c)300,(d)500,(e)700,and(f)900 mW
由于淋巴排水系統(tǒng)是癌細(xì)胞新陳代謝的一個(gè)重要途徑,但淋巴結(jié)的復(fù)雜微小結(jié)構(gòu)使得很難對(duì)它進(jìn)行識(shí)別,用NaYF4:Yb,Er和NaYF4:Yb,Tm納米粒子作為熒光探針,Kobayashi[82]等人第一次提出了無內(nèi)源熒光的小鼠的淋巴結(jié)雙顏色成像。同樣的問題也出現(xiàn)在血管成像中,疾病中血管變化及血管功能紊亂,血管成像能提供血管的數(shù)量和間距、血管系統(tǒng)的滲透性及血管的異常,Zhang等[83]人報(bào)道了用硅烷包覆的NaYF4:Yb,Er UCNPs來動(dòng)態(tài)跟蹤小鼠耳朵的成肌細(xì)胞來對(duì)血管成像。
到目前為止,在小動(dòng)物中的成像做了多方面研究,而針對(duì)于腫瘤的成像在腫瘤的診斷和治療方面是非常重要的。目前,UCNPs結(jié)合葉酸、抗體和多肽能用于活體腫瘤靶向成像。F.Y.Li[84]小組近期提出了一個(gè)環(huán)肽(c(RGDFK))修飾的NaYF4:Yb,Er,Tm,并用 PEG修飾(UCNP-RGD),來靶向成標(biāo)記αvβ3-過量表達(dá)的老鼠腫瘤(人類惡性膠質(zhì)瘤U87MG)(圖13)。
圖13 依據(jù)時(shí)間的上皮U87MG腫瘤上轉(zhuǎn)換發(fā)光(左后腿,短箭頭指出)和MCF-7腫瘤(右后腿,長箭頭指出)在無胸腺的裸鼠上實(shí)驗(yàn),在經(jīng)脈注射UCNP-RGD 24 h 后[84]Fig.13 Time-dependent in vivo upconversion luminescence imaging of subcutaneous U87MG tumor(left hind leg,indicated by short arrows)and MCF-7 tumor(right hind leg,indicated by long arrows)borne by athymic nude mice after intravenous injection of UCNPRGD over a 24 h period
作為波爾茲曼分布的一個(gè)性質(zhì),UCNPs的不同發(fā)射譜帶的相對(duì)強(qiáng)度會(huì)依賴于周圍的環(huán)境。由于這個(gè)原因,UCNPs被提出作為納米溫度傳感器。最近,基于UCNPs的光學(xué)溫度傳感器被應(yīng)用于細(xì)胞內(nèi)部溫度的探測(cè),Vetrone等[85]人提出了用綠色上轉(zhuǎn)換發(fā)光的NaYF4:Yb3+,Er3+納米粒子,用于Hela宮頸癌細(xì)胞的溫度傳感。
作為最有效的生物傳感工具,基于熒光能量共振轉(zhuǎn)移(FRET)的方法能用于檢測(cè)生物親和性相互作用并使生物分子在納米級(jí)范圍內(nèi)產(chǎn)生改變。當(dāng)UCNPs被用作供體分子時(shí),可能會(huì)產(chǎn)生許多新的應(yīng)用可能性,這就是發(fā)光能量共振轉(zhuǎn)移(LRET)。Soukka等[86,87]人在基于上轉(zhuǎn)換納米粒子的 LRET傳感上做了很多研究,他們提出了一個(gè)新穎的上轉(zhuǎn)換LRET傳感技術(shù)及其在多方面的潛在應(yīng)用可能,如在血清中對(duì)E2(17β雌二醇)免疫測(cè)定、酶活性實(shí)驗(yàn)、雙參數(shù)DNA雜交試驗(yàn)。
漫射光成像已經(jīng)廣泛應(yīng)用在了小動(dòng)物和人體組織的成像探測(cè)上。在人體上,漫射光成像,已經(jīng)用于探測(cè)乳腺癌腫瘤,腦活動(dòng)和腦新陳代謝[88-93]。然而,由于內(nèi)源組織自發(fā)背景熒光、光在組織中傳遞的隨機(jī)性等問題的存在,漫射光成像得到的成像效果相對(duì)不是很好?,F(xiàn)有的一些改善成像質(zhì)量的方法設(shè)備復(fù)雜、計(jì)算繁多。而上轉(zhuǎn)換激發(fā)完全去除自發(fā)熒光,由圖14我們可以看出即使很弱的自發(fā)背景熒光也會(huì)給成像精度產(chǎn)生嚴(yán)重的影響[94],同時(shí)上轉(zhuǎn)換激發(fā)不需要復(fù)雜的儀器設(shè)備,而較大的反斯托克斯位移也使激發(fā)光和發(fā)射光易分開。相比傳統(tǒng)的有機(jī)染料(下轉(zhuǎn)換發(fā)光過程),上轉(zhuǎn)換納米材料的非線性性質(zhì)可以獲得更高的分辨率,這也是UCNPs在漫射光成像上的一大優(yōu)勢(shì)。
圖14 一個(gè)組織圖像中兩個(gè)圓柱形熒光目標(biāo)的熒光漫射光成像重構(gòu)圖 (a)使用UCNPs進(jìn)行的重構(gòu);(b)使用羅丹明6G進(jìn)行的重構(gòu)[94]Fig.14 LDOT reconstruction of two cylindrical luminescent targets in a tissue phantom.Reconstruction using(a)UCNPs;(b)Rhodamine 6G
在臨床醫(yī)學(xué)上對(duì)癌癥的診斷和治療中,成像和治療是不可分開的。不同于化學(xué)療法、放射性療法和外科手術(shù),光動(dòng)力治療(photodynamic therapy,PDT)作為一個(gè)治療癌癥的技術(shù),是被高能量光激發(fā)光敏劑產(chǎn)生活性氧類(ROS)來殺死病變細(xì)胞。在癌癥組織中,有望能用980 nm的連續(xù)激光激發(fā)UCNPs穿透深層組織達(dá)到治療效果。Austin[95]首次提出了用三層的NaYF4:Yb,Er與卟啉共同定位的光動(dòng)力治療。Zhang等人在 2009[96]年和 2010 年[97]分別報(bào)道了 NaYF4:Yb,Er@nSiO2@mSiO2和 NaYF4:Yb,Er@mSiO2納米粒子將 ZnPc包含在介孔的 SiO2中,在500 mW 980 nm的連續(xù)激光下激發(fā)5 min,就可以從介孔SiO2中釋放活性氧,達(dá)到PDT的治療效果。
在最近的研究工作中,Zhang等[83]人又用葉酸(FA)和PEG修飾的UCNPs分別與不做修飾及只用PBS來治療小鼠作為對(duì)比(圖15),可以看到PDT的明顯治療效果。
圖15 照片為每組1-3只小鼠分別靜脈注射FAPEG-UCNs、未修飾的UCNP和PBS,照片顯示了注射PDT前(0 d)和注射后(7 d)的腫瘤大小的改變(用虛線圓圈標(biāo)出)。標(biāo)尺10 mm[83]Fig.15 Representative gross photos of a mouse from each group 1-3 intravenously injected with FA-PEGUCNs,unmodified UCNs or PBS showing the change in tumor size(highlighted by dashed white circles)before(0 d)and 7 d after PDT treatment.Scale bars,10 mm
目前,分子多模式成像的技術(shù)主要集中在X射線計(jì)算機(jī)斷層掃描技術(shù)(CT)、核磁共振成像(MRI)、單光子發(fā)射計(jì)算機(jī)斷層成像術(shù)(SPECT)、正電子發(fā)射斷層成像術(shù)(PET)和超聲成像等[99-101]。近年來,大量的光致發(fā)光材料的出現(xiàn),催生了一大批研究者對(duì)于促進(jìn)在多模式造影劑存在時(shí)分子光學(xué)成像研究的興趣[102-103],但明亮和穩(wěn)定的多模式造影劑難以找到,發(fā)光探針在多模式造影劑上容易降解和漂白。然而,UCNPs很穩(wěn)定,不存在漂白和老化現(xiàn)象,且多模式成像可以通過修飾晶體主體材料實(shí)現(xiàn)。漫射光成像,即使利用UCNPs,其空間分辨率依然不高[104];CT和MRI具有高的分辨率,卻難以得到所需的信息;PET能提供手術(shù)前的一些詳細(xì)數(shù)據(jù),卻不能很好適用于術(shù)后。主要討論的是,基于UCNPs的多模式成像,如磁-光學(xué)成像、核-光學(xué)成像、CT-三模式成像。
文章綜述了上轉(zhuǎn)換發(fā)光納米粒子的合成方法、光學(xué)特性、發(fā)光效率的優(yōu)化及在生物方面的應(yīng)用。作為新一代生物發(fā)光標(biāo)記材料,UCNPs展現(xiàn)了許多優(yōu)點(diǎn),例如毒性小、無背景熒光、化學(xué)穩(wěn)定性高、光穩(wěn)定性好、光穿透能力強(qiáng)等。近幾年里對(duì)UCNPs的生物應(yīng)用研究急劇增加,展現(xiàn)了上轉(zhuǎn)換納米粒子的潛在應(yīng)用價(jià)值。
但是盡管UCNPs有著快速強(qiáng)勁的發(fā)展,它仍然有著較低的發(fā)光效率,表面修飾有待改進(jìn),PDT的效率仍然不高。在未來的工作中,我們需要進(jìn)一步優(yōu)化材料合成,得到發(fā)光效率更高的納米粒子。同時(shí)也要優(yōu)化激發(fā)模式,發(fā)展上轉(zhuǎn)換成像的專業(yè)儀器,推動(dòng)該領(lǐng)域更多更好的研究工作的展開。最后重要的是研究要向臨床應(yīng)用發(fā)展,能達(dá)到確實(shí)診斷、治療疾病的目的。
[1]DIEKE G H.Spectra and energy levels of rare earth ions in crystals[M].1968,Medium:X;Size:Pages:409.
[2]WANG F,LIU X.Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J].Chemical Society Reviews,2009,38(4):976-989.
[3]SUYVER J F,AEBISCHER A,BINER D,et al.Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion[J].Optical Materials,2005,27(6):1111-1130.
[4]AUZEL F.Upconversion and Anti-Stokes processes with f and d ions in solids[J].Chemical Reviews,2003,104(1):139-174.
[5]MAI H X,ZHANG Y W,SUN L D,et al.Size-and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy[J].The Journal of Physical Chemistry C,2007,111(37):13730-13739.
[6]FENG W,X F,WANG M,et al.Multicolour PEI/NaGdF4:Ce3+,Ln3+nanocrystals by single-wavelength excitation[J].Nanotechnology,2007,18(2):025701.
[7]YU M,LI F,CHEN Z,et al.Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors[J].Analytical Chemistry,2009,81(3):930-935.
[8]WU S,HAN G,MILLIRON D J,et al.Non-blinking and pho-tostable upconverted luminescence from single lanthanide-doped nanocrystals[J].Proceedings of the National Academy of Sciences,2009,106(27):10917-10921.
[9]NIKOOBAKHT B,BURDA C,BRAUN M,et al.The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution[J].Photochemistry and Photobiology,2002,75(6):591-597.
[10]CHEN C L,KUO L R,CHANG C L,et al.In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons[J].Biomaterials,2010,31(14):4104-4112.
[11]WANG F,BANERJEE D,LIU Y,et al.Upconversion nanoparticles in biological labeling,imaging,and therapy[J].Analyst,2010,135(8):1839-1854.
[12]YI G,LU H,ZHAO S,et al.Synthesis,characterization,and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors[J].Nano Letters,2004,4(11):2191-2196.
[13]WANG L,LI Y.Controlled synthesis and luminescence of lanthanide doped NaYF4nanocrystals[J].Chemistry of Materials,2007,19(4):727-734.
[14]WANG X,ZHUANG J,PENG Q,et al.A general strategy for nanocrystal synthesis[J].Nature,2005,437(7055):121-124.
[15]WANG X,ZHUANG J,PENG Q,et al.Hydrothermal synthesis of rare-earth fluoride nanocrystals[J].Inorganic Chemistry,2006,45(17):6661-6665.
[16]WANG L,LI Y.Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials[J].Nano Letters,2006,6(8):1645-1649.
[17]ZHANG F,WAN Y,YU T,et al.Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J].Angewandte Chemie International Edition,2007,46(42):7976-7979.
[18]WANG L,LI P,LI Y.Down-and up-conversion luminescent nanorods[J].Advanced Materials,2007,19(20):3304-3307.
[19]HE HU,Z C,TIANYE CAO,et al.Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence[J].Nanotechnology,2008,19(37):375702.
[20]ZHANG,Z L A Y.An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J].Nanotechnology,2008,19(24):345606.
[21]SI R,ZHANG Y W,YOU L P,et al.Rare-earth oxide nanopolyhedra,nanoplates,and nanodisks[J].Angewandte Chemie International Edition,2005,44(21):3256-3260.
[22]MAI H X,ZHANG Y W,SI R,et al.High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J].Journal of the American Chemical Society,2006,128(19):6426-6436.
[23]WEI Y,LU F,ZHANG X,CHEN D.Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb,Er nanoplates[J].Chemistry of Materials,2006,18(24):5733-5737.
[24]YI G S,CHOW G M.Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence[J]. Advanced Functional Materials,2006,16(18):2324-2329.
[25]OSTROWSKI A D,CHAN E M,GARGAS D J,et al.Controlled synthesis and single-particle Imaging of bright,sub-10 nm lanthanide-doped upconverting nanocrystals[J]. ACS Nano,2012,6(3):2686-2692.
[26]ZHOU J,YU M,SUN Y,et al.Fluorine-18-labeled Gd3+/Yb3+/Er3+co-doped NaYF4nanophosphors for multimodality PET/MR/UCL imaging[J].Biomaterials,2011,32(4):1148-1156.
[27]ZHAN Q Q,QIAN J,LIANG H,et al.Using 915 nm laser excited Tm3+/Er3+/Ho3+-Doped NaYbF4upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation[J].ACS Nano,2011,5(5):3744-3757.
[28]NACCACHE R,VETRONE F,MAHALINGAM V,et al.Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+nanoparticles[J].Chemistry of Materials,2009,21(4):717-723.
[29]BUDIJONO S J,SHAN J,YAO N,et al.Synthesis of stable block-copolymer-protected NaYF4:Yb3+,Er3+up-converting phosphor nanoparticles[J].Chemistry of Materials,2009,22(2):311-318.
[30]KUMAR R,NYK M,OHULCHANSKYY T Y,et al.Combined optical and MR bioimaging using rare earth Ion doped NaYF4nanocrystals[J]. Advanced Functional Materials,2009,19(6):853-859.
[31]SHEN J,SUN L D,ZHANG Y W,et al.Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy[J].Chemical Communications,2010,46(31):5731-5733.
[32]WANG M,LIU J L,ZHANG Y X,et al.Two-phase solvothermal synthesis of rare-earth doped NaYF4upconversion fluorescent nanocrystals[J].Materials Letters,2009,63(2):325-327.
[33]BOGDAN N,VETRONE F,OZIN G A,et al.Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J].Nano Letters,2011,11(2):835-840.
[34]LIU Q,SUN Y,LI C,et al.18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly[J].ACS Nano,2011,5(4):3146-3157.
[35]CHEN G Y,LIU H C,SOMESFALEAN G,et al.Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping with Li+ ions[J].Applied Physics Letters,2008,92(11):113114-113114-3.
[36]CHEN G,SOMESFALEAN G,LIU Y,et al.Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO_{2}nanocrystals[J].Physical Review B,2007,75(19):195204.
[37]ZHOU J,SUN Y,DU X,et al.Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared(NIR-to-NIR)upconversion luminescence and magnetic resonance properties[J].Biomaterials,2010,31(12):3287-3295.
[38]WANG L,YAN R,HUO Z,et al.Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[J].Angewandte Chemie International Edition,2005,44(37):6054-6057.
[39]WANG Z L,HAO J,CHAN H L W,et al.Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in vitro cell and nude mouse imaging[J].Nanoscale,2011,3(5):2175-2181.
[40]WANG C,TAO H,CHENG L,et al.Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J].Biomaterials,2011,32(26):6145-6154.
[41]CHENG L,YANG K,LI Y,et al.Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J].Angewandte Chemie International Edition,2011,50(32):7385-7390.
[42]PEDRONI M,PICCINELLI F,PASSUELLO T,et al.Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method:toward efficient materials with near infrared-to-near infrared upconversion emission[J].Nanoscale,2011,3(4):1456-1460.
[43]LI P,PENG Q,LI Y.Dual-Mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals[J].Advanced Materials,2009,21(19):1945-1948.
[44]QIAN H S,ZHANG Y.Synthesis of hexagonal-phase core shell NaYF4nanocrystals with tunable upconversion fluorescence[J].Langmuir,2008,24(21):12123-12125.
[45]LI Z,WANG L,WANG Z,et al.Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions[J].The Journal of Physical Chemistry C,2011,115(8):3291-3296.
[46]QIAN H S,GUO H C,HO P C L,et al.Mesoporous-silicacoated up-conversion fluorescent nanoparticles for photodynamic therapy[J].Small,2009,5(20):2285-2290.
[47]WANG M,MI C,ZHANG Y,et al.NIR-Responsive silicacoated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells[J].The Journal of Physical Chemistry C,2009,113(44):19021-19027.
[48]GAI S,YANG P,LI C,et al.Synthesis of magnetic,up-conversion luminescent,and mesoporouscore-shell-structured nanocomposites as drug carriers[J].Advanced Functional Materials,2010,20(7):1166-1172.
[49]LI X,KAO F J,CHUANG C C,et al.Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one-and two-photon excitation[J].Opt Express,2010,18(11):11335-11346.
[50]ZHANG P,STEELANT W,KUMAR M,et al.Versatile photosensitizers for photodynamic therapy at infrared excitation[J].Journal of the American Chemical Society,2007,129(15):4526-4527.
[51]LIU Q,CHEN M,SUN Y,et al.Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence /positron emission tomography imaging[J].Biomaterials,2011,32(32):8243-8253.
[52]ZENG J H,SU J,LI Z H,et al.Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb,Er3+phosphors of controlled size and morphology[J].Advanced Materials 2005,17(17):2119-2123.
[53]JU,J S A Y.A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb,Er upconversion nanophosphors[J].Nanotechnology,2009,20(27):275603.
[54]GHOSH P,PATRA A.Tuning of crystal phase and luminescence properties of Eu3+doped sodium yttrium fluoride nanocrystals[J].The Journal of Physical Chemistry C,2008,112(9):3223-3231.
[55]WANG Z,TAO F,YAO L,et al.Selected synthesis of cubic and hexagonal NaYF4crystals via a complex-assisted hydrothermal route[J].Journal of Crystal Growth,2006,290(1):296-300.
[56]CHEN G,LIU H,LIANG H,et al.Upconversion emission enhancement in Yb3+/Er3+-Codoped Y2O3 nanocrystals by tridoping with Li+ions[J].The Journal of Physical Chemistry C,2008,112(31):12030-12036.
[57]WANG H Q,NANN T.Monodisperse upconverting nanocrystals by microwave-assisted synthesis[J].ACS Nano,2009,3(11):3804-3808.
[58]BAI Y,WANG Y,YANG K,et al.Enhanced upconverted photoluminescence in Er3+and Yb3+codoped ZnO nanocrystals with and without Li+ions[J].Optics Communications,2008,281(21):5448-5452.
[59]BAI Y,WANG Y,YANG K,et al.The Effect of Li on the spectrum of Er3+in Li-and Er-Codoped ZnO nanocrystals[J].The Journal of Physical Chemistry C,2008,112(32):12259-12263.
[60]BAI Y,YANG K,WANG Y,et al.Enhancement of the upconversion photoluminescence intensity in Li+ and Er3+codoped Y2O3 nanocrystals[J].Optics Communications,2008,281(10):2930-2932.
[61]CHENG Q,SUI J,CAI W.Enhanced upconversion emission in Yb3+and Er3+codoped NaGdF4nanocrystals by introducing Li+ions[J].Nanoscale,2012,4(3):779-784.
[62]WANG L,QIN W,LIU Z,et al.Improved 800 nm emission of Tm3+sensitized by Yb3+and Ho3+in NaYF4nanocrystals un-der 980 nm excitation[J].Opt Express,2012,20(7):7602-7607.
[63]WANG F,WANG J,LIU X.Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles[J]. Angewandte Chemie,2010,122(41):7618-7622.
[64]YANG D,LI C,LI G,et al.Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+nanoparticles by active-shell modification[J].Journal of Materials Chemistry,2011,21(16):5923-5927.
[65]WANG F,DENG R,WANG J,et al.Tuning upconversion through energy migration in core-shell nanoparticles[J].Nat Mater,2011,10(12):968-973.
[66]VETRONR F,NACCACHE R,MAHALINGAM V,et al.The active-core/active-shell approach:a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J].Advanced Functional Materials,2009,19(18):2924-2929.
[67]POMPA P P,MARTIRADONNA L,TARRE A D,et al.Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control[J].Nat Nano,2006,1(2):126-130.
[68]BARDHAN R,GRADY N K,COLE J R,et al.Fluorescence enhancement by Au nanostructures:nanoshells and nanorods[J].ACS Nano,2009,3(3):744-752.
[69]ESTEBAN R,LAROCHE M,GREFFET J J.Influence of metallic nanoparticles on upconversion processes[J].Journal of Applied Physics,2009,105(3),033107-033107-10.
[70]MERTENS H,POLMAN A.Plasmon-enhanced erbium luminescence[J].Applied Physics Letters,2006,89(21):211107-211107-3.
[71]ZHANG H,LI Y,IVANOV I A,et al.Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells[J].Angewandte Chemie,2010,122(16):2927-2930.
[72]SUDHEENDRA L,ORTALAN V,DEY S,et al.Plasmonic enhanced emissions from cubic NaYF4:Yb:Er/Tm nanophosphors[J].Chemistry of Materials,2011,23(11):2987-2993.
[73]PAUDEL H P,ZHONG L,BAYAT K,et al.Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces[J].The Journal of Physical Chemistry C,2011,115(39):19028-19036.
[74]FENG W,SUN L D,YAN C H.Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method[J].Chemical Communications,2009,0(29):4393-4395.
[75]SCHIETINGER S,AICHELE T,WANG H Q,et al.Plasmonenhanced upconversion in single NaYF4:Yb3+/Er3+codoped nanocrystals[J].Nano Letters,2009,10(1):134-138.
[76]LIU N,QIN W,QIN G,et al.Highly plasmon-enhanced upconversion emissions from Au@[small beta]-NaYF4:Yb,Tm hybrid nanostructures[J].Chemical Communications,2011,47(27):7671-7673.
[77]KOU L,LABRIE D,CHYLEK P.Refractive indices of water and ice in the 0.65-to 2.5-μm spectral range[J].Appl Opt,1993,32(19):3531-3540.
[78]JIN J,GU Y J,MAN C W Y,et al.Polymer-Coated NaYF4:Yb3+,Er3+upconversion nanoparticles for charge-dependent cellular imaging[J].ACS Nano,2011,5(10):7838-7847.
[79]NYK M,KUMAR R,OHULCHANSKYY T Y,et al.High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+and Yb3+doped fluoride nanophosphors[J].Nano Letters,2008,8(11):3834-3838.
[80]WANG M,MI C C,WANG W X,et al.Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles[J].ACS Nano,2009,3(6):1580-1586.
[81]SALTHOUSE C,HILDERBRANDil S,WEISSLEDER R,et al.Design and demonstration of a small-animal up-conversion imager[J].Opt Express,2008,16(26):21731-21737.
[82]KOBAYASHI H,KOSAKA N,OGAWA M,et al.In vivo multiple color lymphatic imaging using upconverting nanocrystals[J].Journal of Materials Chemistry,2009,19(36):6481-6484.
[83]IDRIS N M,GNANASAMMANDHAN M K,ZHANG J,et al.In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J].Nat Med,2012,18(10):1580-1585.
[84]XIONG L,CHEN Z,TIAN Q,et al.High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors[J].Analytical Chemistry,2009,81(21):8687-8694.
[85]VETRONE F,NACCACHE R,ZAMARRóN A,et al.Temperature sensing using fluorescent nanothermometers[J].ACS Nano,2010,4(6):3254-3258.
[86]KUNINGAS K,RANTANEN T,UKONAHO T,et al.Homogeneous assay technology based on upconverting phosphors[J].Analytical Chemistry,2005,77(22):7348-7355.
[87]RANTANEN T,J?RVENP?? M L,VUOJOLA J,et al.Fluorescence-quenching-based enzyme-activity assay by using photon upconversion[J].Angewandte Chemie International Edition,2008,47(20):3811-3813.
[88]BOHM T D,GRIFFIN S L,DELUCA J P M,et al.The effect of ambient pressure on well chamber response:monte carlo calculated results for the HDR 1000 Plus[J].Medical Physics,2005,32(4):1103-1114.
[89]CORLU A,CHOE R,DURDURAN T,et al.Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans[J].Opt Express,2007,15(11):6696-6716.
[90]LEFF D,WARREN O,ENFIED L,et al.Diffuse optical imaging of the healthy and diseased breast:A systematic review[J].Breast Cancer Research and Treatment,2008,108(1):9-22.
[91]A P Gibson,J C H A S R A.Recent advances in diffuse optical imaging[J].Physics in Medicine and Biology,2005,50(4):R01-R43.
[92]LI A,MILLER E L,KILMER M E,et al.Tomographic optical breast imaging guided by three-dimensional mammography[J].Appl Opt,2003,42(25):5181-5190.
[93]FRANCESCHINI M A,BOAS D A.Noninvasive measurement of neuronal activity with near-infrared optical imaging[J].NeuroImage,2004,21(1):372-386.
[94]XU C T,AXELSSON J,ANDRSSON ENGELS S.Fluorescence diffuse optical tomography using upconverting nanoparticles[J].Applied Physics Letters,2009,94(25):251107-251107-3.
[95]UNGUN B,PRUD'HOMME R K,BUDIJON S J,et al.Nanofabricated upconversion nanoparticles for photodynamic therapy[J].Opt Express,2009,17(1):80-86.
[96]YANG L W,HAN H L,ZHANG Y Y,et al.White emission by frequency Up-Conversion in Yb3+-Ho3+-Tm3+triply doped hexagonal NaYF4nanorods[J].The Journal of Physical Chemistry C,2009,113(44):18995-18999.
[97]GUO H,QIAN H,IDRIS N M,et al.Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer[J].Nanomedicine:Nanotechnology,Biology and Medicine,2010,6(3):486-495.
[98]ASHBURNER J,F(xiàn)RISTON K.Multimodal image coregistration and partitioning-A unified framework[J].NeuroImage,1997,6(3):209-217.
[99]CAI W,CHEN X.Multimodality molecular imaging of tumor angiogenesis[J].Journal of Nuclear Medicine,2008,49(Suppl 2):113S-128S.
[100]MAES F,COLLIGON A,VANDERMEULEN D,et al.Multimodality image registration by maximization of mutual information[J].Medical Imaging,IEEE Transactions on,1997,16(2):187-198.
[101]PETERS T,DAVEY B,MUNGER P,et al.Three-dimensional multimodal image-guidance for neurosurgery[J].Medical Imaging,IEEE Transactions on Medial Imaging,1996,15(2):121-128.
[102]TROMBERG B J,POGUE B W,PAUSEN K D,et al.Assessing the future of diffuse optical imaging technologies for breast cancer management[J].Medical Physics,2008,35(6):2443-2451.
[103]ZHANG Q,BRUKILACCHIO T J,LI A,et al.Coregistered tomographic x-ray and optical breast imaging:initial results[J].Journal of Biomedical Optics,2005,10(2):024033-024033.
[104]XU C T,SVENMARKER P,LIU H,et al.High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles[J].ACS Nano,2012,6(6):4788-4795.