国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

自體熒光技術(shù)在早期腸癌診斷中的應(yīng)用*

2013-11-10 11:13:24劉麗娜李步洪謝樹(shù)森
激光生物學(xué)報(bào) 2013年1期
關(guān)鍵詞:腸癌癌變自體

劉麗娜,李步洪,謝樹(shù)森

(醫(yī)學(xué)與光電科學(xué)與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,福建省光子技術(shù)重點(diǎn)實(shí)驗(yàn)室,福建師范大學(xué),福建福州 350007)

腸癌的發(fā)病率和死亡率居世界第三,在我國(guó)其發(fā)病率僅次于胃癌和食道癌,并且呈逐年上升趨勢(shì),威脅著人們的生命健康[1]。早期發(fā)現(xiàn)和切除癌變組織是有效預(yù)防腸癌發(fā)展,降低死亡率的關(guān)鍵。白光內(nèi)鏡(WLE)檢查是當(dāng)前臨床診斷腸癌的主要方法,醫(yī)生根據(jù)反射白光圖像對(duì)形態(tài)或顏色發(fā)生變化的可疑病灶進(jìn)行活檢取樣和病理分析,但往往難以發(fā)現(xiàn)粘膜下的病變組織和早期原位癌微小病灶,容易誤診或漏診,從而導(dǎo)致錯(cuò)過(guò)最佳的治療時(shí)間[2]。為了提高早期腸癌的診斷率,人們一直致力于尋找一種能有效地正確指導(dǎo)或替代手術(shù)活檢的診斷方法。經(jīng)過(guò)多年的研究與發(fā)展,出現(xiàn)了如色素內(nèi)鏡(CE)[3]、放大內(nèi)鏡(ME)[4]、窄帶成像內(nèi)鏡(NBI)[5]、熒光內(nèi)鏡(AF)[6-8]、共聚焦激光內(nèi)鏡(CLE)[9]等新型消化內(nèi)鏡,這些內(nèi)鏡可以觀察WLE尚無(wú)法判斷的特殊微小結(jié)構(gòu)變化,甚至觀察到細(xì)胞水平的變化,使早期診斷內(nèi)鏡向微觀化方向發(fā)展。目前,熒光內(nèi)鏡以無(wú)損、實(shí)時(shí)和靈敏度高等優(yōu)點(diǎn)已成為早期腸癌診斷的研究熱點(diǎn)[10-12]。

人體組織自體熒光主要來(lái)源于基質(zhì)或細(xì)胞中的氨基酸、結(jié)構(gòu)蛋白、酶和輔酶、脂肪、維生素和卟啉等五大類物質(zhì)。如圖1所示,在特定波長(zhǎng)光的激發(fā)下,人體組織自體熒光光譜是多種不同物質(zhì)成分同時(shí)誘發(fā)產(chǎn)生的光譜疊加,其強(qiáng)度和形狀不僅取決于組織的生化特性和形態(tài)結(jié)構(gòu),還受到組織吸收和散射的影響。組織在癌變過(guò)程中,細(xì)胞新陳代謝的變化將引起熒光物質(zhì)的濃度、血液濃度、細(xì)胞核大小和上皮層厚度等發(fā)生變化,因此可根據(jù)組織自體熒光特性的差異區(qū)分正常和癌變組織[13-17]。

圖1 自體熒光光譜與成像診斷癌變組織的示意圖Fig.1 Autofluorescence spectroscopy and imaging for cancer diagnosis

為了揭示腸道組織癌變過(guò)程中自體熒光特性改變的機(jī)制,相關(guān)的主要研究工作包括:(1)分別開(kāi)發(fā)自體熒光光譜和成像系統(tǒng),測(cè)量腸道離體或活體正常與病變組織的自體熒光光譜和圖像,并利用組織形態(tài)學(xué)、病理學(xué)以及生化學(xué)等研究腸道正常與癌變組織的自體熒光差異機(jī)制;(2)采用熒光顯微技術(shù)監(jiān)測(cè)腸道組織病變過(guò)程中各層組織結(jié)構(gòu)和自體熒光強(qiáng)度分布的變化,從微觀層次分析比較正常與癌變組織的差異;(3)應(yīng)用逐步回歸、判決分析、強(qiáng)度比值等算法對(duì)自體熒光光譜或圖像數(shù)據(jù)進(jìn)行處理與分析,進(jìn)一步提高診斷的靈敏度和特異性,更加有效地鑒別不同類型的癌變組織;(4)采用Monte Carlo模擬方法,深入研究組織的厚度、樣品的大小、激發(fā)光的入射角度和熒光收集角度等參數(shù)對(duì)自體熒光光譜測(cè)量結(jié)果的影響。本文總結(jié)了自體熒光光譜技術(shù)在早期腸癌診斷應(yīng)用中的研究進(jìn)展,重點(diǎn)闡述了熒光激發(fā)波長(zhǎng)的選擇,熒光光譜數(shù)據(jù)處理方法,以及正常和癌變腸道組織光譜差異的來(lái)源。在分析腸道組織中內(nèi)源性熒光物質(zhì)及其分布的基礎(chǔ)上,回顧了自體熒光成像系統(tǒng)的臨床應(yīng)用進(jìn)展。最后指出自體熒光光譜與成像技術(shù)在早期腸癌診斷中的應(yīng)用和發(fā)展趨勢(shì)。

1 自體熒光光譜技術(shù)

1.1 激發(fā)波長(zhǎng)的選擇

激發(fā)波長(zhǎng)的選擇是開(kāi)發(fā)自體熒光光譜診斷系統(tǒng)的關(guān)鍵參數(shù)之一。優(yōu)化選取激發(fā)波長(zhǎng)應(yīng)綜合考慮熒光物質(zhì)激發(fā)效率、穿透深度等因素,使之能夠有效地激發(fā)組織的熒光物質(zhì),最大限度地反映不同類型組織熒光光譜之間的差異。如表1所示,各研究小組選擇的激發(fā)波長(zhǎng)主要在紫外光到藍(lán)綠光范圍,這些激發(fā)波長(zhǎng)都采用了現(xiàn)有商業(yè)化激光器的激光輸出波長(zhǎng)。與藍(lán)綠光相比,紫外光波長(zhǎng)在組織中穿透深度較小,如337 nm的穿透深度約200μm,而442 nm的穿透深度約為600μm[18],但紫外光可激發(fā)的物質(zhì)成分較多,當(dāng)激發(fā)波長(zhǎng)在325 nm-370 nm波段時(shí),主要的熒光峰出現(xiàn)在390 nm和460 nm附近,同時(shí)還可能出現(xiàn)630 nm 和690 nm 的卟啉發(fā)射峰[17,19-23]。Chwirot等指出激發(fā)波長(zhǎng)(325 nm-337 nm)的微小變化對(duì)內(nèi)源性熒光物質(zhì)的激發(fā)沒(méi)有顯著的影響,但各激發(fā)波長(zhǎng)的有效穿透深度不同[24]。Cothren等則認(rèn)為與短波長(zhǎng)相比,370 nm能夠更加有效地激發(fā)熒光信息,特別是 680 nm 的熒光[21,25]。Eker等指出應(yīng)用337nm激發(fā)自體熒光光譜可較好地區(qū)別腸道正常和癌變組織,而采用405 nm和436 nm激發(fā)的正常和癌變組織自體熒光光譜均沒(méi)有顯著差異,區(qū)分組織的效果不理想[17]。采用近紅外光也可以激發(fā)腸道腺瘤性息肉和增生組織的熒光,與紫外和可見(jiàn)光相比,近紅外光更安全且在組織中的穿透深度更深[11,26]。特別需要指出的是,最佳的激發(fā)波長(zhǎng)的選擇可以通過(guò)測(cè)量腸道組織的自體熒光激發(fā)-發(fā)射矩陣(EEM)來(lái)實(shí)現(xiàn)。Richards-Kortum等利用250 nm-500 nm的光激發(fā)腸道組織的自體熒光,分析15個(gè)樣品(4個(gè)正常組織,11個(gè)腺瘤組織)的EEM的比值圖和差值圖獲得最佳激發(fā)波長(zhǎng)為330±10 nm、370±10 nm和430±10 nm,并采用370 nm作為激發(fā)光,利用480 nm的熒光強(qiáng)度區(qū)分正常與腺瘤組織的靈敏度和特異性分別為100%和93%,但研究病例數(shù)較少[15]。Wang等認(rèn)為300 nm,320 nm,330 nm和340 nm是腸道組織的最佳激發(fā)波長(zhǎng),以330 nm為激發(fā)波長(zhǎng),區(qū)分正常和癌變組織的靈敏度和特異性分別為85%和90%[27]。李步洪等采用260 nm-540 nm,步長(zhǎng)20 nm的激發(fā)光對(duì)腸道組織的自體熒光光譜進(jìn)行檢測(cè),并將所獲得的系列熒光光譜轉(zhuǎn)換為EEM,比較正常和腺癌組織在某些特定波長(zhǎng)激發(fā)下的熒光光譜確定結(jié)腸癌診斷的最佳激發(fā)波長(zhǎng)為340 nm,380 nm,460 nm和 540 nm[12]。

1.2 光譜數(shù)據(jù)的處理方法

如何正確提取光譜的有效信息是提高早期腸癌自體熒光光譜診斷準(zhǔn)確率的關(guān)鍵。目前,應(yīng)用于組織自體熒光光譜處理的方法主要有:逐步回歸分析、主成分分析法、雙峰比值法、人工神經(jīng)網(wǎng)絡(luò)判別法和模式識(shí)別法等。

1.2.1 逐步回歸分析 逐步回歸是一種從眾多變量篩選重要變量的多元線性回歸,它按照變量對(duì)因變量影響的顯著程度從大到小地將變量逐個(gè)引入回歸方程并剔除影響不顯著的變量,因此該方法的計(jì)算量比較大。Schomacker等采用選取12個(gè)熒光發(fā)射波長(zhǎng)的熒光強(qiáng)度值作為參量,采用逐步回歸分析,對(duì)91個(gè)腸道瘤性和非瘤性組織樣品進(jìn)行區(qū)分的靈敏度和特異性分別為80%和92%。Kapadia等對(duì)325 nm激發(fā)的腸道組織自體熒光光譜選取6個(gè)熒光發(fā)射波長(zhǎng)的熒光強(qiáng)度值進(jìn)行逐步回歸分析,區(qū)分正常粘膜、增生性組織和腺瘤性組織的準(zhǔn)確率分別為100%、94%和100%[16]。Marchesini等采用410 nm激光激發(fā)83例離體樣品,對(duì)450 nm-800 nm范圍的自體熒光光譜提取9個(gè)熒光發(fā)射波長(zhǎng)處的光強(qiáng)或光強(qiáng)比值作為參數(shù)進(jìn)行逐步回歸分析,區(qū)分癌變與正常組織的靈敏度和特異性分別為80.6%和90.5%,而區(qū)分腺瘤與正常組織的靈敏度和特異性分別為88.2%和95.2%[28]。

1.2.2 主成分分析法(PCA)PCA是一種降低維數(shù)的多元統(tǒng)計(jì)分析方法,可從全譜數(shù)據(jù)中提取少數(shù)幾個(gè)波長(zhǎng)或波段作為綜合指標(biāo),實(shí)現(xiàn)對(duì)組織類型的區(qū)分。PCA的不足在于:選取主成分時(shí)容易漏掉一些相關(guān)性很小的有用變量,使得預(yù)測(cè)模型可靠性下降。此外,承載有效信息的主成分往往多于3個(gè),不易于直接計(jì)算靈敏度和特異性,因此主成分分析法常被作為數(shù)據(jù)壓縮的手段,與其它分類算法相結(jié)合進(jìn)行組織類型的區(qū)分[22]。

1.2.3 雙峰比值法 雙峰比值法則根據(jù)光譜的形狀選取某兩個(gè)特定波段,通過(guò)計(jì)算比值獲得鑒別不同組織的閾值,是一種簡(jiǎn)單的分析方法。與比值法相比,基于全譜的數(shù)據(jù)處理方法如多元回歸分析等對(duì)光譜局部的變化比較敏感,可移植性不如比值法[24]。Mayinger等采用雙峰比值法I(500-549)/I(657-700)診斷腺癌的靈敏度和特異性分別為96%和93%,診斷腺瘤伴異常增生的靈敏度和特異性分別為98%和 89%[10]。

表1 不同激發(fā)波長(zhǎng)的腸癌自體熒光光譜診斷結(jié)果Tab.1 Autofluorescence spectroscopy for the diagnosis of colorectal cancer using different excitation wavelengths

1.2.4 人工神經(jīng)網(wǎng)絡(luò)法(ANN) ANN是一種用來(lái)模擬人腦思維過(guò)程的計(jì)算模型。神經(jīng)網(wǎng)絡(luò)是由大量的、功能比較簡(jiǎn)單的神經(jīng)元互相連接而成的復(fù)雜網(wǎng)絡(luò)系統(tǒng),每個(gè)神經(jīng)元從其鄰近神經(jīng)元接受和發(fā)送信息。整個(gè)網(wǎng)絡(luò)的信息處理通過(guò)這些神經(jīng)元的相互作用完成。神經(jīng)網(wǎng)絡(luò)識(shí)別法具有解決模糊問(wèn)題的優(yōu)勢(shì),容錯(cuò)性比較好,但這種算法要求通過(guò)大量樣本的訓(xùn)練以完成鑒別任務(wù)。羅湘健等應(yīng)用PCA結(jié)合ANN法對(duì)結(jié)直腸的自體熒光光譜進(jìn)行分析,區(qū)分結(jié)直腸腺癌和正常組織的靈敏度和特異性分別為100%和90%[29]。

1.2.5 模式識(shí)別多波長(zhǎng)激發(fā)光譜 截止目前,各種光譜處理算法主要針對(duì)單波長(zhǎng)激發(fā)的熒光光譜進(jìn)行分析,盡管有研究指出EEM比單波長(zhǎng)激發(fā)的光譜具有更豐富的診斷信息[34],但是并未見(jiàn)其在腸道組織診斷中應(yīng)用的報(bào)道,主要是因?yàn)镋EM檢測(cè)與數(shù)據(jù)處理比較耗時(shí),難以完成實(shí)時(shí)檢測(cè)。為了充分利用多波長(zhǎng)激發(fā)熒光光譜的豐富信息,又盡可能縮短檢測(cè)的時(shí)間,我們優(yōu)化選取337 nm、375 nm、405 nm和460 nm作為激發(fā)波長(zhǎng),并對(duì)所獲得的熒光光譜應(yīng)用基于特征提取的模式識(shí)別法進(jìn)行綜合處理。如圖2所示,結(jié)腸正常和腺癌組織的自體熒光光譜存在顯著差異。如圖3所示,采用模式識(shí)別法分析多波長(zhǎng)激發(fā)的光譜區(qū)分腸道正常和腺癌的靈敏度、特異性和準(zhǔn)確率分別為 88.9%、91.4%和 90.3%,與單一采用337 nm激發(fā)波長(zhǎng)獲得的靈敏度相同,但特異性和準(zhǔn)確率均有所提高。

1.3 腸道正常和癌變組織自體熒光差異的來(lái)源

1.3.1 組織結(jié)構(gòu)的改變 Schomacker等采用337 nm作為激發(fā)波長(zhǎng)發(fā)現(xiàn)正常和腺癌組織均有390 nm和460 nm兩個(gè)熒光峰以及425 nm的血液吸收,但390 nm處正常組織的熒光強(qiáng)度比較高,而630 nm和690 nm是腺瘤組織特有的熒光峰。他們認(rèn)為390 nm和460 nm熒光峰分別來(lái)自腸壁的膠原和NADH,僅有不到5%的熒光來(lái)自FAD。組織癌變后粘膜層厚度增加使粘膜下層的膠原熒光產(chǎn)出減少,因此組織形態(tài)結(jié)構(gòu)改變是自體熒光光譜改變的主要原因[16]。

1.3.2 內(nèi)源性熒光物質(zhì)含量的改變 Banerjee等測(cè)量了腸道正常、異型增生和腫瘤組織的自體熒光光譜以及熒光物質(zhì)純品的光譜,發(fā)現(xiàn)不同癌變階段的腸道組織自體熒光光譜形狀沒(méi)有差異,但熒光物質(zhì)的相對(duì)濃度不同導(dǎo)致熒光峰值強(qiáng)度不同,同時(shí)指出新陳代謝較快的組織細(xì)胞較密集,細(xì)胞核質(zhì)較多,而結(jié)締組織的密度較低(如膠原變少)。將腸道組織光譜的四個(gè)熒光峰(331 nm、365 nm、385 nm、453 nm)與各熒光物質(zhì)純品熒光峰的峰值強(qiáng)度和半高寬進(jìn)行比較分析,認(rèn)為331 nm熒光峰來(lái)自色氨酸,365 nm熒光峰主要來(lái)自膠原蛋白,同時(shí)有彈性蛋白、酪氨酸的貢獻(xiàn),385 nm熒光峰主要來(lái)自IV型膠原,同時(shí)有苯丙氨酸、彈性蛋白的貢獻(xiàn),453 nm熒光峰最有可能來(lái)自NADH,苯丙氨酸、維生素B6和IV型膠原[13]。

圖2 多波長(zhǎng)激發(fā)的人體結(jié)腸自體熒光光譜(a)正常組織(b)腺癌組織(c)含630 nm熒光峰的腺癌組織。激發(fā)波長(zhǎng)分別為:337 nm(■),375 nm(▲),405 nm(★),460 nm(●)Fig.2 Autofluorescence spectra of human colonic tissues(a)normal(b)adenocarcinoma(c)adenocarcinoma with 630 nm fluorescence peak.Excitation wavelengths:337 nm(■),375 nm(▲),405 nm(★),460 nm(●)

圖3 多波長(zhǎng)激發(fā)區(qū)分結(jié)腸正常和腺癌組織的靈敏度、特異性和準(zhǔn)確率Fig.3 Sensitivity,specificity and accuracy achieved by monoexcitation and multiple-wavelength excitation for the classification of colonic normal and adenocarcinoma tissues,respectively

我們的前期研究表明部分腸癌患者的腸道組織特異地積聚有PpIX。如圖2(c)所示。李步洪等采用時(shí)間分辨光譜技術(shù)研究發(fā)現(xiàn)正常和癌變組織635 nm熒光發(fā)射峰的平均壽命分別為4.32±0.12 ns和 18.45 ±0.05 ns,具有顯著差異,表明腸癌組織中PpIX含量比正常組織高[35]。腫瘤組織中亞鐵螯合酶(FECH)不足或活性降低[36,37]、膽色素原脫氫酶和FECH的失衡[38]、血紅素合成過(guò)程中二價(jià)鐵離子的不足或者PepT1表達(dá)高于正常組織[39]均有可能導(dǎo)致PpIX選擇性積聚,但確切的分子機(jī)制尚有待于未來(lái)的進(jìn)一步研究。

1.3.3 組織結(jié)構(gòu)和內(nèi)源性熒光物質(zhì)含量改變Richards-Kortum等認(rèn)為正常和癌變組織的光譜差異不僅取決于組織結(jié)構(gòu)的差異,還可能源于癌變過(guò)程中組織的NADH和維生素B6的含量減少[15]。Mayinger等發(fā)現(xiàn)正常與癌組織自體熒光光譜均有綠色(480 nm-570 nm)和紅色(600 nm-700 nm)兩個(gè)特征峰,正常組織綠色熒光峰的強(qiáng)度明顯高于癌組織,紅色熒光峰的強(qiáng)度則低于腺瘤與結(jié)直腸癌。Brigitte認(rèn)為綠色熒光可能來(lái)自膠原,而紅色熒光則可能來(lái)自內(nèi)源性卟啉。癌變組織粘膜厚度增加、粘膜下層被癌細(xì)胞取代使粘膜下層膠原的熒光發(fā)射減少以及正常和癌細(xì)胞中色氨酸和NADH的熒光強(qiáng)度比值不同,從而導(dǎo)致正常與癌變組織的熒光光譜存在差異,此外新陳代謝、炎癥和血紅素的含量及血液的吸收都會(huì)對(duì)熒光強(qiáng)度產(chǎn)生影響[31]。

2 自體熒光成像技術(shù)

2.1 內(nèi)源性熒光物質(zhì)在組織中的分布

如圖4所示,不同病變階段腸道組織的結(jié)構(gòu)和病理特征存在顯著差異。采用熒光顯微系統(tǒng)可以觀察到病變過(guò)程中各層組織結(jié)構(gòu)和自體熒光強(qiáng)度分布情況,從分子水平上揭示腸癌與正常組織的差異。表2總結(jié)了離體腸道正常和病變組織的內(nèi)源性熒光物質(zhì)來(lái)源,以及正常組織與病變組織熒光差異及潛在原因。一般而言,正常與癌變組織熒光特性差異的主要因素包括:正常組織結(jié)構(gòu)完整,而癌變組織或者結(jié)構(gòu)不完整,粘膜厚度增加或者層結(jié)構(gòu)被破壞。與正常組織相比,癌變組織的上皮層腺窩形狀改變,杯狀細(xì)胞減少,細(xì)胞核增大,細(xì)胞核質(zhì)比發(fā)生變化。內(nèi)源性熒光物質(zhì)在正常和癌變組織中的分布存在較為顯著的差異。

圖4 不同病變階段腸道組織的結(jié)構(gòu)和病理特征Fig.4 The structure and histopathologic characteristics of colorectal tissues during neoplastic progress

2.2 自體熒光成像系統(tǒng)的臨床應(yīng)用

應(yīng)用于臨床的商業(yè)化腸道內(nèi)鏡熒光成像系統(tǒng)包括:(1)Xillix-LIFE-GI(Xillix Technologies Corp,Richmond,BC,Canada)(激發(fā)波長(zhǎng) 400 nm-450 nm,中心波長(zhǎng)437 nm);(2)D-light System(Karl Storz,Tuttlingen,Germany)(激發(fā)波長(zhǎng) 375 nm-440 nm);(3)WavSTAT,Optical biopsy system(SpectraScience,San Diego,USA)(激發(fā)波長(zhǎng)337 nm-410 nm);(4)Evis Lucera Spectrum或AFI(Olympus,Japan)(激發(fā)波長(zhǎng)395-475 nm)。這些系統(tǒng)兼有熒光內(nèi)鏡和WLI兩種診斷模式,并可以在兩種模式之間實(shí)時(shí)切換。前三個(gè)系統(tǒng)通過(guò)內(nèi)窺鏡的活檢通道實(shí)現(xiàn)激發(fā)光的傳輸和熒光收集,而Olympus的AFI則是白光與熒光同光路的視頻內(nèi)鏡,采用兩個(gè)CCD分別采集白光和熒光圖像。Xillix-LIFE-GI系統(tǒng)分別檢測(cè)綠色和紅色熒光,根據(jù)紅綠熒光強(qiáng)度的比值進(jìn)行組織類型的區(qū)分。D-light系統(tǒng)主要用于腸癌的藥物熒光診斷研究。新型的AFI可在普通白光、自體熒光和窄帶成像模式之間快速切換,不僅可以實(shí)現(xiàn)大面積的組織熒光檢查,還可以通過(guò)共焦微探頭獲得顯微圖像[52]。表3總結(jié)了這些自體熒光成像系統(tǒng)的臨床診斷應(yīng)用結(jié)果,表明自體熒光技術(shù)能夠反映人體組織中內(nèi)源性熒光物質(zhì)和形態(tài)結(jié)構(gòu)的微小變化,提高早期腸癌診斷的靈敏度。

表2 離體腸道組織的自體熒光物質(zhì)來(lái)源和差異Tab.2 The origination and characteristics of autofluorescence for ex vivo colorectal tissues

表3 自體熒光成像系統(tǒng)診斷腸癌的臨床應(yīng)用Tab.3 Autofluorescence imaging system for clinical diagnosis of colorectal cancer

表4 自體熒光成像與其它光學(xué)技術(shù)診斷早期腸癌的性能比較Tab.4 Diagnostic sensitivity and specificity of AFI and other emerging optical modalities

應(yīng)用AFI與WLI等系統(tǒng)診斷腸道癌變和非癌變組織的結(jié)果對(duì)比如表4所示。一些研究報(bào)道稱AFI的病變組織檢出率比WLI高,尤其是對(duì)平坦型的病變更具有優(yōu)勢(shì)[53],且對(duì)升結(jié)腸的息肉漏診率(30%)明顯低于 WLI(49%)[54]。然而另有研究表明 AFI在腸道病變組織的檢測(cè)中并不占優(yōu)勢(shì)[55-58]。van den Broek等認(rèn)為與高分辨內(nèi)鏡(HRE)相比,AFI雖具有高靈敏度,但并沒(méi)有顯著降低腺瘤的漏診率[56]。應(yīng)用一定的算法把AFI和NBI的信息相結(jié)合則可獲得較高的診斷準(zhǔn)確率,而且經(jīng)驗(yàn)不同的醫(yī)師診斷結(jié)果也比較一致[57]。Takeuchi等[58]認(rèn)為各個(gè)研究小組應(yīng)用AFI診斷腸癌的結(jié)果不一致可能由于所檢查的部位差異引起的。與升結(jié)腸相比,乙狀結(jié)腸的腸腔比較彎曲且狹窄,AFI的成像質(zhì)量不如WLI,因此在這些部位進(jìn)行檢查時(shí),沒(méi)有明顯的優(yōu)勢(shì)。為了改善AFI在狹窄的腸腔處的診斷效果,他們?cè)趦?nèi)窺鏡的末端加上一個(gè)透明罩,使內(nèi)窺鏡末端與粘膜表面保持足夠的距離,確保CCD可以接收組織表面的自體熒光。研究結(jié)果表明加上透明罩后,AFI的病變?cè)\出率明顯提高,且明顯優(yōu)于WLI。

3 自體熒光技術(shù)的應(yīng)用和發(fā)展趨勢(shì)

自體熒光技術(shù)能夠反映人體組織中內(nèi)源性熒光物質(zhì)和形態(tài)結(jié)構(gòu)的微小變化,對(duì)于提高早期腸癌診斷的靈敏度具有十分重要的臨床意義。其次,自體熒光技術(shù)在臨床上的另外一個(gè)重要應(yīng)用是引導(dǎo)手術(shù),在患者實(shí)施腫瘤切除的手術(shù)過(guò)程中實(shí)時(shí)地確定病灶組織的邊界,有效避免組織切除的盲目性,同時(shí)降低病灶的術(shù)后復(fù)發(fā)率[59]。最后,隨著熒光分子探針及高分辨分子成像技術(shù)的發(fā)展,熒光標(biāo)記分子成像技術(shù)在臨床中的應(yīng)用也備受關(guān)注。研究表明將熒光標(biāo)記的抗體或肽等外源性探針靶向到癌組織的過(guò)表達(dá)生物分子,應(yīng)用熒光成像系統(tǒng)可觀察組織病變的生物過(guò)程,如上調(diào)生長(zhǎng)因子、蛋白質(zhì)水解酶和細(xì)胞粘附分子的表達(dá)等,可實(shí)現(xiàn)個(gè)性化的診斷和治療,大大提高平坦型腸道腫瘤的診斷率和腫瘤邊界定位精確度[60]。在該項(xiàng)技術(shù)中,人體組織自體熒光成為檢測(cè)熒光標(biāo)記分子探針信號(hào)的主要噪聲來(lái)源。根據(jù)組織的自體熒光特性,對(duì)所檢測(cè)的信號(hào)進(jìn)行實(shí)時(shí)去噪,最大限度地提高熒光標(biāo)記分子探針的檢測(cè)信噪比,是開(kāi)發(fā)早期腫瘤“熒光標(biāo)記分子探針”診斷技術(shù)的前提。因此,揭示正常和癌變腸道組織的自體熒光光譜差異,以及內(nèi)源性物質(zhì)來(lái)源對(duì)于開(kāi)展“熒光標(biāo)記分子探針”也具有十分重要的研究意義和應(yīng)用價(jià)值。

但是,由于自體熒光信號(hào)比較微弱,而且臨床醫(yī)生對(duì)顏色判別存在主觀性等客觀原因,自體熒光技術(shù)對(duì)早期腸癌的診斷特異性較低(<67%),這是制約該技術(shù)在臨床上應(yīng)用推廣的瓶頸之一。光譜技術(shù)如自體熒光光譜、漫反射光譜可給出組織內(nèi)源性熒光物質(zhì)的變化、光學(xué)特性、形態(tài)結(jié)構(gòu)和血的含量及其氧合特性等信息,具有較高的診斷特異性,將自體熒光成像技術(shù)與光譜技術(shù)相結(jié)合是提高早期腸癌診斷靈敏度和特異性的發(fā)展趨勢(shì)之一[61]。應(yīng)用多波長(zhǎng)激發(fā)和圖像處理算法提高熒光圖像的對(duì)比度是提高早期腸癌診斷靈敏度和特異性的另一發(fā)展趨勢(shì)。將325 nm波長(zhǎng)激發(fā)的色氨酸熒光圖像除以555 nm綠光的反射圖像,突出血管的微小變化以及腫瘤部位的不均勻性,可大大提高內(nèi)鏡成像的對(duì)比度[62]。Imaizumi等研制了雙波長(zhǎng)激發(fā)的成像系統(tǒng),連續(xù)采集由365 nm和405 nm激發(fā)的自體熒光圖像并計(jì)算二者的強(qiáng)度比值從而減少血紅蛋白吸收的影響,提高了腸道微小型腺瘤的診斷率[63]。與此同時(shí),如何把快速、超分辨率顯微技術(shù)引入現(xiàn)有的熒光成像內(nèi)鏡系統(tǒng),以實(shí)現(xiàn)細(xì)胞以及亞細(xì)胞水平的顯微診斷是自體熒光技術(shù)發(fā)展的新趨勢(shì)[78]。

[1]A JEMAL,F(xiàn) BRAY,M M CENTER,et al.Global cancer statistics[J].CA:A Cancer Journal for Clinicians,2011,61(2):69-90.

[2]F JENKINSON and R STEELE.Colorectal cancer screeningmethodology[J].The Surgeon,2010,8(3):164-171.

[3]K TOGASHI,D G HEWETT,G L RADFORD-SMITH,et al.The use of indigocarmine spray increases the colonoscopic detection rate of adenomas[J].Journal of Gastroenterology,2009,44(8):826-833.

[4]S KATO,T FUJII,I KOBA,et al.Assessment of colorectal lesions using magnifying colonoscopy and mucosal dye spraying:Can significant lesions be distinguished?[J].Endoscopy,2001,33(4):306-310.

[5]S OBA,S TANAKA,Y SANO,et al.Current status of narrowband imaging magnifying colonoscopy for colorectal neoplasia in Japan[J].Digestion,2011,83(3):167-172.

[6]T MATSUMOTO,S NAKAMURA,T MORIYAMA,et al.Autofluorescence imaging colonoscopy for the detection of dysplastic lesions in ulcerative colitis:A pilot study[J].Colorectal Disease,2010,12(10 Online):e291-e297.

[7]T MATSUMOTO,M ESAKI,R FUJISAWA,et al.Chromoendoscopy,narrow-band imaging colonoscopy, and autofluorescence colonoscopy for detection of diminutive colorectal neoplasia in familial adenomatous polyposis[J].Disease of Colon & Rectum,2009,52(6):1160-1165.

[8]T MATSUMOTO,T MORIYAMA,T YAO,et al.Autofluorescence imaging colonoscopy for the diagnosis of dysplasia in ulcerative colitis[J].Inflammatory Bowel Disease,2007,13(5):640-641.

[9]X XIE,C LI,X ZUO,et al.Differentiation of colonic polyps by confocal laser endomicroscopy[J].Endoscopy,2011,43(2):87-93.

[10]B MAYINGER,M JORDAN,P HORNER,et al.Endoscopic light-induced autofluorescence spectroscopy for the diagnosis of colorectal cancer and adenoma[J].Journal of Photochemistry and Photobiology B:Biology,2003,70(1):13-20.

[11]X SHAO,W ZHENG,Z HUANG.In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling[J].Journal of Biomedical Optics,2011,16(6):067005.

[12]B LI,S XIE.Autofluorescence excitation-emission matrices for diagnosis of colonic cancer[J].World Journal of Gastroenterology,2005,11(25):3931-3934.

[13]B BANERJEE,B MIEDEMA,H R CHANDRASEKHAR.E-mission spectra of colonic tissue and endogenous fluorophores[J].The American Journal of the Medical Sciences,1998,316(3):220-226.

[14]T J ROMER,M FITZMAURICE,R M COTHREN,et al.Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas:Implications for spectroscopic diagnosis[J].The American Journal of Gastroenterology,1995,90(1):81-87.

[15]R RICHARDS-KORTUM,R P RAVA,R E PETRAS,et al.Spectroscopic diagnosis of colonic dysplasia[J].Photochemistry and Photobiology,1991,53(6):777-786.

[16]K T SCHOMACKER,J K FRISOLI,C C COMPTON,et al.Ultraviolet laser-induced fluorescence of colonic tissue:Basic biology and diagnostic potential[J].Lasers in Surgery and Medicine,1992,12(1):63-78.

[17]C EKER,S MONTAN,E JARAMILLO,et al.Clinical spectral characterisation of colonic mucosal lesions using autofluorescence and δ aminolevulinic acid sensitisation[J].Gut,1999,44(4):511-518.

[18]Z HUANG,W ZHENG,S XIE,et al.Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue[J].International Journal of Oncology,2004,24(1):59-63.

[19]C R KAPADIA,F(xiàn) W CUTRUZZOLA,K M O’Brien,et al.Laser-induced fluorescence spectroscopy of human colonic mucosa.Detection of adenomatous transformation[J].Gastroenterology,1990,99(1):150-157.

[20]P YAKSHE,R BONNER,R PATTERSON,et al.Laser induced fluorescence spectroscopy(LIFS):Can it be used in the diagnosis and treatment of colonic malignancy?[J].The A-merican Journal of Gastroenterology,1989,84:1199(abstract).

[21]R M COTHREN,M V SIVAK Jr,J VAN DAM,et al.Detection of dysplasia at colonoscopy using laser-induced fluorescence:A blinded study[J].Gastrointestinal Endoscopy,1996,44(2):168-176.

[22]L LIU,B LIU,W LI,et al.Discriminant analysis for classification of colonic tissue autofluorescence spectra[C].Proceedings of SPIE,2010,7845,78450P.

[23]張陽(yáng)德,萬(wàn)小平,范春,等.大腸早癌自體熒光檢測(cè)系統(tǒng)研究 ⅰ.大腸癌自體熒光光譜診斷研究[J].中國(guó)內(nèi)鏡雜志,1995,1(1):6-8.ZHANG Yangde.WAN Xiaoping,F(xiàn)ANG Chun,et al.Research on diagnosis of large intestine carcinoma with autofluorescence spectra analysis[J].China Journal of Endoscopy,1995,1(1):6-8.

[24]B W CHWIROT,M KOWALSKA,N PLOCIENNIK,et al.Variability of spectra of laser-induced fluorescence of colonic mucosa:Its significance for fluorescence detection of colonic neoplasia[J].Indian Journal of Experimental Biology,2003,41(5):500-510.

[25]R M COTHREN,R RICHARDS-KORTUM,M V SIVAK Jr.et al.Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy[J].Gastrointestinal Endoscopy,1990,36(2):105-111.

[26]X SHAO,W ZHENG,Z HUANG.Near-infrared autofluorescence spectroscopy for in vivo identification of hyperplastic and adenomatous polyps in the colon[J].Biosensors and Bioelectronics,2011,30(1):118-122.

[27]C Y WANG,J K LIN,H K CHIANG.Autofluorescence spectroscopy to identify normal and cancerous colorectal tissues[C].Proceedings of the 20th Annual International Conference of the IEEE,Engineering in Medicine and Biology Society.1998,967-969.

[28]R MARCHESINI,M BRAMBILLA,E PIGNOLI,et al.Lightinduced fluorescence spectroscopy of adenomas,adenocarcinomas and non-neoplastic mucosa in human colon.I.in vitro measurements[J].Journal of Photochemistry and Photobiology B:Biology,1992,14(3):219-230.

[29]X J LUO,B ZHANG,J G LI,et al.Autofluorescence spectroscopy forevaluating dysplasia in colorectaltissues[J].Zeitschrift für Medizinische Physik,2012,22(1):40-47.

[30]M A MYCEK,K T SCHOMACKER,N S NISHIOKA.Colonic polyp differentiation using time-resolved autofluorescence spectroscopy[J].Gastrointestinal Endoscopy,1998,48(4):390-394.

[31]B MAYINGER,P HORNER,M JORDAN,et al.Light-induced autofluorescence spectroscopy for tissue diagnosis of GI lesions[J].Gastrointestinal Endoscopy,2000,52(3):395-400.

[32]L HORAK,J ZAVADIL,V DUCHAC,et al.Auto-fluorescence spectroscopy of colorectal carcinoma:ex vivo study[J].Journal of Optoelectronics and Advanced Materials,2006,8(1):396.

[33]L LIU,Y NIE,L LIN,et al.Pattern recognition of multiple excitation autofluorescence spectra for colon tissue classification[J].Photodiagnosis and Photodynamic Therapy,2012.http://dx.doi.org/10.1016/j.pdpdt.2012.07.003

[34]R A ZANGARO,L SILVEIRA,R MANOHARAN,et al.Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis[J].Applied Optics,1996,35(25):5211-5219.

[35]B LI,Z ZHANG,S XIE.Steady state and time-resolved autofluorescence studies of human colonic tissues[J].Chinese Optics Letters,2006,4(6):348-350.

[36]R VAN HILLEGERSBERG,J W VAN DEN BERG,W J KORT,et al.Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats[J].Gastroenterology,1992,103(2):647-651.

[37]H A DAILEY,A SMITH.Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase[J].Biochemical Journal,1984,223(2):441-445.

[38]P HINNEN,F(xiàn) W DE ROOIJ,M L VAN VELTHUYSEN,et al.Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin ix accumulation:A study in patients with(pre)malignant lesions of the oesophagus[J].British Journal of Cancer,1998,78(5):679-682.

[39]C M ANDERSON,M JEVONS,M THANGARAJU,et al.Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carriers coexpressed in the small intestine[J].Journal of Pharmacology and Experimental Therapeutics,2010,332(1):220-228.

[40]K IZUISHI,H TAJIRI,T FUJII,et al.The histological basis of detection of adenoma and cancer in the colon by autofluorescence endoscopic imaging[J].Endoscopy,1999,31(7):511.

[41]G BOTTIROLI,A C CROCE,D LOCATELLI,et al.Natural fluorescence of normal and neoplastic human colon:A comprehensive“ex vivo”study[J].Lasers in Surgery and Medicine,1995,16(1):48-60.

[42]B W CHWIROT,M KOWALSKA,N SYPNIEWSKA,et al.Spectrally resolved fluorescence imaging of human colonic adenomas[J].Journal of Photochemistry and Photobiology B:Biology,1999,50(2):174-183.

[43]B W CHWIROT,Z MICHNIEWICZ,M KOWALSKA,et al.Detection of colonic malignant lesions by digital imaging of uv laser-induced autofluorescence[J].Photochemistry and photobiology,1999,69(3):336-340.

[44]G I ZONIOS,R M COTHREN,J T ARENDT,et al.Morphological model of human colon tissue fluorescence[J].IEEE Transactions on Biomedical Engineering,1996,43(2):113-122.

[45]T D WANG,J VAN DAM,J M CRAWFORD,et al.Fluorescence endoscopic imaging of human colonic adenomas[J].Gastroenterology,1996,111(5):1182-1191.

[46]G S FIARMAN,M H NATHANSON,A B WEST,et al.Differences in laser-induced autofluorescence between adenomatous and hyperplastic polyps and normal colonic mucosa by confocal microscopy[J].Digestive Diseases Sciences,1995,40(6):1261-1268.

[47]H W WANG,J WILLIS,M CANTO,et al.Quantitative laser scanning confocal autofluorescence microscopy of normal,premalignant,and malignant colonic tissues[J].IEEE Transactions on Biomedical Engineering,1999,46(10):1246-1252.

[48]R S DACOSTA,L D LILGE,J KOST,et al.Confocal fluorescence microscopy,microspectrofluorimetry,and modeling studies of laser-induced fluorescence endoscopy(LIFE)of human colon tissue[C].Proceedings of SPIE,Laser-Tissue Interaction VIII,1997,2975,98.

[49]張陽(yáng)德,劉蔚東,楊川,等.結(jié)腸早癌自體熒光內(nèi)鏡診斷系統(tǒng)研究ⅰ.結(jié)腸組織顯微自體熒光圖像分析[J].中國(guó)內(nèi)鏡雜志,2000,6(1):77-79.ZHANG Yangde,LIU Weidong,YANG Chuan,et al.A study on autofluorescence endoscopic diagnostic system for early colonic cancer i.microscopic autofluorescence imaging of colonic tissues[J].China Journal of Endoscopy,2000,6(1):77-79.

[50]S ZHUO,J YAN,G CHEN,et al.Label-free monitoring of colonic cancer progression using multiphoton microscopy[J].Biomedical Optics Express,2011,2(3):615-619.

[51]M YING,S ZHUO,G CHEN,et al.Real-time noninvasive optical diagnosis for colorectal cancer using multiphoton microscopy[J].Scanning,2012,34(3):181-185.

[52]H AIHARA,H TAJIRI AND T SUZUKI.Application of autofluorescence endoscopy for colorectal cancer screening:Rationale and an update[J].Gastroenterology Research and Practice,2012,971383.

[53]K INOUE,N WAKABAYASHI,Y MORIMOTO,et al.Evaluation of autofluorescence colonoscopy for diagnosis of superficial colorectal neoplastic lesions[J].International Journal of Colorectal Disease,2010,25(7):811-816.

[54]T MATSUDA,Y SAITO,K I FU,et al.Does autofluorescence imaging videoendoscopy system improve the colonoscopic polyp detection rate?-a pilot study[J].The American Journal of Gastroenterology,2008,103(8):1926-1932.

[55]A IGNJATOVIC,J EAST,T GUENTHER,et al.What is the most reliable imaging modality for small colonic polyp characterization?Study of white-light,autofluorescence,and narrowband imaging[J].Endoscopy,2011,43(2):94.

[56]F J C VAN DEN BROEK,P FOCKENS,S VAN EEDEN,et al.Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps[J].Clinical Gastroenterology and Hepatology,2009,7(3):288-295.

[57]F J C VAN DEN BROEK,E J VAN SOEST,A H NABER,et al.Combining autofluorescence imaging and narrow-band imaging for the differentiation of adenomas from non-neoplastic colonic polyps among experienced and non-experienced endoscopists[J].The American Journal of Gastroenterology,2009,104(6):1498-1507.

[58]Y TAKEUCHI,N UEDO,M HANAFUSA,et al.Endoscopic diagnosis of colorectal neoplasms using autofluorescence imaging[J].Intestinal Research,2012,10(2):142-151.

[59]A PROBST,D GOLGER,H ARNHOLDT,et al.Endoscopic submucosal dissection of early cancers,flat adenomas,and submucosal tumors in the gastrointestinal tract[J].Clinical Gastroenterology and Hepatology,2009,7(2):149-155.

[60]T D WANG.Targeted imaging of flat and depressed colonic neoplasms[J].Gastrointestinal Endoscopy Clinics of North America,2010,20(3):579-583.

[61]K LIN,W ZHENG,Z HUANG.Integrated autofluorescence endoscopic imaging and point-wise spectroscopy for real-time in vivo tissue measurements[J].Journal of Biomedical Optics,2010,15(4):040507.

[62]B BANERJEE,T RENKOSKI,L R GRAVES,et al.Tryptophan autofluorescence imaging of neoplasms of the human colon[J].Journal of Biomedical Optics,2012,17(1):016003.

[63]K IMAIZUMI,Y HARADA,N WAKABAYASHI,et al.Dualwavelength excitation of mucosal autofluorescence for precise detection of diminutive colonic adenomas[J].Gastrointestinal Endoscopy,2012,75(1):110-117.

[64]J HARINGSMA,G N TYTGAT,H YANO,et al.Autofluorescence endoscopy:feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology[J].Gastrointestinal Endoscopy,2001,53(6):642-650.

[65]J HARINGSMA,G N TYTGAT.The value of fluorescence techniques in gastrointestinal endoscopy:better than the endoscopist’s eye?I:the european experience[J].Endoscopy,1998,30(4):416-418.

[66]M VAN LERLAND-VAN LEEUWEN,G TYTGAT.Detection of dysplasia using fluorescence in vivo using the Xillix-LIFE-GI system[J].Endoscopy,1996,28 S44-45.

[67]W CEBULA,W ZIELEZNIK,A SIERON,et al.Laser-induced fluorescent endoscopy(LIFE)in detection of malignant lesions of the colon[C].Proceedins of SPIE,2001,4156,272-276.

[68]T D WANG,J M CRAWFORD,M S FELD,et al.In vivo identification of colonic dysplasia using fluorescence endoscopic imaging[J].Gastrointestinal Endoscopy,1999,49(4):447-455.

[69]S BRAND,H STEPP,T OCHSENKüHN,et al.Detection of colonic dysplasia by light-induced fluorescence endoscopy:A pilot study[J].International Journal of Colorectal Disease,1999,14(1):63-68.

[70]Z BENES,Z ANTOS.Optical biopsy system distinguishing between hyperplastic and adenomatous polyps in the colon during colonoscopy[J].Anticancer Research,2009,29(11):4737-4739.

[71]C SCHMIDT,I PETERSEN,A STALLMACH.Su1488 laserinduced fluorescence to distinguish adenomatous from non-adenomatous colorectal polyps[J].Gastrointestinal Endoscopy,2012,75(4):AB350.

[72]T KUIPER,Y A ALDERLIESTE,K M TYTGAT,et al.Sa1601 differentiation of small colorectal lesions;laser-induced autofluorescence using the wavstat[J].Gastrointestinal Endoscopy,2012,75(4):AB216.

[73]N UEDO,K HIGASHINO,R ISHIHARA,et al.Diagnosis of colonic adenomas by new autofluorescence imaging system:A pilot study[J].Digestive Endoscopy,2007,19(s1):S134-S138.

[74]K S BOPARAI,F(xiàn) J C VAN DEN BROEK,S VAN EEDEN,et al.Hyperplastic polyposis syndrome:A pilot study for the differentiation of polyps by using high-resolution endoscopy,autofluorescence imaging,and narrow-band imaging[J].Gastrointestinal Endoscopy,2009,70(5):947-955.

[75]K ARITA,K MITSUYAMA,H KAWANO,et al.Quantitative analysis of colorectal mucosal lesions by autofluorescence endoscopy:Discrimination of carcinomas from other lesions[J].Oncology Reports,2011,26(1):43-48.

[76]R SATO,M FUJIYA,J WATARI,et al.The diagnostic accuracy of high-resolution endoscopy,autofluorescence imaging and narrow-band imaging for differentially diagnosing colon adenoma[J].Endoscopy,2011,43(10):862.

[77]T KUIPER,F(xiàn) J C VAN DEN BROEK,A H NABER,et al.Endoscopic trimodal imaging detects colonic neoplasia as well as standard video endoscopy[J].Gastroenterology,2011,140(7):1887-1894.

[78]R SHUKLA,W ABIDI,R RICHARDS-KORTUM,et al.Endoscopic imaging:How far are we from real-time histologhy[J].World Journal of Gastrointestinal Endoscopy,2011,3(10):183-194.

猜你喜歡
腸癌癌變自體
含糖飲料或可增加女性患腸癌風(fēng)險(xiǎn)
中老年保健(2021年7期)2021-12-02 16:50:22
當(dāng)心特殊腸癌的“幕后黑手”——肛瘺
中老年保健(2021年8期)2021-08-24 06:22:30
男性長(zhǎng)期看電視更易患腸癌
下咽癌的區(qū)域癌變現(xiàn)象研究進(jìn)展及臨床意義
低損傷自體脂肪移植技術(shù)與應(yīng)用
自體骨髓移植聯(lián)合外固定治療骨折不愈合
自體脂肪顆粒移植治療面部凹陷的臨床觀察
23例原發(fā)性小腸癌臨床分析
Eag1 在大鼠口腔舌黏膜癌變過(guò)程中的表達(dá)
《癌變·畸變·突變》第六屆編委會(huì)第2次會(huì)議紀(jì)要
科技| 右玉县| 遵义县| 赤水市| 开封市| 辽宁省| 浦北县| 行唐县| 七台河市| 兴义市| 乌海市| 壶关县| 谷城县| 丰都县| 安西县| 邯郸县| 房山区| 修文县| 分宜县| 都昌县| 曲周县| 辰溪县| 法库县| 长寿区| 营口市| 湛江市| 新闻| 常宁市| 辉南县| 新源县| 鄄城县| 克拉玛依市| 新津县| 乌鲁木齐市| 华容县| 安顺市| 科技| 岳普湖县| 台北市| 古蔺县| 田东县|