吳勝,莊清渠
(華僑大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,福建 泉州362021)
作為數(shù)值求解偏微分方程的3大主要方法之一,譜元方法由于具有高精度,及對(duì)復(fù)雜區(qū)域的適應(yīng)性的優(yōu)點(diǎn),已經(jīng)被廣泛應(yīng)用于分子動(dòng)力學(xué)模擬、復(fù)雜流體計(jì)算、量子計(jì)算、電磁場(chǎng)計(jì)算和數(shù)值天氣預(yù)報(bào)等領(lǐng)域[1-7].文獻(xiàn)[8-9]分別研究了四階微分方程的譜方法和譜元法.文獻(xiàn)[10]用Legendre-Petrov-Galerkin和Chebyshev配點(diǎn)法求解三階微分方程,由于配點(diǎn)法強(qiáng)烈依靠選取的配置點(diǎn),容易產(chǎn)生數(shù)值不穩(wěn)定的現(xiàn)象.文獻(xiàn)[11]則利用對(duì)偶Petrov-Galerkin法求解三階微分方程.文獻(xiàn)[12]使用Petrov-Galerkin方法對(duì)修正的KdV方程進(jìn)行數(shù)值求解.文獻(xiàn)[13]用有限差分方法和Chebyshev方法求解帶邊值條件的KdV方程,數(shù)值結(jié)果表明Chebyshev方法是比較有效的.文獻(xiàn)[14]研究了KdV方程的多區(qū)域Legendre-Petrov-Galerkin譜元方法,其實(shí)質(zhì)是帶時(shí)間三階方程的譜元法,然而,其數(shù)值結(jié)果用的都是兩區(qū)域的計(jì)算,并不是真正的譜元法計(jì)算,也沒(méi)有具體的計(jì)算過(guò)程.本文研究三階微分方程的Legendre-Petrov-Galerkin譜元法,主要考慮方程的數(shù)值計(jì)算.
記Λ=(-1,1),考慮如下的三階微分方程
為了用Legendre-Galerkin譜元法對(duì)該問(wèn)題進(jìn)行數(shù)值逼近,需要將區(qū)間Λ剖分成K(K≥2)個(gè)子區(qū)間,即
上式中:-1=a0<a1<…<aK=1.
上式中:PN(Λk)表示在Λk上次數(shù)不超過(guò)N的全體多項(xiàng)式所組成的空間.用ˉN表示離散參數(shù)(N,K),定義試探函數(shù)空間和檢驗(yàn)函數(shù)空間為
為了方便表達(dá),對(duì)任意的1≤p≤∞,定義Lp(Λ)={v;‖v‖Lp<∞},其中
其中:(·,·),‖·‖和|·|分別表示空間L2(Λ)的內(nèi)積、范數(shù)和半范,(u,v)=∫Λu(x)v(x)dx.問(wèn)題(1)的Legendre-Petrov-Galerkin譜元逼近形式為:找∈,使得
當(dāng)j=0,1,…,N-3;k=1,2,…,K,基函數(shù)定義為
通過(guò)驗(yàn)證可知函數(shù)
滿(mǎn)足所要求的條件,其中:k=1,2,…,K-1.
最后,將文獻(xiàn)[9]用于求解四階方程的Legendre譜元逼近法的計(jì)算思想推廣到式(2)的計(jì)算中,詳細(xì)計(jì)算過(guò)程有以下4個(gè)步驟.
1)構(gòu)造關(guān)于雙線(xiàn)性形式a(·,·)的正交補(bǔ).令,∈是問(wèn)題的解則和在a(·,·)意義下是正交的,即
2)求解各子區(qū)間內(nèi)部節(jié)點(diǎn)上的子問(wèn)題,找^uˉN∈^VˉN,使得
3)求解單元交界節(jié)點(diǎn)處的子問(wèn)題,即求(,)(i=1,2,…,K-1),
4)由式(7),(8)可得
式(6)所對(duì)應(yīng)的線(xiàn)性系統(tǒng)也可類(lèi)似表達(dá).
具有唯一解,而且解滿(mǎn)足
由三角不等式,可得
利用Lax-Milgram引理,可知結(jié)論成立.
下面給出一個(gè)數(shù)值例子說(shuō)明Legendre-Petrov-Gelarkin譜元逼近形式(2)的精度及有效性,在問(wèn)題(1)中,取α=β=γ=1.
例1 考慮問(wèn)題(1)在區(qū)間(-1,1)上,有如下形式的解析解,即
其中:右端項(xiàng)為f(x)=(x-2)sin2(πx)-[π(x+1)+4π2(x-1)]sin(2πx)-2π2(x-4)cos(2πx).
在半log尺度下,當(dāng)h=1/2時(shí),L2-誤差及H1-誤差隨N的變化情況,如圖1(a)所示.從圖1(a)可知:隨著N的增大,誤差(ε)隨N呈指數(shù)衰減.說(shuō)明對(duì)于光滑解,數(shù)值解具有所謂的譜收斂.在log-log尺度下,當(dāng)N=10時(shí),L2-誤差及H1-誤差隨h的變化情況,如圖1(b)所示.從圖1(b)可知:誤差關(guān)于h呈代數(shù)衰減.
圖1 誤差的變化Fig.1 Change of the error
用Legendre-Petrov-Galerkin譜元法求解三階微分方程,將計(jì)算區(qū)間剖分成一系列的小區(qū)間,相應(yīng)地將問(wèn)題轉(zhuǎn)化成一系列的子問(wèn)題.構(gòu)造恰當(dāng)?shù)脑囂胶瘮?shù)和檢驗(yàn)函數(shù),并對(duì)得到稀疏的線(xiàn)性系統(tǒng)再進(jìn)行求解.數(shù)值結(jié)果表明:方法是高精度的,將其應(yīng)用于求解具有高頻振蕩解的問(wèn)題也是可行的.
[1] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods:Fundamentals in single domains[M].Berlin:Springer-Verlsg,2006:401-470.
[2] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods:Evolution to complex geometries and applications to fluid dynamics[M].Berlin:Springer-Verlsg,2007:237-357.
[3] SHEN Jie,TANG Tao.Spectral and high-order methods with applications[M].Beijing:Science Press of China,2006:183-298.
[4] KARNIADAKIS G,SHERWIN S J.Spectralhp element methods for computational fluid dynamics[M].London:Oxford University Press,2005:187-348.
[5] JOHN W,HILLIARD J E.Free energy of a nonuiform systerm I:Interfacial free energy[J].J Chem Phys,1958,28(2):258-267.
[6] MICHELSON D M,SIVASHINSKY G I.Nonlinear analysis of hydrodynamic instability in laminar flames-II:Numberical experiments[J].Acta Astronautica,1977,4(11/12):1207-1221.
[7] SIVASHINSKY G I.Nonlinear analysis of hydrodynamic instability in laminar flames-I dervation of basic equations[J].Acta Astronautica,1977,4(11/12):1177-1206.
[8] SHEN Ting-ting,XING Kang-zheng,MA He-ping.A legendre petrov-galerkin method for fourth-order differential equations[J].Computers and Mathematics with Applications,2011,61(1):8-16.
[9] ZHUANG Qing-qu.A legendre spectral-element method for the one-dimensional fourth-order equations[J].Appl Math Comput,2011,218(7):3587-3595.
[10] MA He-ping,SUN Wei-wei.A legendre-petrov-galerkin and chebyshev collocation method for third-order differential equations[J].SIAM Journal on Numberical Analysis,2000,38(5):1425-1438.
[11] SHEN Jie.A new dual-petrov-galerkin method for third and higher odd-order differential equations:Application to the KdV equation[J].SIAM Journal on Numberical Analysis,2004,41(5):1595-1619.
[12] ISMAIL M S.Numberical solution of compulex modified korteweg-de vries equation by petrov-galerkin method[J].Applied Mathematics and Computation,2008,202(2):520-531.
[13] SKOGESTED J O,KALISCH H.A boundary value problem for the KdV equation:Comparison of finite-difference and Chebyshev methods[J].Mathematics and Computers in Simulation,2009,80(1):151-163.
[14] 王振華,馬和平.三階微分方程的多區(qū)域Legendre-Petrov-Galerkin譜方法[J].應(yīng)用數(shù)學(xué)與計(jì)算數(shù)學(xué)學(xué)報(bào),2011,25(1):11-19.