王晶苑,張心昱,溫學發(fā),王紹強,王輝民
(中國科學院地理科學與資源研究所生態(tài)系統(tǒng)網(wǎng)絡觀測與模擬重點實驗室,北京 100101)
全球氮沉降持續(xù)增加(可能從現(xiàn)在的1.5 kgN·hm-2·a-1增加到4.2 kgN·hm-2·a-1)[1],其對森林土壤碳匯的影響依然充滿爭議,其影響機制一直是陸地生態(tài)系統(tǒng)和全球變化研究的科學前沿。例如:氮沉降加速了南美熱帶雨林土壤碳釋放[2],但是增加了歐洲森林[3]和北半球溫帶森林[4]土壤碳吸收,也可能是促進我國南方成熟森林土壤碳吸收的原因[5]。土壤有機質和凋落物的分解過程是決定森林土壤碳匯的核心關鍵過程[7]。目前,人類活動產(chǎn)生并排放到大氣中的活性氮已由1860年的15 TgN/a增加到2000年的165 TgN/a,超過了陸地自然生態(tài)系統(tǒng)的最大估計固氮量130 TgN/a[16],其中70%通過干濕沉降到達地表[17]。大氣氮素沉降主要包括濕沉降和干沉降[18]。硝態(tài)氮與銨態(tài)氮是氮沉降的兩種主要形態(tài),其中銨態(tài)氮占總沉降通量的60%以上。據(jù)預測,全球氮沉降速率到2050年將加倍,并有相當一部分地區(qū)超過50 kgN·hm-2·a-1[19]。目前我國已經(jīng)成為歐洲、北美之后的第三大氮沉降區(qū)(12.9kgN·hm-2·a-1),氮沉降變化范圍為1.0—74.3 kgN·hm-2·a-1,其中東南區(qū)域的氮沉降水平最高,高達35.6 kgN·hm-2·a-1,約每年增加0.34 kgN·hm-2·a-1,由東南向西北呈遞減趨勢,全國形成東南、四川盆地、長江中下游平原等高氮沉降中心[20]。
氮沉降不但改變土壤C∶N∶P化學計量比[10-11],而且會降低土壤pH[12],并加速土壤磷循環(huán)[8]。全球已發(fā)表的氮添加實驗的綜合分析表明,幾乎所有生態(tài)系統(tǒng)中都存在由于氮素添加而導致的磷限制[9],進而影響土壤有機質和凋落物的分解過程。氮沉降持續(xù)增加背景下土壤微生物的生物量、組成與酶活性的改變是調(diào)控土壤有機質和凋落物分解的核心機制[13-14]。氮、磷添加控制試驗是調(diào)控土壤C∶N∶P生態(tài)化學計量比的有效手段[15]。2011年New Phytologist雜志組織“全球變化下陸地生態(tài)系統(tǒng)化學計量比的適應性(Stoichiometric flexibility in terrestrial ecosystems under global change)”專題學術研討會,指出氮沉降持續(xù)增加背景下土壤C∶N∶P化學計量比和pH環(huán)境等的改變對土壤有機質和凋落物分解的影響及其可能的土壤微生物學機制尚未清楚,已經(jīng)成為陸地生態(tài)系統(tǒng)與全球變化研究的新生長點和科學研究前沿。
施氮實驗證明氮添加能促使生物體產(chǎn)生更多的胞外磷酸酶,導致土壤有機質釋放更多的磷酸鹽[21];在高氮沉降的區(qū)域也產(chǎn)生類似的磷循環(huán)情景[22]。然而,氮沉降的持續(xù)增加已經(jīng)促使生態(tài)系統(tǒng)由氮限制轉變?yōu)榱紫拗疲?3]。但是磷限制對生態(tài)系統(tǒng)碳固定的影響可能被遠遠低估[24]。通常認為熱帶森林由于受磷限制而導致其氮沉降效應沒有其它生態(tài)系統(tǒng)效果明顯[23]。全球海洋與非農(nóng)業(yè)陸地生態(tài)系統(tǒng)磷限制的情況正在日益加強[11]。隨著大氣CO2濃度和氮沉降增加,全球森林生長與碳庫并沒有顯著增加或降低[25],這可能由于磷限制掩蓋了CO2濃度和氮沉降增加的潛在效應。隨著氮沉降的持續(xù)增加,磷限制性會逐漸增強[11]。人類活動導致其它元素(特別是氮)的大量增加是陸地生態(tài)系統(tǒng)存在磷限制的重要原因[9,23]。
生態(tài)化學計量學主要研究生態(tài)過程中化學元素的比例關系,目前主要集中于碳、氮和磷元素的計量關系[26-27]。生態(tài)系統(tǒng)碳-氮-磷平衡的標志之一就是土壤微生物和植物需求之間利用土壤為平臺,通過動態(tài)交換達到并維持相對平衡的碳、氮和磷元素生態(tài)化學計量比[28]。生態(tài)系統(tǒng)中碳與關鍵養(yǎng)分元素(氮、磷)的生態(tài)化學計量比的差異能夠調(diào)控和影響生態(tài)系統(tǒng)中碳循環(huán)過程[29]。土壤C∶N∶P化學計量比綜合了生態(tài)系統(tǒng)功能的變異性,是反映土壤碳-氮-磷循環(huán)的主要指標,有助于理解生態(tài)過程對全球變化的響應,成為確定土壤碳-氮-磷平衡特征的重要參數(shù)[30]。植物葉片、根系、土壤有機質和凋落物中C∶N∶P化學計量比可以表征氮磷養(yǎng)分限制狀況[31-32]。
土壤碳庫的變化受到土壤微生物為維持自身碳/養(yǎng)分平衡需求的制約,這表明土壤碳排放過程是與外界氮磷輸入相聯(lián)系的[33]。土壤C∶N比直接控制硝化速率并對用于反硝化作用的硝酸根有間接影響,與土壤微生物對其的分解能力密切相關[34-35]。土壤有機質和凋落物C∶N比大于25時對微生物來說是氮限制性的,因此,氮首先被微生物固定利用而不是被硝化或反硝化。在全球尺度上,土壤C∶N比能解釋99.2%的森林溪流DOC年通量變化[36]。土壤N∶P比是影響微生物群落多樣性的重要因子,也是一個土壤養(yǎng)分限制的指示因子。在區(qū)域水平上,氮或磷限制條件下,土壤N∶P比會影響植物生產(chǎn)力與組成,同時會影響土壤微生物的組成與活性[37-38],表明土壤和土壤微生物C∶N∶P化學計量比與土壤有機質和凋落物分解密切相關[39-40]。土壤微生物C∶N、C∶P比可以作為相對于氮和磷的碳利用效率指標,而C∶P比也可作為衡量土壤有機物質礦化釋放磷的一種指標[41]。
在全球尺度上,土壤中碳-氮-磷含量具有顯著的正相關關系,但并不是線性關系,因為磷的增加量通常小于碳氮[42]。全球及中國土壤的 C∶N∶P 化學計量比分別為186∶13∶1 和60∶5∶1[42-43]。無論土壤中碳氮含量如何變化巨大,低磷含量總是導致高的C∶P和N∶P化學計量比,因此土壤C∶N∶P化學計量比的大小主要是受磷含量控制[43]。
由于人類活動對自然生態(tài)系統(tǒng)輸入物質的C∶N∶P化學計量比的改變,必將對自然生態(tài)系統(tǒng)植被、土壤與土壤微生物的C∶N∶P化學計量比產(chǎn)生影響[44-45]。研究表明,自然過程中全球C∶N∶P化學計量比約為20333∶43∶1,人類活動產(chǎn)生的 C∶N∶P 化學計量比約為667∶12∶1[46]。例如,氮添加會導致植物葉片中氮含量增加,進而降低了葉片C∶N比[47-48]。胞外酶通常能夠顯示土壤微生物的養(yǎng)分需求,在養(yǎng)分不受限制的情況下其C∶N∶P生態(tài)化學計量比是1∶1∶1[30]。由于養(yǎng)分可利用性與土壤類型相關,在磷限制的土壤中其通常顯示更高的C∶P比[30]。隨著土壤深度的變化,土壤磷的降低速率要低于土壤碳氮[43],因此土壤C∶P比隨土壤深度的下降速度要高于C∶N比。隨著氮沉降的增加,一些研究已經(jīng)觀測到土壤N∶P比的增加[10]。全球而言,人類活動對生物圈投入的N∶P比為22.8—44.6∶1,比大多數(shù)陸地植物最優(yōu)生長條件下土壤 N∶P比大了5% —100%[46]。
氮沉降增加了土壤有機質和凋落物分解過程中的氮含量,改變了土壤有機質和凋落物的C∶N∶P化學計量比并降低土壤pH[49-50]。隨著氮沉降的持續(xù)增加,土壤pH值也隨之下降,這也降低了土壤的陽離子交換量,改變了土壤中鹽基陽離子數(shù)量與種類[51]。Matson等證明大多數(shù)進入熱帶生態(tài)系統(tǒng)的氮流失到水體或大氣,導致硝化速率增加,氮損失導致鹽基陽離子損失并降低土壤pH,這會反過來降低熱帶森林的碳固定能力[52]。
氮沉降最直接的效應是改變土壤微生物分解底物的質量(C∶N∶P化學計量比)、數(shù)量以及pH環(huán)境等,進而影響土壤微生物生物量、組成和酶活性,從而促進或限制土壤有機質和凋落物等分解速率。溫帶和北方林明顯受到可利用氮的限制[19,53-54],而熱帶和亞熱帶森林處于有效氮富集狀態(tài),而存在磷限制[19,55]。Neff等研究表明,氮添加顯著加快了較輕的土壤碳分解,而使得較重的土壤碳化合物更為穩(wěn)定[56]。同時,氮沉降對土壤有機物質和凋落物分解的影響因分解階段不同而表現(xiàn)出差異:和進入新鮮的、剛脫落的凋落物中會促進纖維素和可溶物質的初期分解,而相同化合物進入腐殖質(分解結束階段)會顯著抑制其活性[57]。莫江明等發(fā)現(xiàn)在分解初期添加氮促進馬尾松林凋落物的分解,而對荷木凋落物分解無顯著影響,對季風常綠闊葉林凋落物分解的影響隨樹種不同而異,總體上氮添加對凋落物分解是抑制作用大于促進作用,并認為少量土壤可用性氮增加可以提高凋落物分解速率,但過高則抑制凋落物分解[58]。Cao等在南亞熱帶的馬占相思和桉樹人工林的氮磷添加試驗則表明氮磷添加均促進了馬占相思林的土壤呼吸,但是降低了桉樹林的土壤呼吸[59]。Zhang等[60]在會同地區(qū)的杉木凋落物與土壤加氮試驗表明,杉木土壤碳穩(wěn)定依賴于凋落物和氮的輸入。
土壤有機質和凋落物的氮磷含量會影響土壤微生物對土壤有機質和凋落物的分解:當?shù)康蜁r,土壤微生物會降低其單位氮的碳利用效率。葉片在凋落前有顯著的氮磷養(yǎng)分回收,但根沒有或較少,因此死根中的氮磷養(yǎng)分含量遠高于葉凋落物。土壤有機質和凋落物的C∶N∶P化學計量比存在明顯差異,而土壤有機質庫具有較高的氮磷養(yǎng)分含量,供應氮磷養(yǎng)分的速率高[61-62]。土壤有機質和凋落物的碳氮磷化學計量比是其分解的重要決定因子,然而元素的化學計量比對其分解過程中微生物的氮磷周轉影響現(xiàn)在研究不足。例如山毛櫸凋落物放在培養(yǎng)3個月及6個月后分解者氮磷循環(huán)發(fā)生改變。總蛋白分解、氮礦化(氨化)、硝化速率與凋落物的C∶N比存在負相關。磷的礦化速率與凋落物的C∶P比存在負相關,凋落物C∶N比與無機氮循環(huán)的負相關關系比其與總蛋白分解的負相關關系更強,顯示底物的化學計量比對細胞內(nèi)過程的效應要比胞外酶催化過程的效應要強。胞外蛋白分解主要受底物的可利用性限制而較少受到蛋白酶數(shù)量的限制。氮庫與磷庫是密切正相關而且其預期產(chǎn)量與消費過程指出其控制微生物、凋落物的氮磷循環(huán)。凋落物C∶N比與磷酸酶活性的負相關關系顯示微生物傾向于分配足夠的碳和養(yǎng)分來生產(chǎn)胞外酶來增加養(yǎng)分的供應。資源的碳氮磷化學計量比對微生物的分解凋落物過程的氮磷循環(huán)具有很強的效應,氮磷的礦化與保持凋落物微生物群落的細胞內(nèi)穩(wěn)性具有較強的耦合作用[63]。
氮輸入與變暖會通過改變微生物活性和分解過程而改變土壤碳儲量。施肥可以增加大多數(shù)土壤碳含量,降低異養(yǎng)呼吸而減少碳損失。但是土壤碳庫的增加在不同碳庫并不一致,活性的土壤碳庫在施肥的情況下降解非??欤蔷徯У奶紟靺s延長了其周轉時間。土壤碳庫對氮輸入的變化與兩類微生物胞外酶相關。小的活躍碳庫會增加水解酶活性,而周轉時間長的緩慢碳庫會降低氧化酶活性,水解酶在降解施肥土壤中更復雜的碳組分。增溫會整體上增加土壤呼吸,氮輸入會顯著增加緩效碳庫的溫度敏感性。氮沉降有增加熱帶森林土壤碳庫的趨勢,但是增加的碳庫是否能長期穩(wěn)定可能取決于將來的溫度變化[64]。
土壤微生物組成與酶活性是反應土壤有機質和凋落物分解過程的重要指標[6,64,66]。土壤中生活著大量的微生物(每克土壤可含109細菌、107放線菌和106真菌),它們是土壤生物地球化學循環(huán)的驅動者[29,67-68]。目前,土壤微生物生物量碳氮磷的測定方法是熏蒸培養(yǎng)法[69-70]。土壤微生物細菌、真菌和放線菌組成與活性主要依靠磷脂脂肪酸(phospholipid fatty acid,PLFA)分析技術[71-74]。目前國際上研究較多的土壤酶活性是土壤胞外酶活性,多采用微孔板法分析土壤的酶活性[75],而我國酶活性分析多采用傳統(tǒng)的培養(yǎng)、比色法[70,76]。值得注意的是,基于DNA/RNA等分子生物學方法為土壤微生物生態(tài)學研究提供了強有力的手段,如RTPCR、PCR-DGGE,第二代基因組測序技術[77]。
在研究氮、磷添加對土壤微生物組成和酶活性影響時,植被類型、土壤有機質含量等特征不容忽視。不同土地利用類型土壤微生物與酶活性的差別與土壤有機質含量密切相關,在高有機質含量的土壤中土壤酶活性較高,反之亦然[78];在不同土地利用類型中,土壤酶活性、真菌:細菌的比和土壤質地與土壤有機質化學組分密切相關[68]。在內(nèi)蒙古呼倫貝爾草原研究也表明,資源可利用性(植物生物量、土壤含水量、土壤N∶P化學計量比)是決定土壤微生物功能多樣性的主要因子[38]。Zechmeister-Boltenstern研究了歐洲12種森林植被類型和氮沉降水平下土壤微生物狀況,結果表明植被類型對土壤微生物種群結構影響明顯,僅當?shù)两邓捷^高(>30 kgN·hm-2·a-1)時,氮沉降的影響才掩蓋了植被類型的效應[14]。
氮添加是影響微生物細菌、真菌和放線菌組成的重要因素[79-80]。在北美碳和氮含量低的土壤中,氮添加主要增加放線菌的生物量[81]。在北方硬闊林的土壤中,氮添加降低菌根真菌的生物量[13]。美國北部闊葉林12a氮沉降導致土壤微生物生物量和叢枝菌根真菌生物量降低24%—36%,并導致土壤真菌與細菌的比例降低了10%[13]。Treseder綜合評價了82個田間施氮試驗對土壤微生物的影響,結果表明微生物生物量平均降低約15%,且土壤CO2排放減少;長期的高施氮試驗中細菌和真菌有降低的趨勢[80]。以細菌為主的土壤中,氮素增加抑制了難分解有機質的降解[75]。瑞典北部北方森林環(huán)割和34a施氮試驗研究表明,環(huán)割和施氮均導致土壤真菌生物量降低45%,說明氮沉降可能同環(huán)割處理相同,降低了對外生菌根真菌供碳量,而細菌生物量隨自然梯度的pH增加而明顯增加[79]。在低海拔的熱帶森林中,氮沉降導致革蘭氏陰性細菌生物量增加,活性有機碳化學組分流失增加;而在高海拔的熱帶森林中,氮沉降導致真菌增加,降低了有利于土壤有機碳儲存的化學組分[82]。對美國28種土壤進行1a室內(nèi)增氮培養(yǎng)試驗研究表明,增氮改變了土壤微生物群落組成,增加了放線菌和硬壁菌生物量,降低了酸桿菌和疣微菌生物量[81]。
氮沉降增加會加速土壤磷循環(huán)并導致磷限制,改變土壤C∶N∶P化學計量比和pH環(huán)境,這將導致土壤微生物組成與酶活性發(fā)生變化[8]。Cleveland[42]研究表明,不同于土壤C∶N∶P化學計量比在全球的一致性,土壤微生物C∶N∶P化學計量比隨著植被類型變化有明顯區(qū)別。例如森林土壤微生物C∶P、N∶P比明顯高于草原土壤微生物C∶P、N∶P比,主要由于森林土壤微生物的磷含量低[42]。土壤N∶P比是影響微生物群落多樣性的重要因子,也是一個土壤養(yǎng)分限制的指示因子。在氮或磷限制環(huán)境下,土壤N∶P比能夠顯示其對植物生產(chǎn)力與組成的改變來影響土壤微生物群落多樣性。通過氮沉降、施肥、增溫等產(chǎn)生的土壤C∶N∶P化學計量比的改變均可能影響土壤微生物的分布[83-84]。真菌的碳利用效率與C∶N、C∶P比有正相關關系,而細菌的碳利用效率和C∶N、C∶P比是負相關關系,而且這種關系在不同生物量條件下保持穩(wěn)定。這顯示真菌比細菌有更高的碳需求[80]。
磷的添加改變微生物生物量與組成,可以增加土壤有機質和凋落物分解[38,85]。例如鼎湖山森林3a施磷試驗表明,亞熱帶老齡森林中施磷促進了土壤微生物生物量的增加,增加了土壤微生物中細菌和真菌的量,并增加了土壤的真菌與細菌的比[86]。在磷限制區(qū)域,細菌生長非常緩慢,并由于RNA濃度的降低導致其磷含量也降低[87-88]。
不同氮沉降處理對土壤酶的活性影響差異較大。氮沉降降低了凋落物表面酶活性效能,并且使酶的功能從催化氮素轉化向催化磷素轉化轉變,并且從多酚氧化酶向多聚糖水解酶轉變[67]。長期施氮對溫帶闊葉林地表凋落物酶活性的影響超過了對土壤酶活性的影響,施氮增加了凋落物和土壤中脲酶、酸性磷酸酶、糖苷酶活性;增加了凋落物中酚氧化酶的活性,但是降低了土壤中酚氧化酶的活性[75]。氮添加顯著抑制礦質土壤中β-1,4-葡糖苷酶的活性,而且抑制了地表凋落物的酚氧化酶活性[89]。美國的28種土壤室內(nèi)1a增氮培養(yǎng)試驗研究表明,增加氮顯著降低了葡萄糖苷酶、酸性磷酸酶、亮氨酸肽酶、過氧化物酶等土壤微生物的酶活性[81]。對于氮限制的3個溫帶森林,經(jīng)過1a的施氮后土壤苯酚氧化酶、過氧化物酶有增加,也有降低的趨勢,不同生態(tài)系統(tǒng)對酶活性具有不同響應特征[90]。Marklein和Houlton利用全球34個自然生態(tài)系統(tǒng)氮磷添加試驗數(shù)據(jù)綜合分析了氮、磷添加對土壤磷酸酶活性的影響,氮添加增加了土壤磷酸酶的活性,而磷添加抑制了土壤磷酸酶活性[8]。植物和土壤把過剩的氮素分配給磷酸酶,延遲氮沉降增加而導致磷限制。Sinsabaugh等綜合全球40個生態(tài)系統(tǒng)的土壤酶活性數(shù)據(jù)研究表明,β-1,4-葡糖苷酶,β-1,4-N-乙酰葡糖胺酶和磷酸酶活性會隨著土壤中有機質濃度的增加而增加,而亮氨酸氨肽酶的活性與土壤有機質濃度無明顯關系[30]。不同酶在氮沉降影響下隨時間的動態(tài)變化無統(tǒng)一規(guī)律,蔗糖酶波動較大,而脲酶和過氧化氫酶兩者趨勢較一致等。
土壤pH環(huán)境改變直接影響土壤微生物組成和酶活性變化[91]。在北美洲和南美洲洲際尺度區(qū)域調(diào)查研究表明土壤細菌種群多樣性和豐富度主要受土壤pH值影響,在酸性土壤中微生物多樣性最低,在中性土壤中微生物多樣性最高[92]。在全球尺度利用40個生態(tài)系統(tǒng)調(diào)查結果,發(fā)現(xiàn)β-1,4-葡萄糖苷酶、纖維素水解酶、β-1,4-N-乙酰葡糖胺酶、磷酸酶活性會隨著土壤中有機質含量的增加而增加,而亮氨酸氨肽酶、苯酚氧化酶、過氧化物酶的活性與土壤有機質濃度無明顯關系,但是這7種酶活性都與土壤pH顯著相關,而與年均溫或年均降雨量相關性不明顯[30]。
我國為世界上第三大氮沉降區(qū),氮沉降持續(xù)增加而導致了森林生態(tài)系統(tǒng)磷循環(huán)加速而導致磷限制。氮沉降改變森林土壤有機質和凋落物的C∶N∶P化學計量比和降低土壤pH值,而且改變土壤微生物生物量碳氮磷、細菌、真菌和放線菌的組成以及影響碳氮磷分解的關鍵酶活性。氮沉降持續(xù)增加背景下土壤C∶N∶P化學計量比和pH環(huán)境等的改變對土壤有機質和凋落物分解的影響及其可能的土壤微生物學機制尚未清楚。以往研究多獨自開展生態(tài)化學計量學或土壤微生物生態(tài)學研究,迫切需要開展生態(tài)化學計量學和土壤微生物生態(tài)學交叉的綜合研究,促進全球變化背景下我國陸地生態(tài)系統(tǒng)地下生態(tài)學的研究。
氮沉降對土壤有機質和凋落物化學計量比改變的作用機理存在著多種解釋,但目前仍無普遍接受的結論[93-94]?,F(xiàn)有研究多數(shù)以針葉林為研究對象在氮沉降嚴重的歐洲和北美森林中進行,結果帶有局限性。熱帶和亞熱帶地區(qū)的森林類型比較復雜,氮循環(huán)在熱帶地區(qū)與溫帶地區(qū)之間存在差別,磷是熱帶亞熱帶地區(qū)重要的限制因子,但是在溫帶的限制效應并不明顯。如何利用生態(tài)化學計量特征來合理比較不同區(qū)域森林土壤有機質和凋落物的分解特征及其對氮沉降的響應?土壤有機質和凋落物的化學計量比對細胞內(nèi)過程的效應和胞外酶催化的過程的效應是否與林型有關[63],其氮磷的礦化與保持微生物群落的細胞內(nèi)穩(wěn)性的耦合如何協(xié)調(diào)[64]?氮輸入與土壤響應參數(shù)之間的關系在森林表層與礦質土壤氮礦化在空間的差異大,而且森林表層土壤碳氮比和礦質土壤碳儲量存在十來倍的差異。空間格局上的差異可能來源于是否僅僅是土壤有機質分解與穩(wěn)定的差異,以及活性碳庫與惰性碳庫的不同響應均值得深入研究[65]。
資源的化學計量比對消費者的活性和數(shù)量均是重要的控制因子。凋落物的化學成分是分解者的主要食物來源,也是分解者活性的主要驅動因子。理論預測資源生態(tài)化學計量比對消費者的數(shù)量有高度控制,保持嚴格的內(nèi)穩(wěn)性,由于需要消耗養(yǎng)分來保持消費者身體組織的平衡。分解者對養(yǎng)分的獲取通常與資源化學計量比的不平衡有關。通過對純林凋落物的研究表明:土壤與凋落物的化學計量比之間沒有聯(lián)系,微生物活性與土壤化學計量比有關[95],但是作為分解者的微生物能否在分解過程中保持內(nèi)穩(wěn)性尚沒有結論?;贒NA/RNA等分子生物學方法為土壤微生物生態(tài)學研究提供了強有力的手段,將促進氮沉降對森林土壤有機質和凋落物分解的微生物學機制研究。如RT-PCR技術可以定量研究氮沉降對土壤氮循環(huán)的關鍵基因(固氮基因nifH、氨氧化基因amoA,氮還原基因nirS、nirK、氧化亞氮還原基因nosZ)的影響[96]。PCR-DGGE技術作為一種高通量的測度微生物群落結構和多樣性的方法,可以用來探討不同的環(huán)境因子與微生物群落結構和多樣性的關系。常以基于 rDNA指紋圖譜的可操作分類單元(OTU)的數(shù)目表征物種豐富度[97]。Lekberg[98]在《Nature》撰文指出454公司推出的基于焦磷酸測序法的超高通量基因組測序系統(tǒng)(Genome Sequencer 20 System),為微生物的多樣性和豐度等群落結構分析提供了豐富的數(shù)據(jù)支持。結合13C核磁共振技術,可以對不同組分有機碳的變化機理進行深入研究,結合根窗等原位觀測技術,可以對原位土壤酶活性分布的熱點區(qū)域進行根的分布特征間關系進行深入研究[82]。
[1] Lamarque J F,Kiehl J T,Brasseur G P,Butler T,Cameron-Smith P,Collins W D,Collins W J,Granier C,Hauglustaine D,Hess P G,Holland E A,Horowitz L,Lawrence M G,McKenna D,Merilees P,Prather M J,Rasch P J,Rotman D,Shindell D,Thornton P.Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach:Analysis of nitrogen deposition.Journal of Geophysical Research,2005,110(D19):D19303.
[2] Cleveland C C,Townsend A R.Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.Proceedings of the National Academy of Sciences,2006,103(27):10316-10321.
[3] De Vries W I M,Reinds G J,Gundersen P E R,Sterba H.The impact of nitrogen deposition on carbon sequestration in European forests and forest soils.Global Change Biology,2006,12(7):1151-1173.
[4] Nadelhoffer K J,Emmett B A,Gundersen P,Kjonaas O J,Koopmans C J,Schleppi P,Tietema A,Wright R F.Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests.Nature,1999,398(6723):145-148.
[5] Zhou G Y,Liu S G,Li Z,Zhang D Q,Tang X L,Zhou C Y,Yan J H,Mo J M.Old-growth forests can accumulate carbon in soils.Science,2006,314(5804):1417-1417.
[6] Wardle D A,Bardgett R D,Klironomos J N,Set?l? H,van der Putten W H,Wall D H.Ecological Linkages Between Aboveground and Belowground Biota.Science,2004,304(5677):1629-1633.
[7] Dijkstra F A,Cheng W X.Interactions between soil and tree roots accelerate long-term soil carbon decomposition.Ecology Letters,2007,10(11):1046-1053.
[8] Marklein A R,Houlton B Z.Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.New Phytologist,2012,193(3):696-704.
[9] Elser J J,Bracken M E S,Cleland E E,Gruner D S,Harpole W S,Hillebrand H,Ngai J T,Seabloom E W,Shurin J B,Smith J E.Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems.Ecology Letters,2007,10(12):1135-1142.
[10] Elser J J,Andersen T,Baron J S,Bergstrom A K,Jansson M,Kyle M,Nydick K R,Steger L,Hessen D O.Shifts in Lake N∶P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition.Science,2009,326(5954):835-837.
[11] Pe?uelas J,Sardans J,Rivas-ubach A,Janssens I A.The human-induced imbalance between C,N and P in Earth's life system.Global Change Biology,2012,18(1):3-6.
[12] Turner M M,Henry H A L.Interactive effects of warming and increased nitrogen deposition on 15N tracer retention in a temperate old field:seasonal trends.Global Change Biology,2009,15(12):2885-2893.
[13] van Diepen L,Lilleskov E,Pregitzer K,Miller R.Simulated Nitrogen Deposition Causes a Decline of Intra-and Extraradical Abundance of Arbuscular Mycorrhizal Fungi and Changes in Microbial Community Structure in Northern Hardwood Forests.Ecosystems,2010,13(5):683-695.
[14] Zechmeister-Boltenstern S,Michel K,Pfeffer M.Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition.Plant and Soil,2011,343(1):37-50.
[15] Gnankambary Z,Stedt U,Nyberg G,Hien V,Malmer A.Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso:The effects of tree canopy and fertilization.Soil Biology& Biochemistry,2008,40(2):350-359.
[16] Galloway J N.The global nitrogen cycle:changes and consequences.Environmental Pollution,1998,102(1,Supplement 1):15-24.
[17] Galloway J N,Dentener F J,Capone D G,Boyer E W,Howarth R W,Seitzinger S P,Asner G P,Cleveland C C,Green P A,Holland E A,Karl D M,Michaels A F,Porter J H,Townsend A R,Vorosmarty C J.Nitrogen cycles:past,present,and future.Biogeochemistry,2004,70(2):153-226.
[18] Sirois A,Barrie L A.An estimate of the importance of dry deposition as a pathway of acidic substances from the atmosphere to the biosphere in eastern Canada.Tellus B,1988,40B(1):59-80.
[19] Galloway J N,Townsend A R,Erisman J W,Bekunda M,Cai Z C,F(xiàn)reney J R,Martinelli L A,Seitzinger S P,Sutton M A.Transformation of the Nitrogen Cycle:Recent Trends,Questions,and Potential Solutions.Science,2008,320(5878):889-892.
[20] Lü C,Tian H.Spatial and temporal patterns of nitrogen deposition in China:Synthesis of observational data.Journal of Geophysical Research,2007,112(D22):D22S05.
[21] Treseder K K,Vitousek P M.Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests.Ecology,2001,82(4):946-954.
[22] Gress S E,Nichols T D,Northcraft C C,Peterjohn W T.Nutrient limitation in soils exhibiting differing nitrogen availabilities:What lies beyond nitrogen saturation?Ecology,2007,88(1):119-130.
[23] Vitousek P M,Porder S,Houlton B Z,Chadwick O A.Terrestrial phosphorus limitation:mechanisms,implications,and nitrogen-phosphorus interactions.Ecological Applications,2010,20(1):5-15.
[24] Peng Y,Thomas S.Influence of Non-nitrogenous Soil Amendments on Soil CO<sub>2</sub>Efflux and Fine Root Production in an NSaturated Northern Hardwood Forest.Ecosystems,2010,13(8):1145-1156.
[25] Pe?uelas J,Sardans J,Llusia J,Owen S M,Niinemets ü.Lower P contents and more widespread terpene presence in old Bornean than in young Hawaiian tropical plant species guilds.Ecosphere,2011,2(4):art45.
[26] Sterner R W,Elser J J,Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere.2002,Princeton:Princeton University Press.
[27] He J S,Han X G.Ecological stoichiometry:Searching for unifying principles from individuals to ecosystems.Chinese Journal of Plant Ecology,2010,34(01):2-6.
[28] Hessen D O,Agren G I,Anderson T R,Elser J J,De Ruiter P C.Carbon sequestration in ecosystems:The role of stoichiometry.Ecology,2004,85(5):1179-1192.
[29] Manzoni S,Trofymow J A,Jackson R B,Porporato A.Stoichiometric controls on carbon,nitrogen,and phosphorus dynamics in decomposing litter.Ecological Monographs,2010,80(1):89-106.
[30] Sinsabaugh R L,Lauber C L,Weintraub M N,Ahmed B,Allison S D,Crenshaw C,Contosta A R,Cusack D,F(xiàn)rey S,Gallo M E,Gartner T B,Hobbie S E,Holland K,Keeler B L,Powers J S,Stursova M,Takacs-Vesbach C,Waldrop M P,Wallenstein M D,Zak D R,Zeglin L H.Stoichiometry of soil enzyme activity at global scale.Ecology Letters,2008,11(11):1252-1264.
[31] Wardle D A,Walker L R,Bardgett R D.Ecosystem properties and forest decline in contrasting long-term chronosequences.Science,2004,305(5683):509-513.
[32] Wassen M J,Venterink H O,Lapshina E D,Tanneberger F.Endangered plants persist under phosphorus limitation.Nature,2005,437(7058):547-550.
[33] Herbert D A,Williams M,Rastetter E B.A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment.Biogeochemistry,2003,65(1):121-150.
[34] Gundersen P,Callesen I,de Vries W.Nitrate leaching in forest ecosystems is related to forest floor C/N ratios.Environmental Pollution,1998,102:403-407.
[35] Chapin I F S,Matson P A,Vitousek P M,Principles of terrestrial ecosystem ecology.2nd ed.New York:Springer,2011:529.
[36] Aitkenhead J A,McDowell W H.Soil C∶N ratio as a predictor of annual riverine DOC flux at local and global scales.Global Biogeochemical Cycles,2000,14(1):127-138.
[37] Mulder C,Elser J J.Soil acidity,ecological stoichiometry and allometric scaling in grassland food webs.Global Change Biology,2009,15(11):2730-2738.
[38] Liu Z F,F(xiàn)u B J,Zheng X X,Liu G H.Plant biomass,soil water content and soil N∶P ratio regulating soil microbial functional diversity in a temperate steppe:A regional scale study.Soil Biology& Biochemistry,2010,42(3):445-450.
[39] Werth M,Kuzyakov Y.Root-derived carbon in soil respiration and microbial biomass determined by C-14 and C-13.Soil Biology& Biochemistry,2008,40(3):625-637.
[40] Xu C G,Liang C,Wullschleger S,Wilson C,McDowell N.Importance of feedback loops between soil inorganic nitrogen and microbial communities in the heterotrophic soil respiration response to global warming.Nature Reviews Microbiology,2011,9(3):222-222.
[41] Peng P Q,Zhang W J,Tong C L,Qiu S J,Zhang W C.Soil C,N and P contents and their relationships with soil physical properties in wetlands of Dongting Lake floodplain.Chinese Journal of Applied Ecology,2005,16(10):1872-1878.
[42] Cleveland C C,Liptzin D.C∶N∶P stoichiometry in soil:is there a"Redfield ratio"for the microbial biomass?Biogeochemistry,2007,85(3):235-252.
[43] Tian H Q,Chen G S,Zhang C,Melillo J M,Hall C A S.Pattern and variation of C∶N∶P ratios in China's soils:a synthesis of observational data.Biogeochemistry,2010,98(1/3):139-151.
[44] Cherif M,Loreau M.Stoichiometric constraints on resource use,competitive interactions,and elemental cycling in microbial decomposers.American Naturalist,2007,169(6):709-724.
[45] Waite M,Sack L.Does global stoichiometric theory apply to bryophytes?Tests across an elevation x soil age ecosystem matrix on Mauna Loa,Hawaii.Journal of Ecology,2011,99(1):122-134.
[46] Falkowski P,Scholes R J,Boyle E,Canadell J,Canfield D,Elser J,Gruber N,Hibbard K,Hogberg P,Linder S,Mackenzie F T,Moore B,Pedersen T,Rosenthal Y,Seitzinger S,Smetacek V,Steffen W.The global carbon cycle:A test of our knowledge of earth as a system.Science,2000,290(5490):291-296.
[47] Bauer G A,Bazzaz F A,Minocha R,Long S,Magill A,Aber J,Berntson G M.Effects of chronic N additions on tissue chemistry,photosynthetic capacity,and carbon sequestration potential of a red pine(Pinus resinosa Ait.)stand in the NE United States.Forest Ecology and Management,2004,196(1):173-186.
[48] Gu D X,Chen S L,Huang Y Q.Effects of soil nitrogen and phosphonium on leaf nitrogen and phosphonium stoichiometric characteristics and chlorophyll content of Oligostachyum lubricum.Chinese Journal of Plant Ecology,2011,35(12):1219-1225.
[49] Kirkby C A,Kirkegaard J A,Richardson A E,Wade L J,Blanchard C,Batten G.Stable soil organic matter:A comparison of C∶N∶P∶S ratios in Australian and other world soils.Geoderma,2011,163(3/4):197-208.
[50] Sardans J,Rivas-Ubach A,Pe?uelas J.The C∶N∶P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives.Perspectives in Plant Ecology,Evolution and Systematics,2012,14(1):33-47.
[51] Bowman W D,Cleveland C C,Halada L,Hresko J,Baron J S.Negative impact of nitrogen deposition on soil buffering capacity.Nature Geoscience,2008,1(11):767-770.
[52] Matson P A,McDowell W H,Townsend A R,Vitousek P M.The globalization of N deposition:ecosystem consequences in tropical environments.Biogeochemistry,1999,46(1/3):67-83.
[53] LeBauer D S,Treseder K K.Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology,2008,89(2):371-379.
[54] Li S G,Tsujimura M,Sugimoto A,Davaa G,Oyunbaatar D,Sugita M.Temporal variation of delta C-13 of larch leaves from a montane boreal forest in Mongolia.Trees-Structure and Function,2007,21(4):479-490.
[55] Fang H,Yu G,Cheng S,Zhu T,Zheng J,Mo J,Yan J,Luo Y.Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads.Biogeochemistry,2011,102(1):251-263.
[56] Neff J C,Townsend A R,Gleixner G,Lehman S J,Turnbull J,Bowman W D.Variable Effects of Nitrogen Additions on the Stability and Turnover of Soil Carbon.Nature,2002,419:915-917.
[57] Berg B,Matzner E.Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems.Environmental Reviews,1997,5(1):1-25.
[58] Mo J M,Xue J H,F(xiàn)ang Y T.Litter decom position and its respon ses to simulated N deposition for the major plan ts of Dinghushan forests in subtropical China.Acta Ecologica Sinica,2004(07):1413-1420.
[59] Cao Y S,Lin Y B,Rao X Q,F(xiàn)u S L.Effects of artificial nitrogen and phosphorus depositions on soil respiration in two plantations in southern china.Journal of Tropical Forest Science,2011,23(2):110-116.
[60] Zhang W,Wang S.Effects of NH+4and NO-3on litter and soil organic carbon decomposition in a Chinese fir plantation forest in South China.Soil Biology and Biochemistry,2012,47(0):116-122.
[61] Lindahl B D,Ihrmark K,Boberg J,Trumbore S E,Hogberg P,Stenlid J,F(xiàn)inlay R D.Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest.New Phytologist,2007,173(3):611-620.
[62] Tateno R,Takeda H.Nitrogen uptake and nitrogen use efficiency above and below ground along a topographic gradient of soil nitrogen availability.Oecologia,2010,163(3):793-804.
[63] Mooshammer M,Wanek W,Schnecker J,Wild B,Leitner S,Hofhansl F,Bl?chl A,H?mmerle I,F(xiàn)rank A H,F(xiàn)uchslueger L,Keiblinger K M,Zechmeister-Boltenstern S,Richter A.Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter.Ecology,2011.
[64] Cusack D F,Torn M S,McDowell W H,Silver W L.The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils.Global Change Biology,2010,16(9):2555-2572.
[65] Nave L E,Vance E D,Swanston C W,Curtis P S.Impacts of elevated N inputs on north temperate forest soil C storage,C/N,and net N-mineralization.Geoderma,2009,153(1/2):231-240.
[66] Wang C K,Yang J Y.Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests.Global Change Biology,2007,13(1):123-131.
[67] Sinsabaugh R L,Carreiro M M,Repert D A.Allocation of extracellular enzymatic activity in relation to litter composition,N deposition,and mass loss.Biogeochemistry,2002,60(1):1-24.
[68] Grandy A S,Strickland M S,Lauber C L,Bradford M A,F(xiàn)ierer N.The influence of microbial communities,management,and soil texture on soil organic matter chemistry.Geoderma,2009,150(3/4):278-286.
[69] Nannipieri P,Ascher J,Ceccherini M T,Landi L,Pietramellara G,Renella G.Microbial diversity and soil functions.European Journal of Soil Science,2003,54(4):655-670.
[70] Wu J S,Lin Q M,Huang Q Y,Xiao H A.Measureing methods for soil microbial biomass and its application.Beijing:China Meteorological Press,2006:54-88.
[71] Yan H,Cai Z C,Zhong W H.PLFA Analysis and its applications in the study of soil microbial diversity.Acta Pedologica Sinica,2006,43(05):851-859.
[72] Wang S G,Hou Y L.Application of phospholipid fatty acid method in soil microbial analysis.Microbiology,2004,31(1):114-117.
[73] Olsson P A.Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil.Fems Microbiology Ecology,1999,29(4):303-310.
[74] Frosteg?rd ?,Tunlid A,B??th E.Use and misuse of PLFA measurements in soils.Soil Biology and Biochemistry,2011,43(8):1621-1625.
[75] Saiya-Cork K R,Sinsabaugh R L,Zak D R.The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil.Soil Biology & Biochemistry,2002,34(9):1309-1315.
[76] Li Z G,Luo Y M,Teng Y.Soil and enviornmental microbial research methods.Beijing:Science Press,2008:300-350.
[77] Paul E A,Soil Microbiology Ecology and Biochemistry.2007:Academic Press.
[78] Wallenius K,Rita H,Mikkonen A,Lappi K,Lindstr?m K,Hartikainen H,Raateland A,Niemi R M.Effects of land use on the level,variation and spatial structure of soil enzyme activities and bacterial communities.Soil Biology and Biochemistry,2011,43(7):1464-1473.
[79] Hogberg M N,Hogberg P,Myrold D D.Is microbial community composition in boreal forest soils determined by pH,C-to-N ratio,the trees,or all three?.Oecologia,2007,150(4):590-601.
[80] Treseder K K.Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies.Ecology Letters,2008,11(10):1111-1120.
[81] Ramirez K S,Craine J M,F(xiàn)ierer N.Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes.Global Change Biology,2012:n/a-n/a.
[82] Cusack D F,Silver W L,Torn M S,Burton S D,F(xiàn)irestone M K.Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.Ecology,2011,92(3):621-632.
[83] Mulder C P H,Roy B A,Gusewell S.Herbivores and pathogens on Alnus viridis subsp fruticosa in Interior Alaska:effects of leaf,tree,and neighbour characteristics on damage levels.Botany-Botanique,2008,86(4):408-421.
[84] Hyv?nen R,Persson T,Andersson S,Olsson B,?gren G,Linder S.Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe.Biogeochemistry,2008,89(1):121-137.
[85] Zhao Y J,Liu B,Zhang W G,Hu C W,An S Q.Effects of plant and influent C∶N∶P ratio on microbial diversity in pilot-scale constructed wetlands.Ecological Engineering,2010,36(4):441-449.
[86] Liu L,Gundersen P,Zhang T,Mo J.Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China.Soil Biology and Biochemistry,2012,44(1):31-38.
[87] Elser J J,Kyle M,Makino W,Yoshida T,Urabe J.Ecological stoichiometry in the microbial food web:a test of the light:nutrient hypothesis.Aquatic Microbial Ecology,2003,31(1):49-65.
[88] Gillooly J F,Allen A P,West G B,Brown J H.The rate of DNA evolution:Effects of body size and temperature on the molecular clock.Proceedings of the National Academy of Sciences of the United States of America,2005,102(1):140-145.
[89] DeForest J L,Zak D R,Pregitzer K S,Burton A J.Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest.Soil Biology & Biochemistry,2004,36(6):965-971.
[90] Waldrop M P,Zak D R,Sinsabaugh R L.Microbial community response to nitrogen deposition in northern forest ecosystems.Soil Biology and Biochemistry,2004,36(9):1443-1451.
[91] Meron D,Atias E,Iasur Kruh L,Elifantz H,Minz D,F(xiàn)ine M,Banin E.The impact of reduced pH on the microbial community of the coral Acropora eurystoma.ISME J,2011,5(1):51-60.
[92] Fierer N,Colman B P,Schimel J P,Jackson R B.Predicting the temperature dependence of microbial respiration in soil:A continental-scale analysis.Global Biogeochemical Cycles,2006,20(3).
[93] Manzoni S,Pi?eiro G,Jackson R B,Jobbágy E G,Kim J H,Porporato A.Analytical models of soil and litter decomposition:Solutions for mass loss and time-dependent decay rates.Soil Biology and Biochemistry,2012,50(0):66-76.
[94] H?ttenschwiler S,Coq S,Barantal S,Handa I T.Leaf traits and decomposition in tropical rainforests:revisiting some commonly held views and towards a new hypothesis.New Phytologist,2011,189(4):950-965.
[95] Marichal R,Mathieu J,Couteaux M M,Mora P,Roy J,Lavelle P.Earthworm and microbe response to litter and soils of tropical forest plantations with contrasting C∶N∶P stoichiometric ratios.Soil Biology& Biochemistry,2011,43(7):1528-1535.
[96] Shen J P,He J Z.Responses of microbes-mediated carbon and nitrogen cycles to global climate change.Acta Ecologica Sinica,2011,31(11):2957-2967.
[97] He J Z,Gen Y.Recent advances in soil microbial biogeography.Acta Ecologica Sinica,2008,28(11):5571-5582.
[98] Lekberg Y,Schnoor T,Kj?ller R,Gibbons S M,Hansen L H,Al-Soud W A,S?rensen S J,Rosendahl S.454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities.Journal of Ecology,2012,100(1):151-160.
參考文獻:
[27] 賀金生,韓興國.生態(tài)化學計量學:探索從個體到生態(tài)系統(tǒng)的統(tǒng)一化理論.植物生態(tài)學報,2010,34(01):2-6.
[41] 彭佩欽,張文菊,童成立,仇少君,張文超.洞庭湖濕地土壤碳、氮、磷及其與土壤物理性狀的關系.應用生態(tài)學報,2005,16(10):1872-1878.
[48] 顧大形,陳雙林,黃玉清.土壤氮磷對四季竹葉片氮磷化學計量特征和葉綠素含量的影響.植物生態(tài)學報,2011,35(12):1219-1225.
[58] 莫江明,薛璟花,方運霆.鼎湖山主要森林植物凋落物分解及其對N沉降的響應.生態(tài)學報,2004(07):1413-1420.
[70] 吳金水,林啟美,黃巧云,肖和艾.土壤微生物生物量測定方法及其應用.北京:氣象出版社,2006:54-88.
[71] 顏慧,蔡祖聰,鐘文輝.磷脂脂肪酸分析方法及其在土壤微生物多樣性研究中的應用.土壤學報,2006,43(05):851-859.
[72] 王曙光,侯彥林.磷脂脂肪酸方法在土壤微生物分析中的應用.微生物學通報,2004,31(1):114-117.
[76] 李振高,駱永明,騰應.土壤與環(huán)境微生物研究法.北京:科學出版社.2008:300-350.
[96] 沈菊培,賀紀正.微生物介導的碳氮循環(huán)過程對全球氣候變化的響應.生態(tài)學報,2011,31(11):2957-2967.
[97] 賀紀正,葛源.土壤微生物生物地理學研究進展.生態(tài)學報,2008,28(11):5571-5582.