国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

阿爾茨海默病中β-淀粉樣蛋白損傷血腦屏障的干預(yù)新靶點(diǎn):晚期糖化終產(chǎn)物受體

2013-03-31 10:29萬文斌夏世金劉露梅李亞明
關(guān)鍵詞:信號轉(zhuǎn)導(dǎo)完整性內(nèi)皮細(xì)胞

萬文斌,夏世金,劉露梅,李亞明*

(1.復(fù)旦大學(xué)附屬華東醫(yī)院中醫(yī)科,上海 200040;2.復(fù)旦大學(xué)附屬華東醫(yī)院上海市老年醫(yī)學(xué)研究所,上海 200040)

阿爾茨海默?。ˋlzheimer’s disease,AD)是老年癡呆的最常見類型,腦內(nèi)β-淀粉樣蛋白(βamyloid protein,Aβ)沉 積 形 成 老 年 斑 (senile plaques,SPs)和過度磷酸化tau蛋白形成神經(jīng)纖維纏結(jié)(neurofibrillary tangles,NFT)是 AD的特征性病理變化[1]。越來越多的證據(jù)顯示,Aβ?lián)p傷腦血管內(nèi)皮細(xì)胞(endothelial cells,ECs)而引起血腦屏障(blood-brain barrier,BBB)破壞可能是 AD 新的特征性病理改變[2,3],因?yàn)?0%以上的 AD患者均存在BBB損傷[4]。然而Aβ?lián)p傷ECs引起B(yǎng)BB破壞的機(jī)制尚不清楚[1-4]。

近年來學(xué)者們開始認(rèn)識到散發(fā)型/晚發(fā)性AD(sporadic/late-onset AD,SAD/LOAD)與腦內(nèi) Aβ清除減少有關(guān)[5]。腦內(nèi)Aβ清除途徑主要包括細(xì)胞外降解、細(xì)胞吞噬消化及經(jīng)BBB轉(zhuǎn)運(yùn)清除[4]。晚期糖化終產(chǎn)物受體(receptor for advanced glycation end-products,RAGE)是 BBB上參與 Aβ轉(zhuǎn)運(yùn)的重要載體[6],生理?xiàng)l件下 RAGE和低密度脂蛋白受體相關(guān)蛋白-1(LDH receptor related protein-1,LRP-1)協(xié)調(diào)作用維持腦組織Aβ在正常水平,但在AD中,RAGE表達(dá)明顯上調(diào),RAGE轉(zhuǎn)運(yùn)大量Aβ入腦[6]。RAGE能介導(dǎo)Aβ的神經(jīng)毒性,又能通過正反饋機(jī)制上調(diào)自身表達(dá)使Aβ入腦沉積而促進(jìn)AD發(fā)?。?],可見RAGE在AD發(fā)病中的重要作用。本文就BBB-RAGE在AD發(fā)病中的作用進(jìn)行綜述,以探討RAGE介導(dǎo)Aβ?lián)p傷BBB結(jié)構(gòu)完整性的可能機(jī)制,以期成為干預(yù)Aβ?lián)p傷BBB的新靶點(diǎn)。

1 BBB在AD發(fā)病中的作用

1.1 BBB結(jié)構(gòu)完整性與AD

BBB由腦微血管內(nèi)皮細(xì)胞(brainmicrovascular endothelial cells,BMECs)、星 形 膠 質(zhì) 細(xì) 胞(Astrocyte,AS)及周細(xì)胞(Pericyte)共同組成[8-10],是機(jī)體最重要的內(nèi)部屏障之一[8]。緊密連接(tight junction,TJ)是BMECs的主要特征結(jié)構(gòu),是BBB結(jié)構(gòu)完整性(BBB structural integrity)的重要結(jié)構(gòu)基礎(chǔ),在保持黏膜上皮的物理屏障功能和通透性方面起到了極為重要的作用[11]。整合膜蛋白Claudin、閉鎖蛋白Occludin及連接粘附分子(junction adhesive molecule,JAM)3種跨膜蛋白通過胞質(zhì)附著蛋白 Zonula Occluden-1,2,3(ZO-1,2,3)與骨架蛋白 Actin連接構(gòu)成 TJ系統(tǒng)[11-13]。分子生物學(xué)研究已證實(shí)TJ在BBB通透性調(diào)節(jié)的中心作用,AD、腦卒中、蛛網(wǎng)膜下腔出血等病變均存在BBB結(jié)構(gòu)破壞[14-16]。BBB結(jié)構(gòu)完整性與TJ正常組合開放及關(guān)閉有關(guān),TJ蛋白異?;蚪Y(jié)構(gòu)重排均能引起 TJ結(jié)構(gòu)改變[14-16]。

BBB保證了腦組織免于外周血液循環(huán)中毒性物質(zhì)的損害,維持腦組織內(nèi)環(huán)境穩(wěn)態(tài)[8]。Aβ沉積在腦血管系統(tǒng)形成腦淀粉樣血管病(cerebral amyloid angiopathy,CAA)[4],引起神經(jīng)血管功能障礙而出現(xiàn)認(rèn)知減退及神經(jīng)退行性變,因此學(xué)者們提出了AD的神經(jīng)血管假說[17-19],認(rèn)為 BBB對 Aβ轉(zhuǎn)運(yùn)清除能力下降導(dǎo)致腦內(nèi)Aβ沉積,引起血管功能紊亂、神經(jīng)血管解耦連、血管退化、腦血流灌注不足及神經(jīng)血管炎癥。Aβ?lián)p傷ECs,降低TJ蛋白含量,破壞BBB上 TJ系 統(tǒng)[20-22],AD 患 者 BBB 上 TJ損 傷,Claudin-1、Claudin-5明顯減少[2]。因此認(rèn)為,Aβ對內(nèi)皮細(xì)胞的毒性作用引起TJ損傷而破壞BBB結(jié)構(gòu)完整性。

1.2 Aβ轉(zhuǎn)運(yùn)體與AD

腦內(nèi)Aβ清除途徑主要包括膠質(zhì)細(xì)胞吞噬消化[23]、腦間質(zhì)液(interstitialfluid,ISF)中 Aβ降解酶(Aβ-degrade enzymes,ADEs)水解[24]及BBB對 Aβ的轉(zhuǎn)運(yùn)清除[25]。生理?xiàng)l件下ISF中ADEs只能清除腦內(nèi)Aβ的10%~15%,膠質(zhì)細(xì)胞的吞噬消化作用也相對有限,大部分Aβ通過BBB轉(zhuǎn)運(yùn)途徑清除[25]。

對 Aβ 轉(zhuǎn) 運(yùn) 體 的 研 究 發(fā) 現(xiàn)[26,27],LRP-1 和RAGE對Aβ均有很強(qiáng)的轉(zhuǎn)運(yùn)能力,LRP-1將ISF中Aβ轉(zhuǎn)運(yùn)至外周循環(huán),而RAGE則將血液中的Aβ轉(zhuǎn)運(yùn)至ISF。LRP-1介導(dǎo)ECs以內(nèi)吞或轉(zhuǎn)胞吞的方式將Aβ跨過BBB排入外周循環(huán),LRP-1異常導(dǎo)致Aβ外排減少,引起Aβ沉積[26]。據(jù)估算,若終止Aβ內(nèi)向轉(zhuǎn)運(yùn),經(jīng)LRP-1外向運(yùn)輸1min可清除腦內(nèi)幾乎所有生理水平的 Aβ[26],因此,如果上調(diào)LRP-1表達(dá)能促進(jìn)Aβ外排,減少腦內(nèi)Aβ沉積。BBB上的另一個(gè)Aβ轉(zhuǎn)運(yùn)載體RAGE可在納摩爾水平結(jié)合外周循環(huán)中的 Aβ,并將其轉(zhuǎn)運(yùn)入腦[27,28]。阻斷 Aβ外向轉(zhuǎn)運(yùn),經(jīng)RAGE內(nèi)向轉(zhuǎn)運(yùn)40min后腦內(nèi)可溶性Aβ將全部被外周循環(huán)中的Aβ充滿[29]。生理?xiàng)l件下,LRP-1和RAGE協(xié)同作用維持腦內(nèi)Aβ的正常水平,但在 AD中,BMECs上RAGE表達(dá)明顯上調(diào)[30,31]。RAGE表達(dá)上調(diào)能增加外周循環(huán)中的Aβ入腦,促進(jìn)腦內(nèi)Aβ沉積,可見RAGE對Aβ轉(zhuǎn)運(yùn)在AD發(fā)病中有重要作用。此外,BBB上P-糖蛋白(P-glycoprotein,P-gp)也參與了 Aβ轉(zhuǎn)運(yùn),P-gp將腦內(nèi)Aβ透過 BBB 轉(zhuǎn)運(yùn)至外周[32,33],但與 LRP-1相比,P-gp對Aβ的轉(zhuǎn)運(yùn)作用較弱。也有認(rèn)為P-gp的作用是協(xié)助LRP-1對 Aβ的轉(zhuǎn)運(yùn),LRP-1負(fù)責(zé)將ISF中Aβ轉(zhuǎn)運(yùn)入BMECs,P-pg則調(diào)節(jié)Aβ從BMECs中轉(zhuǎn)運(yùn)至外周循環(huán)的過程[6,33]。

2 RAGE在AD發(fā)病中的作用

RAGE是晚期糖化終末產(chǎn)物(advanced glycation end-products,AGEs)的一種特征性細(xì)胞表面受體,屬于免疫球蛋白超家族成員,在單核細(xì)胞、血管內(nèi)皮細(xì)胞、神經(jīng)元及膠質(zhì)細(xì)胞均有表達(dá)[28,34]。RAGE除與 AGEs結(jié)合外還能與 Aβ、高速泳動族盒蛋白-1(High mobilitygroup box 1,HMGB-1)、S100/鈣粒蛋白家族等配體結(jié)合調(diào)節(jié)細(xì)胞病理生理反應(yīng)[34]。近年研究[30]發(fā)現(xiàn),Aβ能上調(diào)腦內(nèi)RAGE水平,并能通過RAGE活化細(xì)胞內(nèi)信號通路,引起氧化應(yīng)激、炎癥損傷。因此,RAGE不僅能通過轉(zhuǎn)運(yùn)Aβ入腦促進(jìn)Aβ沉積[27,28],還能激活炎癥反應(yīng)損傷腦組織而促進(jìn)AD發(fā)病[30]。健康成人腦組織僅表達(dá)極少量的RAGE,但在AD中,RAGE的分布范圍擴(kuò)大并且表達(dá)明顯上調(diào)[28]。AD大腦海馬、額葉、齒狀回及顳葉RAGE表達(dá)均有明顯增加,而在 Aβ沉積少、神經(jīng)炎癥輕的小腦,RAGE的表達(dá)未見明顯變化[35]。Aβ與RAGE結(jié)合促進(jìn)活性氧(reactive oxygen species,ROS)生成、激活炎癥反應(yīng),并通過激活核轉(zhuǎn)錄因子-κB(nuclear factor-κB,NF-κB)形成一種正反饋,促進(jìn)更多的RAGE表達(dá),進(jìn)一步加重神經(jīng)炎癥損傷效應(yīng)[36,37]。

小膠質(zhì)細(xì)胞(microglia)是腦內(nèi)主要的免疫細(xì)胞,生理狀態(tài)下,RAGE、CD47等膜表面受體在小膠質(zhì)細(xì)胞吞噬消化Aβ過程中發(fā)揮作用,對神經(jīng)細(xì)胞有保護(hù)作用。但在AD中,Aβ含量增加超過了小膠質(zhì)細(xì)胞的吞噬清除能力,相反,Aβ與RAGE結(jié)合激活細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)通路,小膠質(zhì)細(xì)胞通過釋放大量促炎癥因子損傷神經(jīng)元,破壞腦內(nèi)環(huán)境穩(wěn)定,同時(shí)Aβ-RAGE又能激活NF-κB,上調(diào)RAGE表達(dá),形成炎癥損傷正反饋效應(yīng)[36-39]。在BBB上,RAGE表達(dá)增加,血中Aβ經(jīng)RAGE轉(zhuǎn)運(yùn)入腦,加重了Aβ沉積,同時(shí)Aβ又能促進(jìn)RAGE進(jìn)一步表達(dá)增加并能損傷內(nèi)皮細(xì)胞 TJ,破壞BBB[29-31]。

3 Aβ-RAGE信號通路與BBB損傷

BBB上RAGE與Aβ相互作用活化細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)通路引起細(xì)胞損傷,并通過激活NF-κB正反饋上調(diào)RAGE表達(dá),進(jìn)一步促進(jìn)Aβ入腦沉積及細(xì)胞損傷,破壞 BBB-TJ[36,37]。目 前 RAGE 介導(dǎo) Aβ破壞BBB的機(jī)制仍不清楚,可能與MAPKs、Ca2+、炎癥損傷信號途徑等有關(guān)[40,41]。

3.1 Aβ-RAGE-MAPKs-MMPs信號通路

病理?xiàng)l件下,基質(zhì)金屬蛋白酶 (matrix met alloproteinases,MMPs)能通過降解細(xì)胞外基質(zhì)(extracellular matrix,ECM)促進(jìn)動脈粥樣硬化、腫瘤浸潤和轉(zhuǎn)移,以及AD、腦梗死、多發(fā)性硬化等疾病的發(fā)生發(fā)展[42]。研究[40]證實(shí),BBB通透性增加與MMPs表達(dá)增加有關(guān),而抑制MMPs基因后表現(xiàn)出對大腦的保護(hù)作用,且主要是降低BBB通透性。腦缺血動物腦內(nèi)ZO-1減少了近30%,Claudin-5、Occludin含量也明顯減少,MMP-9基因敲除后ZO-1未見明顯變化[43,44]。置于脈沖電磁場(Pulsed Electromagnetic Field,PEMF)的小鼠腦血管內(nèi)皮細(xì)胞 MMP-2、MMP-9增加,ZO-1明顯減少,TJ結(jié)構(gòu)損傷[45],可見MMPs在TJ損傷中的作用。

最近有文獻(xiàn)[2]報(bào)道,AD患者BBB通透性增加,ECs MMP-2、MMP-9表達(dá)顯著,Claudin-1、Claudin-5表達(dá)減少。Aβ-RAGE相互作用能增加內(nèi)皮細(xì)胞MMP-2、MMP-9表達(dá),減少Claudin-1、Claudin-5含量,損傷 TJ結(jié)構(gòu)[2,46],而阻斷 Aβ與 RAGE結(jié)合能抑制Aβ誘導(dǎo)的大腦內(nèi)皮細(xì)胞 MMPs表達(dá)[46]??梢?,Aβ 損 傷 BBB 可 能 與 RAGE 誘 導(dǎo) MMP-2/MMP-9表達(dá)增加有關(guān),但調(diào)控機(jī)制尚不清楚。細(xì)胞 外 信 號 調(diào) 節(jié) 激 酶 (extracellular-signal-regulated kinases,ERK),c-Jun-氨 基 末 端 激 酶 (c-Jun N-terminal kinase,JNK)及p38-絲裂原活化蛋白激酶(p38-mitogen-activated protein kinases,p38-MAPKs)等絲裂原活化蛋白激酶(mitogenactivated protein kinases,MAPKs)途徑是重要的細(xì)胞信號轉(zhuǎn)導(dǎo)通路[47,48]。一項(xiàng)AGEs損傷 HaCaT角質(zhì)細(xì)胞的研究[47]發(fā)現(xiàn),AGEs能上調(diào)HaCaT角質(zhì)細(xì)胞表達(dá) MMP-9,利用基因干擾技術(shù)明確了RAGE在AGEs誘導(dǎo)MMP-9表達(dá)中的關(guān)鍵作用,進(jìn)一步研究證實(shí)MAPKs信號轉(zhuǎn)導(dǎo)通路參與了這一過程,因?yàn)镋RK1/2及p38-MAPK拮抗劑能抑制MMP-9表達(dá)。另一項(xiàng)關(guān)于蛛網(wǎng)膜下腔出血的研究[48]發(fā) 現(xiàn),JNK 抑 制 劑 能 通 過 增 加 Clautin-5 和ZO-1表達(dá)而保護(hù)BBB免受損傷??梢姡琈APKs可能參與了BBB損傷過程,MMPs可能參與了其下游調(diào)控過程。

3.2 Aβ-RAGE-Ca2+-Calcineurin信號通路

TJ信號調(diào)節(jié)以Ca2+調(diào)節(jié)為主,還包括膠質(zhì)細(xì)胞調(diào)節(jié)、磷酸化調(diào)節(jié)及蛋白激酶C(protein kinase C,PKC)調(diào)節(jié)等方式,調(diào)控 TJ的形成與分解[41]。Ca2+參與了各種細(xì)胞間連接的形成,對TJ正常功能的維持有重要作用[41]。胞外低濃度Ca2+干擾細(xì)胞TJ形成,增加Ca2+濃度可誘導(dǎo)TJ重新形成[49,50]。研究[41]證 實(shí),胞 外 Ca2+對 TJ的 影 響 與PKC和蛋白激酶A(protein kinase A,PKA)信號通路有關(guān),因?yàn)榈虲a2+對TJ的影響可通過PKC的活化及PKA的抑制而得以改善,而胞內(nèi)Ca2+是通過改變ZO-1/Actin的結(jié)合并改變細(xì)胞內(nèi)Occludin的位置影響TJ形成。Aβ能直接或間接引起Ca2+向胞質(zhì)內(nèi)流[51],Ca2+濃度改變影響TJ的形成或?qū)е陆Y(jié)構(gòu)穩(wěn)定性破壞[41],因此RAGE誘導(dǎo)Aβ?lián)p傷TJ也可能與改變Ca2+濃度有關(guān)。鈣調(diào)磷酸酶(Calcineurin,CaN)是 唯 一 受 Ca2+/鈣 調(diào) 素(Calmodulin,CaM)調(diào)節(jié)的絲氨酸/蘇氨酸蛋白質(zhì)磷酸酶。體外實(shí)驗(yàn)發(fā)現(xiàn),Aβ?lián)p傷TJ蛋白,增加BBB通透性,并能增加內(nèi)皮細(xì)胞Ca2+濃度,抑制RAGE或CaN活性,能阻斷Aβ誘導(dǎo)的TJ損傷,改善BBB通透性[52]。因此,Ca2+可能也參與了BBB的損傷,CaN作為Ca2+/CaM信號通路的重要磷酸酶在Aβ-RAGE損傷TJ中有重要作用。

3.3 Aβ-RAGE-炎癥信號通路

Aβ作為配體識別RAGE的胞外V域,激活細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)途徑,一方面激活NADPH氧化酶途徑產(chǎn)生ROS,另一方面激活NF-κB,引起內(nèi)皮素因子-1(endothelin-1,ET-1)、促炎癥細(xì)胞因子白介素-1β(Interleukin-1β,IL-1β)、IL-6、腫 瘤 壞 子 因 子-α(tumor necrosis factor-α,TNF-α)表達(dá)增加,同時(shí)NF-κB的活化又能上調(diào)RAGE表達(dá)而形成炎癥損傷的正 反饋效 應(yīng)[36-39]。因此,Aβ與 RAGE 相互作用觸發(fā)ROS生成并激活炎癥通路,損傷腦組織從而促進(jìn)AD發(fā)病。NF-κB的激活作為一種正反饋促進(jìn)RAGE表達(dá)上調(diào),同時(shí)ROS的生成也會放大受體的生成和加重炎癥過程,引起持久的神經(jīng)炎癥反應(yīng),造成內(nèi)皮細(xì)胞損傷凋亡,最終破壞BBB結(jié)構(gòu)完整性,ET-1使腦血流(cerebral blood flow,CBF)降低并能促進(jìn)腦血管重構(gòu)[28,35,53],參與 Aβ引起的 CAA形成[4]。

Aβ神經(jīng)毒性損傷是破壞BBB結(jié)構(gòu)完整性,促進(jìn)AD發(fā)病的重要因素,但其機(jī)制尚未明確[1]。RAGE拮抗劑抑制Aβ誘導(dǎo)的NF-κB激活,并可能阻斷細(xì)胞炎癥激活[28]。在RAGE基因敲除小鼠腦中也未檢測到Aβ跨過BBB入腦,而給予外源性Aβ后只能檢測到微量的炎癥反應(yīng)[25]。

4 RAGE在AD防治中的作用

RAGE介導(dǎo)Aβ的神經(jīng)毒性提示RAGE是促進(jìn)AD病理進(jìn)展的關(guān)鍵因子,因?yàn)橐种芌AGE的作用能阻斷Aβ引起的細(xì)胞信號轉(zhuǎn)導(dǎo)通路活化[52],因此RAGE可能成為新的AD治療靶點(diǎn)?;赗AGE在AD發(fā)病中的重要作用,通過降低RAGE表達(dá)、抗體封閉RAGE蛋白、藥物競爭性阻斷RAGE與Aβ結(jié)合的信號通路,將可能阻斷 Aβ-RAGE對細(xì)胞的損傷效應(yīng)。RAGE活性拮抗劑或RAGE基因敲除能減緩動物神經(jīng)退行性病變進(jìn)程,抑制慢性炎癥及氧化應(yīng)激產(chǎn)物形成[27,28]。最近,RAGE-Aβ結(jié)合競爭性抑制劑PF-04494700被證實(shí)對治療輕中度AD有效,并已用于Ⅱ期臨床實(shí)驗(yàn),但因大劑量時(shí)出現(xiàn)不良反應(yīng)而被中止。隨訪發(fā)現(xiàn),小劑量使用的AD患者未見明顯不良反應(yīng),雖然已停用PF-04494700,但隨訪6個(gè)月后患者認(rèn)知水平較用藥前及停藥前均有提高[54-56]。

可溶性 RAGE(soluble RAGE,sRAGE)是RAGE的一種亞型,AD早期患者血清中sRAGE濃度明顯降低,因此sRAGE可能成為AD診斷的標(biāo)志物[57]。sRAGE不能穿過BBB,可作為誘餌受體與外周循環(huán)Aβ結(jié)合形成sRAGE-Aβ復(fù)合物,阻止Aβ入腦而影響AD病情發(fā)展[57]。給AD小鼠靜脈注射sRAGE,3個(gè)月小鼠海馬Aβ減少了70%,小鼠空間識別與學(xué)習(xí)能力也明顯高于對照組[58]。

除RAGE活性抑制及誘餌受體外,中藥對RAGE也有良好的干預(yù)作用。銀杏葉提取物EGb761能降低BMECs的RAGE表達(dá),減少RAGE介導(dǎo)的Aβ轉(zhuǎn)運(yùn)入腦[59]。體外實(shí)驗(yàn)也證實(shí),EGb761能抑制RAGE mRNA及蛋白表達(dá)[59]。

5 小結(jié)與展望

AD是一種慢性進(jìn)行性神經(jīng)系統(tǒng)退行性病變,到2050年,全球每85人中將有1人患有AD[60]。AD病因及發(fā)病機(jī)制尚不完全清楚,目前無特效治療手段[1]。Aβ是腦內(nèi)正常的代謝產(chǎn)物之一,生理濃度的Aβ具有促進(jìn)突觸功能及調(diào)節(jié)神經(jīng)元活性等作用[61]。但 在 AD 中,淀 粉 樣 蛋 白 假 說 (amyloid peptide cascade hypothesis)認(rèn)為過量Aβ沉積及其神經(jīng)毒性作用是AD發(fā)病的關(guān)鍵[1]。RAGE可能是介導(dǎo)Aβ神經(jīng)毒性的重要調(diào)節(jié)因子,其表達(dá)上調(diào)不僅造成血管內(nèi)皮及神經(jīng)細(xì)胞自身炎癥反應(yīng),并能促進(jìn) Aβ 入 腦 沉 積 而 加 重 AD 病 變[36,37]。TJ 是BMECs間的重要結(jié)構(gòu),是BBB正常功能的基礎(chǔ),Aβ?lián)p傷BMECs破壞BBB結(jié)構(gòu)完整性。RAGE介導(dǎo)Aβ?lián)p傷TJ的機(jī)制尚未明確,可能與多種細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)通路、Ca2+或炎癥損傷有關(guān)。雖然RAGE的正常生理作用尚不清楚,但抑制RAGE能阻止Aβ對神經(jīng)細(xì)胞及腦血管系統(tǒng)的損害,有可能成為緩解或阻止AD發(fā)生發(fā)展的新的干預(yù)靶點(diǎn),從而為防治AD提供新的思路。

[1]Lomoio S,López-González I,Aso E,et al.Cerebellar amyloid-βplaques:disturbed cortical circuitry in AβPP/PS1 transgenic mice as a model of familial Alzheimer's disease[J].J Alzheimers Dis,2012,31(2):285-300.

[2]Hartz AM,Bauer B,Soldner EL,et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy[J].Stroke,2012,43(2):514-523.

[3]Biron KE,Dickstein DL,Gopaul R,et al.Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease[J].PloS one,2011,6(8):e23789.

[4]Love S,Miners S,Palmer J,et al.Insights into the pathogenesis and pathogenicity of cerebral amyloid angiopathy[J].Front Biosci:Landmark Ed,2009,14:4778-4492.

[5]Wang YJ,Zhou HD,Zhou XF.Clearance of amyloid-beta in Alzheimer's disease:progress,problems and perspectives[J].Drug Discov Today,2006,11(19-20):931-938.

[6]Deane R,Bell RD,Sagare A,et al.Clearance of amyloidbeta peptide across the blood-brain barrier:implication for therapies in Alzheimer's disease [J].CNS Neurol Disord Drug Targets,2009,8(1):16-30.

[7]Sharma HS,Castellani RJ,Smith MA,et al.The bloodbrain barrier in Alzheimer's disease:novel therapeutic targets and nanodrug delivery[J].Int Rev Neurobiol,2012,102:47-90.

[8]Shen S,Zhang W.ABC transporters and drug efflux at the blood-brain barrier[J].Rev Neurosci,2010,21(1):29-53.

[9]Ronaldson PT,Davis TP.Blood-brain barrier integrity and glial support:mechanisms that can be targeted for novel therapeutic approaches in stroke [J].Curr Pharm Des,2012,18(25):3624-3644.

[10]Correale J,Villa A.Cellular elements of the blood-brain barrier[J].Neurochem Res,2009,34(12):2067-2077.

[11]Coisne C,Engelhardt B.Tight junctions in brain barriers during central nervous system inflammation [J].Antioxid Redox Signal,2011,15(5):1285-1303.

[12]Luissint AC,Artus C,Glacial F,et al.Tight junctions at the blood brain barrier:physiological architecture and disease-associated dysregulation [J].Fluids Barriers CNS,2012,9(1):23.

[13]Baeten KM,Akassoglou K.Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke [J].Dev Neurobiol,2011,71(11):1018-1039.

[14]Bednarczyk J,Lukasiuk K.Tight junctions in neurological diseases[J].Acta Neurobiol Exp :Wars,2011,71(4):393-408.

[15]Liu WY,Wang ZB,Zhang LC,et al.Tight junction in blood-brain barrier:an overview of structure,regulation,and regulator substances[J].CNS Neurosci Ther,2012,18(8):609-615.

[16]Zlokovic BV.The blood-brain barrier in health and chronic neurodegenerative disorders[J].Neuron,2008,57(2):178-201.

[17]Zlokovic BV.Neurovascular mechanisms of Alzheimer's neurodegeneration[J].Trends Neurosci,2005,28(4):202-208.

[18]Marchesi VT.Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism:implications for early detection and therapy[J].FASEB J,2011,25(1):5-13.

[19]Zlokovic BV.Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders [J].Nat Rev Neurosci,2011,12(12):723-738.

[20]Han BH,Zhou ML,Abousaleh F,et al.Cerebrovascular dysfunction in amyloid precursor protein transgenic mice:contribution of soluble and insoluble amyloid-beta peptide,partial restoration via gamma-secretase inhibition [J].J Neurosci,2008,28(50):13542-13550.

[21]Tai LM,Holloway KA,Male DK,et al.Amyloid-betainduced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation[J].J Cell Mol Med,2010,14(5):1101-1112.

[22]Carrano A,Hoozemans JJ,van der Vies SM,et al.Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy[J].Antioxid Redox Signal,2011,15(5):1167-1178.

[23]Crehan H,Hardy J,Pocock J.Microglia,Alzheimer's disease,and complement[J].Int J Alzheimers Dis,2012,2012:983640.

[24]Miners JS,Barua N,Kehoe PG,et al.Aβ-degrading enzymes:potential for treatment of Alzheimer disease[J].J Neuropathol Exp Neurol,2011,70(11):944-959.

[25]Zlokovic BV.Clearing amyloid through the blood-brain barrier[J].J Neurochem,2004,89(4):807-811.

[26]Wilhelmus MM, Otte-H?ller I,van Triel JJ,et al.Lipoprotein receptor-related protein-1mediates amyloid-betamediated cell death of cerebrovascular cells [J].Am J Pathol,2007,171(6):1989-1999.

[27]Deane R,Singh I,Sagare AP,et al.A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease[J].J Clin Invest,2012,122(4):1377-1392.

[28]Deane RJ.Is RAGE still a therapeutic target for Alzheimer's disease?[J].Future Med Chem,2012,4(7):915-925.

[29]Deane R,Du Yan S,Submamaryan RK,et al.RAGE mediates amyloid-beta peptide transport across the bloodbrain barrier and accumulation in brain[J].Nat Med,2003,9(7):907-913.

[30]Slowik A,Merres J,Elfgen A,et al.Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)-and amyloid beta1-42-induced signal transduction in glial cells [J].Mol Neurodegener 2012,7:55.

[31]Yin QQ,Dong CF,Dong SQ,et al.AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Yneuroblastoma cells and rat cortical neurons[J].Cell Mol Neurobiol,2012,32(8):1299-1309.

[32]Ohtsuki S,Ito S,Terasaki T.Is P-glycoprotein involved in amyloid-beta elimination across the blood-brain barrier in Alzheimer's disease?[J].Clin Pharmacol Ther,2010,88(4):443-445.

[33]Abuznait AH,Kaddoumi A.Role of ABC transporters in the pathogenesis of Alzheimer's disease [J]. ACS Chem Neurosci,2012,3(11):820-831.

[34]Fritz G.RAGE:a single receptor fits multiple ligands[J].Trends Biochem Sci,2011,36(12):625-632.

[35]Lue LF,Walker DG,Brachova L,et al.Involvement of microglial receptor for advanced glycation endproducts(RAGE)in Alzheimer's disease:identification of a cellular activation mechanism [J].Exp Neurol,2001,171(1):29-45.

[36]Origlia N,Arancio O,Domenici L,et al.MAPK,betaamyloid and synaptic dysfunction:the role of RAGE [J].Expert Rev Neurother,2009,9(11):1635-1645.

[37]Maczurek A,Shanmugam K,Münch G.Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer's disease[J].Ann N Y Acad Sci,2008,1126:147-151.

[38]Arancio O,Zhang HP,Chen X,et al.RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice[J].EMBO J,2004,23(20):4096-4105.

[39]Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice[J].J Neurosci,2008,28(33):8354-8360.

[40]Hu Q,Chen C,Yan J,et al.Therapeutic application of gene silencing MMP-9in a middle cerebral artery occlusion-induced focal ischemia rat model[J].Exp Neurol,2009,216(1):35-46.

[41]Cruzalegui FH,Bading H.Calcium-regulated protein kinase cascades and their transcription factor targets[J].Cell Mol Life Sci,2000,57(3):402-410.

[42]Yang Y, Hill JW,Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders[J].Prog Mol Biol Transl Sci,2011,99:241-263.

[43]Asahi M,Wang X,Mori T,et al.Effects of matrix metalloproteinase-9gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia [J].J Neurosci,2001,21 (19):7724-7732.

[44]Yang Y, Rosenberg GA. MMP-mediated disruption of claudin-5in the blood-brain barrier of rat brain after cerebral ischemia[J].Methods Mol Biol,2011,762:333-345.

[45]Zhang YM,Zhou Y,Qiu LB,et al.Altered expression of matrix metalloproteinases and tight junction proteins in rats following PEMF-induced BBB permeability change [J].Biomed Environ Sci,2012,25(2):197-202.

[46]Du H,Li P,Wang J,et al.The interaction of amyloid beta and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2expression in brain endothelial cells[J].Cell Mol Neurobiol,2012,32(1):141-147.

[47]Zhu P,Ren M,Yang C,et al.Involvement of RAGE,MAPK and NF-kappaB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes[J].Exp Dermatol,2012,21(2):123-129.

[48]Chen D,Wei XT,Guan JH,et al.Inhibition of c-Jun N-terminal kinase prevents blood-brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1in a rat model of subarachnoid hemorrhage [J].Acta Neurochir:Wien,2012,154(8):1469-1476,discussion 1476.

[49]Zhang L,Jouret F,Rinehart J,et al.AMP-activated protein kinase(AMPK)activation and glycogen synthase kinase-3beta (GSK-3beta)inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane[J].J Biol Chem,2011,286(19):16879-16890.

[50]Fujita H,Sugimoto K,Inatomi S,et al.Tight junction proteins claudin-2and-12are critical for vitamin D-dependent Ca2+absorption between enterocytes [J].Mol Biol Cell,2008,19(5):1912-1921.

[51]Kagan BL,Hirakura Y,Azimov R,et al.The channel hypothesis of Alzheimer's disease:current status [J].Peptides,2002,23(7):1311-1315.

[52]Kook SY, Hong HS, Moon M,et al.Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca2+-calcineurin signaling[J].J Neurosci,2012,32(26):8845-8854.

[53]Lue LF,Yan SD,Stern DM,et al.Preventing activation of receptor for advanced glycation endproducts in Alzheimer's disease[J].Curr Drug Targets CNS Neurol Disord,2005,4(3):249-266.

[54]Perrone L,Sbai O,Nawroth PP,et al.The Complexity of Sporadic Alzheimer's Disease Pathogenesis:The Role of RAGE as Therapeutic Target to Promote Neuroprotection by Inhibiting Neurovascular Dysfunction[J].Int J Alzheimers Dis,2012,2012:734956.

[55]Pfizer,Alzheimer's Disease Cooperative Study.A Phase ⅡStudy Evaluating the Efficacy and Safety of PF 04494700in Mild to Moderate Alzheimer's Disease[EB/OL].http://clinicaltrials. gov/ct2/show/NCT00566397, 2007-11-29/2013-08-11.

[56]Sabbagh MN,Agro A,Bell J,et al.PF-04494700,an oral inhibitor of receptor for advanced glycation end products(RAGE),in Alzheimer disease[J].Alzheimer Dis Assoc Disord,2011,25(3):206-212.

[57]Yan SF,Ramasamy R,Schmidt AM.Soluble RAGE:therapy and biomarker in unraveling the RAGE axis in chronic disease and aging[J].Biochem Pharmacol,2010,79(10):1379-1386.

[58]Han SH,Kim YH,Mook-Jung I.RAGE:the beneficial and deleterious effects by diverse mechanisms of actions[J].Mol Cells,2011,31(2):91-97.

[59]Yan FL,Zheng Y,Zhao FD.Effects of ginkgo biloba extract EGb761on expression of RAGE and LRP-1in cerebral microvascularendothelial cells under chronic hypoxia and hypoglycemia[J].Acta Neuropathol,2008,116(5):529-535.

[60]AHAF.The Facts on Alzheimer's Disease[EB/OL].http://www. brightfocus. org/alzheimers/about/understanding/facts.html,2011-01-11,2011-03-07.

[61]Mattson MP.Pathways towards and away from Alzheimer's disease[J].Nature,2004,430(7000):631-639.

猜你喜歡
信號轉(zhuǎn)導(dǎo)完整性內(nèi)皮細(xì)胞
Wnt/β-catenin信號轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
石油化工企業(yè)設(shè)備完整性管理
淺議角膜內(nèi)皮細(xì)胞檢查
莫斷音動聽 且惜意傳情——論音樂作品“完整性欣賞”的意義
益氣活血方對破裂型腰椎間盤突出大鼠p38MAPK 信號轉(zhuǎn)導(dǎo)通路的影響
雌激素治療保護(hù)去卵巢對血管內(nèi)皮細(xì)胞損傷的初步機(jī)制
精子DNA完整性損傷的發(fā)生機(jī)制及診斷治療
細(xì)胞微泡miRNA對內(nèi)皮細(xì)胞的調(diào)控
HGF/c—Met信號轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
痰瘀與血管內(nèi)皮細(xì)胞的關(guān)系研究