国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

激肽-激肽釋放酶系統(tǒng)在心血管疾病發(fā)展中的重要作用

2013-03-23 01:21楊帆姚玉宇馬根山
關(guān)鍵詞:激肽原祖細(xì)胞左室

楊帆,姚玉宇,馬根山

(1.東南大學(xué)醫(yī)學(xué)院,江蘇 南京 210009;2.東南大學(xué)附屬中大醫(yī)院心內(nèi)科,江蘇 南京 210009)

據(jù)統(tǒng)計(jì),2010年心臟疾病的死亡率在我國(guó)城市及農(nóng)村人口中分別占據(jù)第二、第三位。如何干預(yù)疾病的發(fā)展和預(yù)后顯得尤為重要。激肽-激肽釋放酶系統(tǒng)(KKS)參與了心血管疾病的諸多環(huán)節(jié),并在多種病理生理過(guò)程中發(fā)揮了重要作用。作者對(duì)KKS的作用機(jī)制及其在高血壓、心力衰竭、左室肥厚、心肌缺血、心肌病、腦卒中等發(fā)展中的作用作一綜述。

1 KKS

KKS是一個(gè)復(fù)雜的內(nèi)源性多酶系統(tǒng),調(diào)控心血管、神經(jīng)系統(tǒng)、腎臟等的生理功能,與心臟病、腦血管疾病、腎病、炎癥反應(yīng)、腫瘤等疾病的發(fā)生有密切關(guān)系。KKS包括激肽釋放酶原、激肽釋放酶、激肽原、激肽和激肽受體等。組織中存在的激肽釋放酶原活化后成為激肽釋放酶。激肽釋放酶分為2種類型:組織激肽釋放酶和血漿激肽釋放酶,二者在相對(duì)分子質(zhì)量、底物特異性、免疫生物學(xué)特性、基因結(jié)構(gòu)以及所釋放的激肽類型等方面均存在明顯差異。而激肽釋放酶可以從高分子量及低分子量的激肽原中釋放激肽[1]。組織激肽釋放酶(TK)是一種絲氨酸蛋白酶,它可以將低分子量的激肽原加工為具有生物活性的激肽和緩激肽[2]。激肽具有血管活性,它可以觸發(fā)KKS的瀑布級(jí)聯(lián)反應(yīng)。激肽在血管內(nèi)皮與緩激肽受體結(jié)合,包括血管壁的平滑肌細(xì)胞及活化一氧化氮(NO)、cAMP及環(huán)前列素cAMP的信號(hào)通路,從而觸發(fā)瀑布式的生物效應(yīng),其效應(yīng)包括血管舒張、平滑肌收縮舒張,抑制細(xì)胞凋亡、細(xì)胞炎癥、細(xì)胞肥大、細(xì)胞纖維化以及促進(jìn)血管生成和神經(jīng)發(fā)生等[3-4]。

血漿中T激肽原被認(rèn)為是炎癥急性期的反應(yīng)物[5]。在大鼠中,這種激肽原通過(guò)T激肽釋放酶的酶促反應(yīng)釋放T激肽[6]。多種器官諸如腎臟、心臟及滑液組織中都有激肽釋放酶[7-1]。這種激肽釋放酶的分子量、理化性質(zhì)、生物學(xué)及免疫作用方面均不同于其他[12]。組織激肽釋放酶在細(xì)胞內(nèi)合成其前體并通過(guò)氨基末端多肽裂解后成為活化型[13],活化的組織激肽釋放酶作用于低分子量激肽原(LMWK)并釋放賴氨酰緩激肽(kallidin)[14]。循環(huán)中的組織激肽釋放酶是非活化型的,被稱為前激肽釋放酶或 Fletcher因子[15]。其通過(guò)活化性的接觸因子(Ⅻa)轉(zhuǎn)化為活化型的激肽釋放酶[16]。另外,血漿激肽釋放酶能夠通過(guò)正反饋調(diào)節(jié)將非活化的Ⅻ因子轉(zhuǎn)換成Ⅻa因子。血漿前激肽釋放酶和高分子量激肽原(HMWK)結(jié)合為復(fù)合體[17]。Ⅻa因子和Ⅺ因子與高分子量激肽原(HMWK)成為黏著形式共同循環(huán)[18],從而Ⅺ因子被轉(zhuǎn)化為Ⅺa因子參與固有的凝集瀑布反應(yīng)[19]。免疫學(xué)反應(yīng)中,組織蛋白多糖和肥大細(xì)胞肝素鈉可能擔(dān)當(dāng)了最初接觸因子(Hageman factor)活化的起始物表層的角色,這也許提示激肽的形成可能與炎癥期凝血酶的形成同時(shí)進(jìn)行。因?yàn)榉腔罨难獫{組織激肽釋放酶可被凝血?jiǎng)┙佑|因子激活[12]。

2 KKS在心腦血管疾病發(fā)展中的作用

通過(guò)轉(zhuǎn)基因方法活體內(nèi)持續(xù)提供激肽釋放酶后,組織激肽釋放酶-激肽顯示其具有保護(hù)心血管系統(tǒng)、腎臟、神經(jīng)系統(tǒng)的作用,在高血壓、糖尿病中具有抑制氧化應(yīng)激的作用[20-21]。而激肽釋放酶基因遞送及蛋白輸注等方法無(wú)需控制血壓即可改善心臟、腎臟及神經(jīng)系統(tǒng)功能[22]。此外TK的超表達(dá)可以減弱高血壓、糖尿病及腎臟病引起的靶器官損害[23]。

2.1 KKS與高血壓病

高血壓是心血管疾病發(fā)展的主要危險(xiǎn)因素,可導(dǎo)致冠心病、充血性心力衰竭、外周血管疾病及腎臟病等[24]。有充分證據(jù)表明,KKS在高血壓的發(fā)病機(jī)制中所起的作用[25]。緩激肽在血壓調(diào)控中具有舒張血管、減少外周血管阻力以及腎臟的排鈉等作用[26-27]。緩激肽注射入腎動(dòng)脈即可通過(guò)增加腎臟血流起到利尿和尿鈉排泄作用[28]。緩激肽的這些作用可促進(jìn)PG在腎循環(huán)中的釋放[29],KKS在高血壓方面的作用已被Sharma等[30-31]闡明。高血壓病患者及大鼠的尿激肽釋放酶分泌明顯減少,說(shuō)明高血壓時(shí)激肽釋放酶分泌的減少是由激肽缺陷造成的。在一般高血壓和惡性高血壓的發(fā)病過(guò)程中都有激肽原及激肽增強(qiáng)因子的減少[32-34]??梢哉f(shuō)KKS在高血壓的病理生理過(guò)程中至關(guān)重要。緩激肽可以作用于血管緊張素轉(zhuǎn)化酶,由于這種與RAS系統(tǒng)的關(guān)聯(lián),腎臟KKS可以排泄體內(nèi)多余的鈉,腎臟KKS受抑制則可導(dǎo)致鈉潴留及高血壓的發(fā)生[35-36]。因此,腎臟激肽釋放酶樣物質(zhì)的活化有助于經(jīng)腎臟排泄多余的鈉,這也許有助于高血壓病的治療。同時(shí)Sharma等也已證明,轉(zhuǎn)基因小鼠過(guò)量表達(dá)腎組織激肽釋放酶可導(dǎo)致低血壓,且導(dǎo)入組織激肽釋放酶的抑制劑——抑肽酶可以糾正過(guò)量表達(dá)腎組織激肽釋放酶的轉(zhuǎn)基因的低血壓小鼠的血壓[37]。ACEI可作用于自發(fā)性高血壓大鼠使其血壓下降,而抑肽酶可抑制這種作用[38]。人們已計(jì)劃將組織激肽釋放酶基因遞送至各種高血壓模型如單純高血壓、心源性高血壓、腎性及腎血管性高血壓等[39]。這項(xiàng)研究表明了激肽釋放酶基因治療心血管疾病及腎臟疾病的前景。ACEI目前被廣泛用于高血壓病的治療,而ACEI通過(guò)KKS也在降壓作用之外發(fā)揮著其他心臟保護(hù)作用,其降壓機(jī)制包括抑制激肽分解以及阻斷血管緊張素Ⅱ的合成等[40-42]。而ACEI通過(guò)KKS,也在降壓作用之外發(fā)揮著其他心臟保護(hù)作用。

2.2 KKS與心肌缺血

盡管已證實(shí),局部和循環(huán)中的緩激肽可增加冠脈血流、改善心肌代謝,但激肽的心臟抗缺血方面作用尚未得到重視。眾所周知,ACEI具有限制心室擴(kuò)張、延緩臨床癥狀進(jìn)展以及降低死亡率的作用。這種獲益是由于AngⅡ減少,使負(fù)荷降低所致[43]。另外,ACEI可通過(guò)防止激肽被酶解來(lái)發(fā)揮心臟保護(hù)作用[44]。此概念衍生出了諸多研究,證明了心臟局部存在KKS[7-8,45]。激肽與內(nèi)皮的 B2受體結(jié)合釋放 NO 及PG12,發(fā)揮血管舒張作用、抗缺血、抗增殖,并為心肌存儲(chǔ)富于能量的磷酸鹽和糖原[46]。激肽通過(guò)對(duì)抗AngⅡ?qū)е碌难苁湛s來(lái)保持心血管系統(tǒng)的內(nèi)穩(wěn)態(tài)[47]。間接證據(jù)同樣證實(shí),KKS的抑制可導(dǎo)致心力衰竭。事實(shí)上,心衰患者的心臟微血管的激肽及NO生成減少[48]。有實(shí)驗(yàn)[49]證實(shí),在狗模型中,通過(guò)使用特異性的B2受體抑制劑艾替班特Hoe140來(lái)選擇性阻斷其B2受體,可減少冠脈血流并增加左室末壓最終導(dǎo)致充血性心力衰竭的發(fā)生。因此通過(guò)抑制心臟KKS可促進(jìn)心衰的發(fā)展。另外,在心臟缺血缺氧時(shí)激肽持續(xù)釋放[50-51];在缺血預(yù)適應(yīng)及灌注方面發(fā)揮心臟保護(hù)作用[52-53];在狗冠脈內(nèi)輸注緩激肽可顯著減少嚴(yán)重缺血誘發(fā)的心律失常的發(fā)生[50]。已進(jìn)行的大鼠、狗及人的研究證實(shí),激肽在缺血及心梗時(shí)釋放,提示激肽可能在心梗時(shí)發(fā)揮心臟保護(hù)作用[54-57]。局部激肽釋放增多可通過(guò)激活信號(hào)轉(zhuǎn)導(dǎo)途徑產(chǎn)生NO及PGI2來(lái)發(fā)揮心臟保護(hù)效應(yīng)[58]。一項(xiàng)活體同代孿生野生型及TK基因缺陷型大鼠的實(shí)驗(yàn)結(jié)果表明,在缺血再灌注損傷、缺血預(yù)處理及ACEI預(yù)處理情況下,可證明TK在心肌缺血中充當(dāng)了保護(hù)角色。缺血再灌注誘發(fā)的梗死面積相似;而缺血預(yù)處理情況下野生型大鼠的梗死面積減少了65%,TK基因缺乏型的大鼠減少40%;雷米普利處理也可使野生型大鼠的梗死面積減小29%,而這種作用在TK缺陷型的大鼠中則被完全抑制。若對(duì)野生型大鼠再次預(yù)處理,構(gòu)造激肽B2受體缺陷的模型,再次置于大鼠上述條件中,發(fā)現(xiàn)其在缺血預(yù)處理情況下與野生型大鼠別無(wú)二致。而若再抑制B2受體缺陷大鼠的B1受體,則在缺血預(yù)處理及雷米普利處理下,心臟保護(hù)作用也會(huì)被抑制。在B2受體缺陷時(shí),B1受體基因表達(dá)水平上調(diào)。無(wú)論是野生型還是TK缺陷型大鼠,在缺血再灌注損傷、缺血預(yù)處理及ACEI預(yù)處理情況下,B1、B2受體的mRNA折疊增加。因此,TK及B2受體在心臟保護(hù)作用中扮演了核心角色[59]。另一項(xiàng)實(shí)驗(yàn)表明,緩激肽可增加冠脈結(jié)扎大鼠的存活時(shí)間,緩激肽的這種效應(yīng)與特殊的B2受體拮抗劑預(yù)處理的效果相當(dāng)[60-61]??傊?,研究結(jié)果支持了KKS是缺血情況下的重要中介的這一假設(shè)。但是KKS在分子生物及基因圖譜方面的大量研究還有待探索,以尋求心血管病治療的新思路。既往的研究有確切的證據(jù)證明,TK可通過(guò)升高循環(huán)中的內(nèi)皮祖細(xì)胞(EPCs)數(shù)目,提升內(nèi)皮祖細(xì)胞的分化、遷移、小管生成能力,以及通過(guò)激肽B2受體依賴的蛋白激酶信號(hào)通路(糖原-蛋白激酶合酶3β-激酶途徑),來(lái)促進(jìn)心梗后血管新生。因此,通過(guò)TK增加循環(huán)中內(nèi)皮祖細(xì)胞數(shù)量及效能可能是改善缺血組織血管新生的新策略。通過(guò)基因遞送方法,使重組人血漿激肽釋放酶在大鼠心臟表達(dá),可顯著改善缺血處理后的心肌收縮力,并可縮小梗死面積。與對(duì)照組比較,TK通過(guò)增加CD34+Flk-1+內(nèi)皮祖細(xì)胞的數(shù)量,促進(jìn)梗死周圍區(qū)域毛細(xì)血管和小動(dòng)脈的生長(zhǎng),使死亡率降低、左室功能改善[62]。在心血管病患者中,循環(huán)中的血管新生祖細(xì)胞(CPCs)的遷移能力下降與血管生成受阻密切相關(guān)。既往的研究顯示了KKS在血管生成方面的重要作用。我們現(xiàn)在證實(shí)激肽B2受體可以在缺血部位招募循環(huán)血管新生祖細(xì)胞(CPCs)并促進(jìn)血管新生。在健康個(gè)體,B2受體大量表達(dá),使來(lái)源于血單核細(xì)胞的CD34+、CD133+的循環(huán)血管新生祖細(xì)胞發(fā)育為內(nèi)皮祖細(xì)胞。而B(niǎo)1受體卻鮮有表達(dá)。在遷移實(shí)驗(yàn)中,緩激肽BK在CD34+、CD133+的循環(huán)血管新生祖細(xì)胞(CPCs)中扮演了重要的化學(xué)吸引物的角色。B2受體/肌酸肌醇3-激酶/內(nèi)皮一氧化氮合酶中介(B2R/phosphoinos-itide 3-kinase/eNOS-mediated)是這種趨化作用的介導(dǎo)物。心血管疾病患者的CPCs顯示了低B2受體水平且向緩激肽的遷移能力減弱。緩激肽誘發(fā)的遷移顯示了一種新穎的調(diào)節(jié)血管新生祖細(xì)胞歸巢的機(jī)制。心血管病患者祖細(xì)胞的緩激肽敏感性降低可能會(huì)使缺血情況下的血管新生受阻。因此,心血管病患者中B2受體信號(hào)發(fā)放的異??赡軙?huì)導(dǎo)致缺血部位促血管新生祖細(xì)胞招募的缺乏,從而血流恢復(fù)緩慢[63]。

2.3 KKS與左室肥厚

左室肥厚是高血壓病的獨(dú)立危險(xiǎn)因素[9]。緩激肽可抑制主動(dòng)脈結(jié)扎的高血壓大鼠模型左室肥厚的進(jìn)展[64]。緩激肽的這種抗肥厚作用可被B2受體拮抗劑及NO合成酶抑制劑所抵消。因此,緩激肽通過(guò)釋放NO在主動(dòng)脈縮窄誘發(fā)高血壓模型中扮演了防止心臟進(jìn)展為左室肥厚的角色。就這點(diǎn)而言,缺乏心臟KKS可導(dǎo)致自發(fā)性高血壓大鼠糖尿病及左室肥厚的發(fā)生[8-9,65]。因此,心臟組織激肽釋放酶及心臟激肽原的減少可導(dǎo)致心臟緩激肽減少。故而心臟KKS的抑制可導(dǎo)致高血壓及心臟左室肥厚者的心肌功能失調(diào)。KKS在心衰、心肌缺血及心梗方面的作用及潛力值得期待。有研究表明,血壓下降及應(yīng)用卡托普利逆轉(zhuǎn)左室肥厚可提高腎臟組織激肽釋放酶的活性[66]。這可能支持組織激肽釋放酶可作為心臟保護(hù)中介的這一觀點(diǎn)。且激肽對(duì)防止心肌缺血有調(diào)節(jié)功效[67]。Maestri等研究證實(shí),敲除激肽B2受體的大鼠會(huì)發(fā)生心臟肥厚及微血管缺乏[68]。

2.4 KKS與心臟炎癥

激肽調(diào)節(jié)通過(guò)B1和B2兩個(gè)受體發(fā)揮作用。人們?cè)桨l(fā)認(rèn)識(shí)到KKS與心臟疾病的炎癥進(jìn)程息息相關(guān)。已有證據(jù)證實(shí),B2受體在心肌疾病中發(fā)揮抗纖維化、抗凋亡、抗炎的作用。而與此同時(shí),B1受體則促進(jìn)炎癥因子產(chǎn)生,刺激免疫細(xì)胞的遷移。因此,B1受體在心梗早期有一定負(fù)面作用,免疫系統(tǒng)的強(qiáng)烈反應(yīng)會(huì)促進(jìn)炎癥發(fā)展并放大梗死面積。在心肌疾病中B1受體也有著促炎、促纖維化、致心肌功能失調(diào)等負(fù)面作用。但同時(shí),B1受體也發(fā)放信號(hào)激活A(yù)CEI及AT1拮抗劑來(lái)發(fā)揮正面效應(yīng)[69]。

2.5 KKS與腦血管疾病

導(dǎo)入激肽釋放酶基因的大鼠在給予高鹽飲食后其卒中誘發(fā)的死亡率、高血壓、大動(dòng)脈肥厚減少,提示TK具有避免中風(fēng)發(fā)生的作用[70]。另一項(xiàng)動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),TK具有減小腦梗死范圍、抑制細(xì)胞凋亡作用[71]。一項(xiàng)關(guān)于高血壓大鼠的研究中發(fā)現(xiàn),腦皮質(zhì)梗死后24 h,激肽釋放酶可以促進(jìn)神經(jīng)細(xì)胞的增殖、遷移、分化[72]。

3 小 結(jié)

既往的證據(jù)表明,KKS在心腦血管系統(tǒng)的多種病理生理進(jìn)程中如高血壓、心力衰竭、左室肥厚、心肌缺血、心肌病、腦卒中等扮演了重要的角色。值得期待的是,我們可以通過(guò)上流調(diào)節(jié)B1或B2受體來(lái)改變病理結(jié)局。另一方面,在高血壓、心力衰竭、缺血及左室肥厚等病理情況下,KKS的活動(dòng)是相對(duì)不足的。這可能是由于遺傳相關(guān)的KKS異常及緩激肽受體下調(diào)所致。故這些疾病可通過(guò)使用特殊的緩激肽受體激動(dòng)劑及激肽釋放酶治療。而我們所熟知的ACEI可通過(guò)調(diào)節(jié)KKS來(lái)發(fā)揮心臟保護(hù)作用。另外,組織激肽釋放酶TK可通過(guò)提升內(nèi)皮祖細(xì)胞的功能發(fā)揮促血管新生作用。這些都為心血管疾病的治療提供了思路。我們將進(jìn)一步在臨床觀察TK水平與患者預(yù)后的相關(guān)性,了解KKS在心血管系統(tǒng)的重要作用。

[1]MOREAU M E,GARBACKI N,MOLINARO G,et al.The kallikrein-kinin system:current and future pharmacological targets[J].J Pharmacol Sci,2005,99:6-38.

[2]HECQUET C,TAN F,MARCIC B M,et al.Human bradykinin B(2)receptor is activated by kallikrein and other serine proteases[J].Mol Pharmacol,2000,58:828-836.

[3]CHAO J,BLEDSOE G,YIN H,et al.The tissue kallikrein-kinin systemprotects against cardiovascular and renal diseases and ischemicstroke independently of blood pressure reduction[J].Biol Chem,2006,387:665-675.

[4]REGOLI D,RHALEB N E,DRAPEAU G,et al.Kinin receptor subtypes[J].J Cardiovasc Pharmacol,1990,15(Suppl 6):S30-S38.

[5]GREENBAUM L M.T-kinin and T-kininogen-children of new technology[J].Biochem Pharmacol,1984,33:2943-2944.

[6]OKAMOTO H,GREENBAUM L M.Pharmacological properties of T-kinin[J].Biochem Pharmacol,1983,32:2637-2638.

[7]NUSTAD K K,VAAJE K,PIERCE J V.Synthesis of kallikrein by rat kidneyslices[J].Br J Pharmacol,1975,53:229-234.

[8]SHARMA J N,ZEITLIN I J,DEODHAR S D,et al.Detection oftissue kallikrein-like activity in inflamed synovial tissue[J].Arch Int Pharmacody Ther,1983,262:279-286.

[9]NOLLY H L,BROTIS J.Kinin-forming enzyme in rat cardiac tissue[J].Am J Physiol,1981,265:H1209-1214.

[10]SHARMA J N,UMA K.Cardiac kallikrein in hypertensive and diabetic rats with and without diabetes[J].Immunopharmacology,1996,33:341-343.

[11]SHARMA J N,UMA K,YUSOF A P.Left ventricular hypertrophy and itsrelation to the cardiac kinin-forming system in hypertensive and diabetic rats[J].Int J Cardiol,1998,63:229-235.

[12]BHOOLA K D,F(xiàn)IGUEROA C D,WORTH K.Bioregulation of kinin,kallikrein,kininogen and kininases[J].Pharmacol Rev,1992,44:1-80.

[13]TAKADA Y,SKIDGEL R A,ERDOS E G.Purification of human urinary prokallikrein:identification of the site of activation by the metalloproteinasethermolysin[J].Biochem J,1985,232:851-856.

[14]WEISS A S,GALLIN J L,KAPLAN A P.Fletcher factor deficiency:a diminishedrate of Hageman factor activation caused by absence of prekallikrein with abnormalities of coagulation,fibrinolysis,chemotactic activity and kinin generation[J].J Clin Invest,1974,53:622-633.

[15]COCHRANE C G,REVAK S D,WUEPPER D.Activation of Hageman factor in solid and fluid phase.A critical role of kallikrein[J].Exp Med,1973,138:1564-1583.

[16]GRIFFIN J H,COCHRANE C G.Mechanism for the involvement of high molecular weight kininogen in surface-dependent reactions of Hageman factor[J].Proc Natl Acad Sci USA,1976,73:2554-2558.

[17]MANDLE R,COLMAN R W,KAPLAN A.Identification of prekallikrein and HMW-kininogen as a complex in human plasma[J].Proc Natl Acad Sci USA,1976,73:4176-4183.

[18]THAMPSON R E,MANDLE R,KAPLAN A P.Association of factorⅨand high molecular weight kininogen in human plasma[J].J Clin Invest,1977,60:1376-1380.

[19]SILVERBERG M,DIEHL S.The autoactivation of factorⅫ(Hageman factor)induced by low-heparin and dextran sulfate[J].Biochem J,1987,248:715-720.

[20]CHAO J,CHAO L.Kallikrein-kinin in stroke,cardiovascular and renal disease[J].Exp Physiol,2005,90:291-298.

[21]ZHAO C,WANG P,XIAO X,et al.Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructoseinduced hypertensive rats[J].Hypertension,2003,42:1026-1033.

[22]LING L,HOU Q,XING S,et al.Exogenous kallikrein enhances neurogenesis and angiogenesis in the subventricular zone and the peri-infarction region and improves neurological function after focal cortical infarction in hypertensive rats[J].Brain Res,2008,1206:89-97.

[23]YUAN G,DENG J,WANG T,et al.Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 50-monophosphate-activated protein kinase signaling pathways[J].Endocrinology,2007,148:2016-2026.

[24]SHARMA J N.Interrelationship between the kallikrein-kinin system and hypertension:a review[J].Gen Pharmacol,1988,19:177-187.

[25]SHARMA J N,UMA K K,NOOR A R.Blood pressure regulation by the kallikrein-kinin system[J].Gen Pharmacol,1996,27:55-63.

[26]De FREITAS F M,F(xiàn)ARRACO E Z,De AZEVEDO D F.General circulatory alterations induced by intravenous infusion of synthetic bradykinin in man[J].Circulation,1964,29:66-70.

[27]WEBSTER M E,GILMORE J P.Influence of kallidin-10 on renal function[J].Am J Physiol,1964,206:714-718.

[28]McGIFF J C,ITSKOVITZ H D,TERRANGO N A.The action of bradykinin and eledoicin in the canine isolated kidney:relationship to prostaglandins[J].Clin Sci Mol Med,1975,49:125-131.

[29]MARGOLIUS H S,GELLER R,PISANO J J,et al.Altered urinary kallikrein excretion in human hypertension[J].Lancet,1971,2:1063-1065.

[30]MARGOLIUS H S,GELLER R,DEJONG W,et al.Altered urinary kallikrein excretion in rats with hypertension[J].Circ Res,1972,30:358-362.

[31]SHARMA J N,ZEITLIN I J.Altered plasma kininogen in clinical hypertension[J].Lancet,1981,1:125-126.

[32]SHARMA J N.Kinin system and prostaglandins in the intestine[J].Pharmacol Toxicol,1988,63:310-316.

[33]ALMEIDA F A,STELLA R C,VOOS A,et al.Malignant hypertension:a syndrome associated with low plasma kininogen and kinin potentiating factor[J].Hypertension,1981,3:46-50.

[34]JAMES F W,DONALDSON V H.Decrease exercise tolerance and hypertension in serve hereditary deficiency of plasma kininogen[J].Lancet,1981,1:889.

[35]KATORI M,MAJIMA M.Role of the renal kallikrien-kinin system in the development of hypertension[J].Immunopharmacology,1997,36:237-242.

[36]WANG C,CHAO L,CHAO J.Human tissue kallikrein induces hypotension in transgenic mice[J].Hypertension,1994,23:236-243.

[37]SHARMA J N,AMRAH S S,NOOR A R.Suppression of hypotensive responses of captopril and enalapril by kallikrein inhibitors aprotinin in spontaneously hypertensive rats[J].Pharmacology,1995,50:363-369.

[38]CHAO J,CHAO L.Kallikrein gene therapy in hypertension,cardiovascular and renal diseases[J].Gen Ther Mol Biol,1998,1:301-308.

[39]SILBERBAUER K,STANEK B,TEMPLE H.Acute hypotensive effect of captopril in man modified by prostaglandian synthesis inhibition[J].Br J Clin Pharmacol,1982,14:87S-93S.

[40]ANTONACCIO M.Angiotensin converting enzyme(ACE)inhibitors[J].Annu Rev Pharmacol Toxicol,1982,22:57-87.

[41]SHARMA J N,F(xiàn)ERANDEZ P G,KIM B K,et al.Systolic blood pressure responses to enalapril maleate(MK 421),an angiotensin converting enzyme inhibitor and hydrochlorothiazide in conscious Dahl salt-sensitive(S)and salt-resistant(R)rats[J].Can J Physiol Pharmacol,1984,62:241-243.

[42]EDERY H,ROSENTHAL T,AMITZUR G,et al.The influence of SQ 20881 on the blood kinin system of renal hypertensive patients[J].Drug Exp Clin Res,1981,Ⅶ:749-756.

[43]LINZ W,WIEMER G,GOHLKE P.Contribution of kinin to the cardiovascular action of converting-enzyme inhibitors[J].Pharmacol Rev,1995,47:25-50.

[44]ZHU P,ZUGGA C E,SIMPER D,et al.Bradykinin improves postischaemic recovery in the rat heart:role of high energy phosphates,nitric oxide and prostacyclin[J].Cardiovasc Res,1995,29:658-663.

[45]SHARAM J N,KESAVARAO U,YUSOF A P.Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats[J].Immunopharmacology,1999,43:129-132.

[46]MADEDDU P,MILIA A F,SALIS M B,et al.Renovascular hypertension in bradykinin B2-receptor knockout mice[J].Hypertension,1998,23:305-509.

[47]KICHUCK M R,SEYEDI N,ZHANG X,et al.Regulation of nitric acid production in human coronary microvessels and the contribution of local kinin formation[J].Circulation,1996,94:44-51.

[48]WHALLEY E T,SOLOMON J A,MODAFFERI D M.CP-0127,a novel potent bradykinin antagonist increases survival in rat and rabbit model of endotoxin shock[J].Agents Actions,1992,38(Suppl):413-420.

[49]KOIDE A,ZEITLIN I J,PARRATT J R.Kinin formation in ischaemic heart and aorta of anaesthetized rats[J].J Physiol(Lond),1993,467:125P.

[50]SCHOLKENS B A.Kinins in the cardiovascular system[J].Immunopharmacology,1996,33:209-217.

[51]LINZ W,WIEMER G,SCHOLKENS B A.Bradykinin prevents left ventricular hypertrophy in rats[J].J Hypertens,1993,11(Suppl 5):S96-97.

[52]VEGH A,SZEKERES L,PARRATT J R.Local intracoronary infusions of bradykinin profoundly reduce the severity of ischaemia-induced arrhythmia in anaesthetized dogs[J].Br J Pharmacol,1991,104:294-295.

[53]WALLS T M,SHEEHY R,HARTMAN J C.Role of bradykinin in myocardial preconditioning[J].J Pharmacol Exp T-her,1994,270:681-689.

[54]RUBIN L E,LEVI R.Protective role of bradykinin in cardiac anaphylaxis[J].Circ Res,1995,79:434-440.

[55]YOSHIDA H,ZHANG J J,CHAO L,et al.Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischaemia and perfusion[J].Hypertension,2000,35:25-31.

[56]SHARMA J N,KESAVARAO U.Effect of captopril on urinary kallikrein,blood pressure and myocardial hypertrophy in diabetic spontaneously hypertensive rats[J].Pharmacology,2002,64:196-200.

[57]DELA C R,SUFFREDINI A,PAGE J D,et al.Activation of kallikrein-kinin system after endotoxin administration to normal human volunteers[J].Blood,1993,81:3313-3317.

[58]ABBAS S A,SHARMA J N,YUSOF A P.The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats[J].Immunopharmacology,1999,44:93-98.

[59]GRIOL-CHARHBILI V,MESSADI-LARIBI E,BASCANDS J L,et al.Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia[J].FASEB J,2005,19(9):1172-1174.

[60]ABBAS S A,SHARMA J N,YUSOF A P.Effect of bradykinin and its antagonist on survival time after coronary artery occlusion in rats[J].Gen Pharmacol,1999,33:243-247.

[61]ABBAS S A,SHARMA J N,YUSOF A P.The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats[J].Immunopharmacology,1999,44:93-98.

[62]YUYU Y,ZULONG S,YEFEI L,et al.Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity[J].Hum Gene Ther,2012,23:859-870.

[63]NICOLLE K,RAJESH G K,MAURO S.Role of Kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential[J].Circ Res,2008,103(11):1335-1343.

[64]LINZ W W,WIEMER G,SCHOLKENS B A.Contribution of bradykinin to the cardiovascular effects of ramipril[J].J Cardiovasc Pharmacol,1993,22(Suppl 9):S1-8.

[65]SHARMA J N,UMA K,YUSOF A P.Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats[J].Immunopharmacology,1999,34:129-132.

[66]NIES A S,F(xiàn)ORSYTH R P,WILLIAMS H E,et al.Contribution of kinins to endotoxin volunteers[J].Blood,1993,81:3313-3317.

[67]MARCONDES S,ANTUNES E.The plasma and tissue kininogen-kallikreinkinin system:role in cardiovascular system[J].Curr Med Chem,2005,3:33-44.

[68]MAESTRI R,MILIA A F,SALIS M B,et al.Cardiac hypertrophy and microvascular deficit in Kinin B2 receptor knockout mice[J].Hypertension,2003,41:1151-1155.

[69]KONSTANTINOS S,DIRK W,HEINZ-PETER S,et al.Kinins in cardiac inflammation and regeneration:insights from ischemic and diabetic cardiomyopathy[J].Neuropeptides,2010,44:119-125.

[70]ZHANG J J,CHAO L,CHAO J.Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats[J].Stroke,1999,30:1925-1931;discussion 1931-1932.

[71]XIA C F,YIN H,BORLONGAN C V,et al.Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis[J].Hypertension,2004,43:452-459.

[72]XIA C F,YIN H,YAO Y Y,et al.Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis[J].Hum Gene T-her,2006,17:206-219.

猜你喜歡
激肽原祖細(xì)胞左室
心臟超聲配合BNP水平測(cè)定在高血壓左室肥厚伴心力衰竭診斷中的應(yīng)用
血漿corin、NEP、BNP與心功能衰竭及左室收縮功能的相關(guān)性
胰激肽原酶在男性不育中的臨床應(yīng)用專家共識(shí)(2018版)
益腎活血法治療左室射血分?jǐn)?shù)正常心力衰竭的療效觀察
Wnt3a基因沉默對(duì)內(nèi)皮祖細(xì)胞增殖的影響
內(nèi)皮祖細(xì)胞在缺血性腦卒中診治中的研究進(jìn)展
胰激肽原酶聯(lián)合金水寶膠囊對(duì)糖尿病腎病患者尿微量白蛋白的影響
莫沙必利聯(lián)合胰激肽原酶治療糖尿病神經(jīng)源性膀胱50例療效及安全性分析
懸滴和懸浮法相結(jié)合培養(yǎng)胰腺祖細(xì)胞
微環(huán)境在體外大量擴(kuò)增晚期內(nèi)皮祖細(xì)胞中的作用