劉劍鋒 綜述 陳韻岱 審校
解放軍醫(yī)學院/解放軍總醫(yī)院 心內科,北京 100853
胰高糖素樣多肽-1(glucagon-like peptide-1,GLP-1)是一種餐后由遠端腸腔L型細胞分泌的天然降血糖激素,由30個氨基酸組成,能在下丘腦水平控制食欲和胃飽滿感,從而減少食物攝入,使體重下降;同時還有刺激迷走神經使胃排空延遲、促進胰島素分泌等作用。多項臨床研究已證實GLP-1對2型糖尿病有卓越的療效[1-3],并發(fā)現GLP-1對心血管危險因素有保護作用[4-6]。此外,研究發(fā)現GLP-1受體(GLP-1R)在心臟以及血管等組織中也有表達[7-9],為GLP-1的心血管保護作用從作用途徑上提供了理論基礎。但是,也有研究在未表達經典GLP-1R的細胞和組織中觀察到了GLP-1及其類似物的多效性,因此,獨立于經典GLP-1R之外的GLP-1作用機制及通路值得進一步研究[10]。目前市場上有兩種GLP-1R激動劑臨床應用:艾塞那肽(exenatide)和利拉魯肽(liraglutide)。二者分別與天然GLP-1有53%和97%的同源性,均能耐受二肽基肽酶Ⅳ(DPP-Ⅳ)的降解作用,半衰期分別為2.4 h和12 h,可根據葡萄糖濃度“按需”調節(jié)胰島素分泌,低血糖事件發(fā)生率低,安全性好。我們從GLP-1的降糖外作用出發(fā),對GLP-1的心血管保護作用作一綜述。
Nikolaidis等[6]首先報道GLP-1能增加心肌胰島素敏感性以及心肌葡萄糖的攝取,且和血清胰島素水平無關。Bose等[11]建立大鼠離體心臟缺血再灌注損傷模型,在缺血前給予GLP-1并持續(xù)到再灌注結束,證明了GLP-1能通過激活cAMP和PI3k通路保護離體及完整大鼠心臟的梗死心肌。與該研究結果相似的是,Xie等[12]對低氧-再恢復氧供誘發(fā)的大鼠心肌細胞損傷模型研究發(fā)現GLP-1能通過PI3k-Akt和MAPK信號通路抑制心肌細胞的凋亡,對心肌細胞有直接保護作用。Ravassa等[13]通過對HL-1心肌細胞的凋亡研究發(fā)現,GLP-1主要通過PI3k通路及部分通過ERK1/2通路保護HL-1心肌細胞免受凋亡,且這種細胞保護與血糖濃度無關,然而GLP-1R是否在HL-1細胞上有表達有待商榷。多項研究發(fā)現抗凋亡基因血紅素氧化酶1(HO-1)、糖原合成激酶(GSK)-3β、Bcl-2家族蛋白、caspase-3和PPARs-β及PPARs-δ均參與了基于GLP-1治療的心肌保護作用[14-17]。但GLP-1對心肌的保護作用不完全依賴GLP-1R。Ban等[18]發(fā)現GLP-1促進了離體小鼠缺血再灌注損傷心臟的功能恢復和心肌細胞活性,但這些保護作用在GLP-1R-/-小鼠也存在;還發(fā)現再灌注時給予GLP-1(9-36)減少了缺血再灌注后的缺血損傷,增加了野生型和Glp1r-/-小鼠的cGMP釋放、血管擴張和冠脈血流,GLP-1(7-36)和它的代謝產物GLP-1(9-36)能不依賴已知的GLP-1R發(fā)揮心血管保護作用。
有研究表明GLP-1能使離體大鼠心肌細胞的cAMP水平增加,但降低了其收縮性,而且不同劑量的GLP-1對左室形成壓(left ventricular developed pressure,LVDP)的作用截然不同,0.5 nmol/L降低LVDP,而0.3 nmol/L GLP-1與之作用相反[18-19]。此外,Nikolaidis[6]等通過給有擴張性心肌病的清醒狗輸注重組GLP-1[1.5 pmol/(kg·min)],發(fā)現左室瞬時壓力變化、每搏量、心輸出量明顯增加,而左室舒張末壓、心率和全身血管阻力明顯下降,同時心肌葡萄糖的攝取增加。在此基礎上,該團隊證實GLP-1-(9-36)通過模擬胰島素而不是促胰島素作用,模擬了GLP-1-(7-36)刺激心肌葡萄糖攝取以及改善左室功能和全身血流動力學的效應[20]。這些結果也表明GLP-1-(9-36)是活性肽。2010年該團隊的研究進一步揭示,GLP-1通過激活p38 MAPK、增加NO的合成以及GLUT1的轉位促進心肌葡萄糖的攝取[21]。
黏附分子在動脈粥樣硬化病變的發(fā)生發(fā)展中起著重要作用。臨床研究證明GLP-1能改善糖尿病合并穩(wěn)定性冠心病患者的內皮功能紊亂[22]。Liu等[23]的體外研究表明利拉魯肽能通過抑制TNF-α或高血糖誘導的纖溶酶原激活物抑制劑-1(PAI-1)和血管黏附分子(ICAM-1和VCAM-1)在內皮細胞的表達,改善2型糖尿病患者的內皮細胞功能紊亂,延緩或防止動脈硬化的發(fā)生。在此基礎上,該研究團隊從體內角度在ApoE-/-小鼠進一步證實了上述效應依賴GLP-1R[24]。Ishibashi等[25]和Hattori等[26]的研究結論與其相似。
動脈粥樣硬化是一炎癥過程,其前提是單核細胞黏附到內皮細胞。Arakawa等[27]對C57BL/6小鼠或ApoE-/-小鼠研究發(fā)現,exendin-4通過抑制TNF-α和單核細胞趨化蛋白-1的mRNA表達以及p65(NF-kB的組分)的核轉位,抑制巨噬細胞的炎癥反應,從而延緩動脈粥樣硬化病變的發(fā)生發(fā)展,而且這種效應能被cAMP抑制劑MDL-12330A或蛋白激酶A特異抑制劑(PKA)PKI14-22逆轉。Hattori等[26]研究表明,利拉魯肽通過增加NO的合成、抑制NF-kB的活化以及部分通過激活AMPK對人臍靜脈內皮細胞發(fā)揮抗炎作用,從而保護血管,而且這種保護作用是劑量依賴的。
內皮細胞的衰老在糖尿病和心血管病的發(fā)生發(fā)展中發(fā)揮了重要作用,決定其預后。Oeseburg等[28]體外研究結果表明,GLP-1能通過GLP-1R激活下游cAMP/PKA通路保護人臍靜脈內皮細胞免受活性氧誘導的衰老,而抑制cAMP/PKA通路、阻止其保護作用。
血脂紊亂是心血管病的重要危險因素。糖尿病常合并血脂紊亂,主要表現為高甘油三酯、低高密度脂蛋白膽固醇以及小而密的LDL-c增多。Schwartz等[29]開展的一項隨機、雙盲、安慰劑對照的交叉研究,共入選35例研究對象,其中糖耐量受損20例、新發(fā)2型糖尿病15例,結果表明單純皮下注射exenatide(10 μg)使餐后TG、apoB-48和CⅢ、剩余脂蛋白(RLP)膽固醇以及RLP-甘油三酯的升高水平明顯降低,從而降低心血管風險。但該項研究觀察時間短,僅持續(xù)到餐后8 h,不足以觀察到exenatide的長期效應。為此,Bunck等[30]入選69例既往口服二甲雙胍的2型糖尿病患者進行隨機對照研究,exenatide持續(xù)治療51周,療程結束停藥5周,結果表明長期的exenatide治療明顯降低了餐后血糖、甘油三酯、apo-B48、VLDL-c、游離脂肪酸(FFA)的水平。值得注意的是,在停藥5周后,所有上述餐后檢測指標均回歸治療前水平。這反映了exenatide長期治療的必要性。
有研究表明GLP-1能使大鼠心率、血壓增加[31],其機制為GLP-1及Exendin-4可通過交感神經系統調節(jié)心率和血壓,其血管收縮作用也可通過目前尚未知的非自主調節(jié)機制介導[32-33]。但對鹽敏感小鼠,GLP-1則表現出降壓效應[34]。此外,GLP-1增加心輸出量的同時不影響血壓,原因可能是GLP-1擴張了外周血管[35]。這一推論和Ban等研究[18]證實GLP-1能擴張腸系膜動脈結論相仿。
但GLP-1對人血壓的影響不同于鼠的研究結果。Bharucha等[36]對55例平均年齡31歲的健康受試者研究發(fā)現,靜脈輸注GLP-1(2.4pmol/(kg·min)持續(xù)10 min,接著以1.2pmol/(kg·min)持續(xù)55 min)對心率、血壓無影響,考慮原因是劑量和持續(xù)時間問題。但早期進行的涉及10例健康受試者的隨機、雙盲、交叉研究結果顯示快速腹壁注射GLP-1(80 nmol/ml)能一過性增加心率、血壓,注射后50~60 min的心率、血壓恢復到接近基線水平[37]。
研究表明GLP-1能改善胰島素的敏感性[38]?;A及臨床研究均證實GLP-1能明顯改善心功能,有效治療慢性心力衰竭[6,35,39]; GLP-1對缺血再灌注導致的急性心功能不全患者以及冠脈球囊阻塞過程中因供應性心肌缺血所致的缺血性左室功能不全也有保護作用,并減輕心肌頓抑[5,40]。Liu等[41]證 明GLP-1[2.5或25 pmol/(kg·min)]或exenatide類似物AC3174[1.7或5 pmol/(kg·min)]皮下注射11周,能使經前降支結扎誘發(fā)心梗后2周的慢性心衰大鼠的心肌重塑,提高了生存率。
GLP-1及其類似物的心血管保護作用已得到大量的基礎及臨床研究所證實。其具體機制主要涉及提高心肌葡萄糖攝取、改善內皮功能、擴張血管、抗炎、抗動脈粥樣硬化、調節(jié)血脂、血壓、心率等。值得注意的是,除Bunck等[30]進行的調節(jié)血脂研究持續(xù)近1年外,GLP-1及類似物在各項研究中的使用時間較短,不足以發(fā)現其對高?;颊咝难艿倪h期療效。此外,目前已進行的臨床研究大部分是回顧性的,少部分研究即使是前瞻性,但樣本量少且是單中心,不足以反映真實人群的特點及療效。因此,以上鼓舞人心的結論仍需通過大規(guī)模、多中心、前瞻、隨機、雙盲、對照研究來進一步證實。
1 Pratley R, Nauck M, Bailey T, et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin,in patients with type 2 diabetes: a randomised, parallel-group,open-label trial[J]. Int J Clin Pract, 2011, 65(4): 397-407.
2 Monami M, Cremasco F, Lamanna C, et al. Glucagon-like peptide-1 receptor agonists and cardiovascular events: a meta-analysis of randomized clinical trials[J]. Exp Diabetes Res, 2011 :215764.
3 Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study[J].Lancet, 2002, 359(9309): 824-830.
4 Sokos GG, Nikolaidis LA, Mankad S, et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure[J]. J Card Fail, 2006,12(9): 694-699.
5 Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagonlike peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion[J]. Circulation,2004, 109(8): 962-965.
6 Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagonlike peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy[J]. Circulation, 2004, 110(8): 955-961.
7 Tomas E, Habener JF. Insulin-like actions of glucagon-like peptide-1 : a dual receptor hypothesis[J]. Trends Endocrinol Metab, 2010, 21(2): 59-67.
8 Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagalbrainstem-hypothalamic pathway[J]. Brain Res, 2005, 1044(1):127-131.
9 Kieffer TJ, Habener JF. The glucagon-like peptides[J]. Endocr Rev, 1999, 20(6): 876-913.
10 Abu-Hamdah R, Rabiee A, Meneilly GS, et al. Clinical review :The extrapancreatic effects of glucagon-like peptide-1 and related peptides[J]. J Clin Endocrinol Metab, 2009, 94(6): 1843-1852.
11 Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury[J].Diabetes, 2005, 54(1): 146-151.
12 Xie Y, Wang SX, Sha WW, et al. Effects and mechanism of glucagon-like peptide-1 on injury of rats cardiomyocytes induced by hypoxia-reoxygenation[J]. Chin Med J (Engl), 2008, 121(21):2134-2138.
13 Ravassa S, Zudaire A, Carr RD, et al. Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2011, 300(4): H1361-H1372.
14 Juhaszova M, Zorov DB, Yaniv Y, et al. Role of glycogen synthase kinase-3beta in cardioprotection[J]. Circ Res, 2009, 104(11):1240-1252.
15 Sonne DP, Engstr?m T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemiareperfusion injury in rat heart[J]. Regul Pept, 2008, 146(1-3):243-249.
16 Piantadosi CA, Carraway MS, Babiker A, et al. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1[J]. Circ Res,2008, 103(11): 1232-1240.
17 Burkart EM, Sambandam N, Han X, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart[J]. J Clin Invest, 2007, 117(12):3930-3939.
18 Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways[J]. Circulation, 2008, 117(18): 2340-2350.
19 Vila Petroff MG, Egan JM, Wang X, et al. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes[J]. Circ Res, 2001, 89(5): 445-452.
20 Nikolaidis LA, Elahi D, Shen YT, et al. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2005, 289(6): H2401-H2408.
21 Bhashyam S, Fields AV, Patterson B, et al. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinasemediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy[J]. Circ Heart Fail, 2010, 3(4): 512-521.
22 Nystr?m T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease[J]. Am J Physiol Endocrinol Metab,2004, 287(6): E1209-E1215.
23 Liu H, Dear AE, Knudsen LB, et al. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules[J]. J Endocrinol,2009, 201(1): 59-66.
24 Gaspari T, Liu H, Welungoda I, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model[J]. Diab Vasc Dis Res, 2011, 8(2): 117-124.
25 Ishibashi Y, Matsui T, Takeuchi M, et al. Glucagon-like peptide-1(GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression[J]. Biochem Biophys Res Commun, 2010, 391(3): 1405-1408.
26 Hattori Y, Jojima T, Tomizawa A, et al. A glucagon-like peptide-1(GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells[J].Diabetologia, 2010, 53(10):2256-2263.
27 Arakawa M, Mita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4[J].Diabetes, 2010, 59(4): 1030-1037.
28 Oeseburg H, de Boer RA, Buikema H, et al. Glucagon-like peptide 1 prevents reactive Oxygen species-induced endothelial cell senescence through the activation of protein kinase A[J]. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1407-1414.
29 Schwartz EA, Koska J, Mullin MP, et al. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus[J]. Atherosclerosis, 2010, 212(1): 217-222.
30 Bunck MC, Cornér A, Eliasson B, et al. One-year treatment with exenatide vs. insulin glargine : effects on postprandial glycemia, lipid profiles, and oxidative stress[J]. Atherosclerosis, 2010, 212(1):223-229.
31 Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons[J]. J Clin Invest, 2002,110(1): 43-52.
32 Gil-Lozano M, Pérez-Tilve D, Alvarez-Crespo M, et al. GLP-1(7-36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans[J]. Endocrinology, 2010, 151(6): 2629-2640.
33 Gardiner SM, March JE, Kemp PA, et al. Autonomic nervous system-dependent and -independent cardiovascular effects of exendin-4 infusion in conscious rats[J]. Br J Pharmacol, 2008,154(1): 60-71.
34 Hirata K, Kume S, Araki S, et al. Exendin-4 has an antihypertensive effect in salt-sensitive mice model[J]. Biochem Biophys Res Commun, 2009, 380(1): 44-49.
35 Poornima I, Brown SB, Bhashyam S, et al. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failureprone rat[J]. Circ Heart Fail, 2008, 1(3): 153-160.
36 Bharucha AE, Charkoudian N, Andrews CN, et al. Effects of glucagon-like peptide-1, yohimbine, and nitrergic modulation on sympathetic and parasympathetic activity in humans[J]. Am J Physiol Regul Integr Comp Physiol, 2008, 295(3): R874-R880.
37 Edwards CM, Todd JF, Ghatei MA, et al. Subcutaneous glucagonlike peptide-1 (7-36) amide is insulinotropic and can cause hypoglycaemia in fasted healthy subjects[J]. Clin Sci (Lond),1998, 95(6): 719-724.
38 Ingelsson E, Sundstr?m J, Arnl?v J, et al. Insulin resistance and risk of congestive heart failure[J]. JAMA, 2005, 14(10): 27-28.
39 Halbirk M, N?rrelund H, M?ller N, et al. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure[J]. Am J Physiol Heart Circ Physiol, 2010, 298(3): H1096-H1102.
40 Read PA, Hoole SP, White PA, et al. A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans[J].Circ Cardiovasc Interv, 2011, 4(3): 266-272.
41 Liu Q, Anderson C, Broyde A, et al. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure[J].Cardiovasc Diabetol, 2010, 9 :76.