程佳 綜述 祁佐良 審校
周圍神經(jīng)損傷后,能夠通過(guò)再生重新支配相應(yīng)的靶器官,而成功的神經(jīng)再生依賴于大量巨噬細(xì)胞參與的瓦勒氏變性反應(yīng)過(guò)程。瓦勒氏變性是指由于各種創(chuàng)傷、牽拉、缺血、高低溫、電擊等原因,直接使神經(jīng)纖維受損中斷,周圍神經(jīng)損傷后遠(yuǎn)段發(fā)生的軸突壞死、髓鞘分解消失和神經(jīng)鞘膜增生等一系列蛻變和細(xì)胞吞噬過(guò)程[1]。1850年Waller等[1-4]提出損傷神經(jīng)發(fā)生瓦勒氏變性反應(yīng)以來(lái),對(duì)于損傷后誘導(dǎo)的巨噬細(xì)胞浸潤(rùn)的變化規(guī)律和作用進(jìn)行了大量的研究。在此就周圍神經(jīng)損傷后修復(fù)和再生研究領(lǐng)域中,有關(guān)巨噬細(xì)胞作用的研究進(jìn)展進(jìn)行綜述。
巨噬細(xì)胞作為一種具有可塑性和多能性的細(xì)胞群體,在全身組織的修復(fù)和再生中均發(fā)揮了重要作用[5-7]。目前,根據(jù)巨噬細(xì)胞活化狀態(tài)和發(fā)揮功能的不同,可將巨噬細(xì)胞大致分為M1型即經(jīng)典活化的巨噬細(xì)胞 (Classically activated macrophages)和M2型即替代性活化的巨噬細(xì)胞(Alternatively activated macrophages)[8-10]。M1型巨噬細(xì)胞由損傷所誘發(fā)的內(nèi)源性免疫信號(hào)激活(如輔助性T細(xì)胞亞群Th1分泌的細(xì)胞因子IFN-γ等),M1型巨噬細(xì)胞可以產(chǎn)生大量的氧化反應(yīng)代謝產(chǎn)物和促炎癥反應(yīng)因子等。因此,M1型巨噬細(xì)胞具有促進(jìn)炎癥反應(yīng)的功能[11]。M2型巨噬細(xì)胞主要由輔助性T細(xì)胞亞群Th2分泌的細(xì)胞因子IL-4、IL-10和IL-13等激活,通過(guò)產(chǎn)生大量抗炎癥反應(yīng)因子等,促進(jìn)新生血管的形成、細(xì)胞交替以及再生微環(huán)境的重建,從而促進(jìn)受損組織的修復(fù)和再生。因此,M2型巨噬細(xì)胞能夠削弱M1型細(xì)胞極化所帶來(lái)的高炎癥反應(yīng)狀態(tài)。深入研究M2型巨噬細(xì)胞發(fā)現(xiàn),可將其進(jìn)一步分為三個(gè)亞型,即M2a、M2b和M2c型,M2a和M2c型巨噬細(xì)胞能夠增強(qiáng)組織修復(fù)和促進(jìn)細(xì)胞間親和能力,而M2b型巨噬細(xì)胞擁有抗炎癥反應(yīng)巨噬細(xì)胞和促炎癥反應(yīng)巨噬細(xì)胞的一些特征性調(diào)控功能[12-13]。
周圍神經(jīng)損傷后,由于損傷的遠(yuǎn)心段神經(jīng)軸突發(fā)生變性,大量的髓鞘發(fā)生崩解,而變性崩解的髓鞘碎片會(huì)抑制近心段神經(jīng)軸突的再生[14-15],所以快速有效地清除髓鞘碎片意義重大,而巨噬細(xì)胞在此過(guò)程中發(fā)揮了巨大的作用。當(dāng)神經(jīng)組織損傷后,大量血源性巨噬細(xì)胞被激活,并募集到損傷部位,協(xié)同局部?jī)?nèi)源性巨噬細(xì)胞共同發(fā)揮作用。Ramaglia等[16-17]研究發(fā)現(xiàn),瓦勒氏變性中有效地髓鞘清除有賴于大量外源性巨噬細(xì)胞浸潤(rùn),血清成分(例如增加血-神經(jīng)屏障的通透性)以及局部各種需要被移除且易被吞噬的碎片成分產(chǎn)物都會(huì)促進(jìn)巨噬細(xì)胞的浸潤(rùn)。在消耗體內(nèi)各種誘導(dǎo)巨噬細(xì)胞浸潤(rùn)的成分之后會(huì)發(fā)生3種現(xiàn)象:①巨噬細(xì)胞浸潤(rùn)明顯減少;②周圍神經(jīng)損傷后清理髓鞘的能力減弱;③周圍神經(jīng)損傷后軸突再生延遲。因此,在瓦勒氏變性中,除了血-神經(jīng)屏障的破壞,損傷局部髓鞘和軸突碎片成分也對(duì)吸引巨噬細(xì)胞浸潤(rùn)并激活其吞噬作用有著重要意義。Coleman等[3]通過(guò)一種Wlds突變小鼠(體內(nèi)神經(jīng)軸突變性時(shí)間明顯延遲,但髓鞘崩解速度正常)觀察到,體內(nèi)的巨噬細(xì)胞募集、髓鞘變性以及殘余髓鞘碎片的清除均被延遲,因而認(rèn)為遠(yuǎn)心段神經(jīng)組織殘株內(nèi)活化的巨噬細(xì)胞會(huì)通過(guò)誘發(fā)進(jìn)一步的炎癥反應(yīng)來(lái)促進(jìn)炎性因子的分泌。近年來(lái)的研究表明,受損軸突表達(dá)的鈣蛋白酶、Toll樣受體,以及細(xì)胞內(nèi)普遍存在的活化劑NF-kb、c-Jun都可能參與了損傷依賴性巨噬細(xì)胞的激活過(guò)程。Goethals等[18]觀察到,損傷后許旺細(xì)胞內(nèi)最敏感的TLR受體亞型TLR1大量表達(dá)。體外實(shí)驗(yàn)研究表明,神經(jīng)元壞死后的碎片和死亡的神經(jīng)細(xì)胞內(nèi)成分都會(huì)通過(guò)TLRs刺激損傷神經(jīng)組織內(nèi)許旺細(xì)胞。這種激活許旺細(xì)胞的作用促進(jìn)了重要炎性介質(zhì)的表達(dá),例如TNF-a、iNOS、IL-1b 和 MCP-1(CCL-2)等,最終促進(jìn)了巨噬細(xì)胞的浸潤(rùn)和神經(jīng)軸突再生[19-20]。
神經(jīng)損傷后第3天,大量血源性巨噬細(xì)胞浸潤(rùn)到神經(jīng)外膜,第5~7天浸潤(rùn)至神經(jīng)內(nèi)膜內(nèi),隨后快速浸潤(rùn)整個(gè)神經(jīng)損傷的遠(yuǎn)心段殘株,并且在第14天達(dá)到峰值[21-22]。募集的巨噬細(xì)胞高效地清除了含有大量抑制軸突生長(zhǎng)的物質(zhì),除了清除破碎的軸突和髓磷脂之外,還參與合成促許旺細(xì)胞和成纖維細(xì)胞增殖有絲分裂因子,并通過(guò)IL-1b誘導(dǎo)NGF的合成[23],從而有效地促進(jìn)了神經(jīng)再生。Nadeau等[24]的研究表明,損傷后誘導(dǎo)的IL-1b、TNF-a釋放與坐骨神經(jīng)遠(yuǎn)端殘株局部中性粒細(xì)胞浸潤(rùn)、急性炎性巨噬細(xì)胞浸潤(rùn)損傷有著密切關(guān)系。缺乏相應(yīng)受體IL-1R1和TNFR1的小鼠中性粒細(xì)胞及巨噬細(xì)胞浸潤(rùn)減少,并且由炎癥反應(yīng)造成的痛覺(jué)過(guò)敏也相應(yīng)減弱。研究發(fā)現(xiàn),通過(guò)抗體消耗中性粒細(xì)胞,在減輕損傷所導(dǎo)致的神經(jīng)痛覺(jué)過(guò)敏的同時(shí)并沒(méi)有影響神經(jīng)的修復(fù)進(jìn)程,提示巨噬細(xì)胞是周圍神經(jīng)軸突損傷后再生中最重要的浸潤(rùn)性免疫細(xì)胞。
有研究指出,單核細(xì)胞MCP-1和MIP-1a在巨噬細(xì)胞的募集中起到了重要的作用[25-28]。TNF-α和IL-1β誘導(dǎo)MCP-1和MIP-1α在損傷后第一天表達(dá)達(dá)到高峰,保證了在單核細(xì)胞募集中的重要作用。體內(nèi)功能阻斷實(shí)驗(yàn)證實(shí),通過(guò)完全抑制巨噬細(xì)胞反應(yīng)和髓鞘清理,最終卻產(chǎn)生了顯著的化學(xué)趨化作用,提示損傷神經(jīng)中急性炎性化學(xué)趨化因子MCP-1和MIP-1 α具有重要作用。Omura等[22]研究顯示,在神經(jīng)損傷后2~3 d內(nèi),固有神經(jīng)內(nèi)源性巨噬細(xì)胞發(fā)生活化、增殖、表達(dá)ED-1抗原,并發(fā)揮吞噬髓鞘碎片的作用,但是血源性巨噬細(xì)胞在損傷5~7 d后到達(dá)損傷點(diǎn)神經(jīng)內(nèi)膜區(qū)域,并從該區(qū)域流入到遠(yuǎn)端神經(jīng)片段中。Cámara等[29]研究發(fā)現(xiàn),巨噬細(xì)胞不僅發(fā)揮清理髓鞘和軸突碎片的作用,同時(shí)也發(fā)揮了以下三方面的作用:①促進(jìn)許旺細(xì)胞和成纖維細(xì)胞的增殖;②釋放神經(jīng)營(yíng)養(yǎng)因子;③表達(dá)和釋放細(xì)胞因子。
在神經(jīng)損傷后修復(fù)的整個(gè)過(guò)程中,適時(shí)地終止炎性反應(yīng),并從損傷神經(jīng)遠(yuǎn)端清除掉吞噬性巨噬細(xì)胞,對(duì)于神經(jīng)再生同樣非常重要[30]。 Fry等[31-32]認(rèn)為,Nogo受體(NgRs)在啟動(dòng)神經(jīng)再生后巨噬細(xì)胞由成髓鞘化許旺細(xì)胞基底膜移除過(guò)程中具有重要作用。研究證實(shí)了NgR表達(dá)于損傷神經(jīng)內(nèi)的巨噬細(xì)胞,并且調(diào)控了巨噬細(xì)胞在遠(yuǎn)端神經(jīng)片段中的遷移和清除。損傷后第7天,主要的吞噬階段幾乎完成,巨噬細(xì)胞已經(jīng)開始大量表達(dá)NgR-1和NgR-2,并通過(guò)相應(yīng)的配體MAG和OMgp,在再生神經(jīng)長(zhǎng)出新軸突時(shí)啟動(dòng)遷移。同時(shí),與損傷后第14天再生成髓鞘神經(jīng)片段中的巨噬細(xì)胞數(shù)量相比,在結(jié)扎或者軸突不能再生性橫斷損傷神經(jīng)遠(yuǎn)端殘株內(nèi)剩余了更多的巨噬細(xì)胞。NgRs和相關(guān)配體的相互作用,以及Rho通路的活化,均參與了巨噬細(xì)胞清除。該研究闡述了從再生神經(jīng)中清除巨噬細(xì)胞的過(guò)程,這也是神經(jīng)成功修復(fù)的關(guān)鍵步驟之一。然而,關(guān)于吞噬性巨噬細(xì)胞遷移回血液的機(jī)制目前仍不清楚,有待于進(jìn)一步實(shí)驗(yàn)研究加以闡明。
在瓦勒氏變性反應(yīng)中,被激活的內(nèi)源性巨噬細(xì)胞和大量浸潤(rùn)損傷神經(jīng)內(nèi)的外源性巨噬細(xì)胞共同發(fā)揮了促進(jìn)神經(jīng)修復(fù)的作用,并最終離開神經(jīng)組織。在此過(guò)程中,參與瓦勒氏變性反應(yīng)的大量巨噬細(xì)胞不僅吞噬局部代謝產(chǎn)物和碎片,并且分泌大量的細(xì)胞因子和化學(xué)因子,為新生軸突提供了適宜的再生微環(huán)境。復(fù)雜而又緊密的非神經(jīng)細(xì)胞建立的適合神經(jīng)生長(zhǎng)的微環(huán)境,有效地促進(jìn)了軸突再生和功能修復(fù)。然而,軸突再生和功能恢復(fù)的效果不僅取決于損傷的類型、程度和損傷部位,同時(shí)也取決于損傷后修復(fù)時(shí)間的長(zhǎng)短,提示神經(jīng)損傷遠(yuǎn)心段的微環(huán)境支持神經(jīng)元再生和軸突生長(zhǎng)的能力是隨著時(shí)間延續(xù)而逐漸減弱的。即使是在周圍神經(jīng)系統(tǒng)中,從多角度上合理調(diào)整細(xì)胞、分子以及信號(hào)通路等因素共同構(gòu)成促進(jìn)神經(jīng)成功再生也只是短暫的過(guò)程。
因此,目前仍需要通過(guò)大量研究,來(lái)深入了解瓦勒氏變性和軸突再生中存在的各種互相作用的關(guān)系,為更好地治療慢性周圍神經(jīng)損傷,以及損傷引發(fā)的慢性神經(jīng)疼痛起到重要的指導(dǎo)作用。
[1] Waller A.Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog,and observations on the alterations produced thereby in the structure of their primitive fibers[J].Philos Trans R Soc Lond B,1850,140:423-429.
[2] Lunn ER,Perry VH,Brown MC,et al.Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve[J].Eur J Neurosci,1989,1(1):27-33.
[3] Coleman MP,Freeman MR.Wallerian degeneration,wld(s),and nmnat[J].Annu Rev Neurosci,2010,33:245-267.
[4] Brown MC,Lunn ER,Perry VH.Consequences of slow Wallerian degeneration for regenerating motor and sensory axons[J].J Neurobiol,1992,23(5):521-536.
[5] Xie XY,Barrett JN.Membrane resealing in cultured rat septa neurons after neurite transection:evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly[J].J Neurosci,1991,11(10):3257-3267.
[6] Chazaud B,Brigitte M,Yacoub-Youssef H,et al.Dual and beneficial roles of macrophages during skeletal muscle regeneration[J].Exerc Sport Sci Rev,2009,37(1):18-22.
[7] Prewitt CM,Niesman IR,Kane CJ,et al.Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord[J].Exp Neurol,1997,148(2):433-443.
[8] Mosser DM,Edwards JP.Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.
[9] Gratchev A,Kzhyshkowska J,Kothe K,et al.Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines,respectively,and respond to exogenous danger signals[J].Immunobiology,2006,211(6-8):473-486.
[10] Edwards JP,Zhang X,Frauwirth KA,et al.Biochemical and functional characterization of three activated macrophage populations[J].J Leukoc Biol,2006,80(6):1298-1307.
[11] Gordon S,Martinez FO.Alternative activation of macrophages:mechanism and functions[J].Immunity,2010,32(5):593-604.
[12] Mantovani A,Sica A,Sozzani S,et al.The chemokine system in diverse forms of macrophage activation and polarization[J].Trends Immunol,2004,25(12):677-686.
[13] David S,Kroner A.Repertoire of microglial and macrophage responses after spinal cord injury[J].Nat Rev Neurosci,2011,12(7):388-399.
[14] Mueller M,Leonhard C,Wacker K,et al.Macrophage response to peripheral nerve injury:the quantitative contribution of resident and hematogenous macrophages[J].Lab Invest,2003,83(2):175-185.
[15] Perry VH,Tsao JW,Fearn S,et al.Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice[J].Eur J Neurosci,1995,7(2):271-280.
[16] Ramaglia V,King RH,Nourallah M,et al.The membrane attack complex ofthe complementsystem isessentialforrapid Wallerian degeneration[J].J Neurosci,2007,27(29):7663-7672.
[17] Vargas ME,Watanabe J,Singh SJ,et al.Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury[J].Proc Natl Acad Sci U S A,2010,107(26):11993-11998.
[18] Goethals S,Ydens E,Timmerman V,et al.Toll-like receptor expression in the peripheral nerve[J].Glia,2010,58(14):1701-1709.
[19] Lee HK,Shin YK,Jung J,et al.Proteasome inhibition suppresses Sch wann cell dedifferentiation in vitro and in vivo[J].Glia,2009,57(16):1825-1834.
[20] Karanth S,Yang G,Yeh J,et al.Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves[J].Exp Neurol,2006,202(1):161-166.
[21] Taskinen HS,Roytta M.The dynamics of macrophage recruitment after nerve transaction[J].Acta Neuropathol,1997,93(3):252-259.
[22] Omura T,Omura K,Sano M,et al.Spatiotemporal quantification of recruit and resident macrophages after crush nerve injury utilizing immunohistochemistry[J].Brain Res,2005,1057(1-2):29-36.
[23] Perry VH,Brown MC.Role of macrophages in peripheral nerve degeneration and repair[J].Bioessays,1992,14(6):401-406.
[24] Narciso MS,Mietto BS,Marques SA,et al.Sciatic nerve regeneration is accelerated in galectin-3 knockout mice[J].Exp Neurol,2009,217(1):7-15.
[25] Toews AD,Barrett C,Morell P.Monocyte chemoattractant protein 1 is responsible for macrophage recruitment following injury to sciatic nerve[J].J Neurosci Res,1998,53(2):260-267.
[26] Siebert H,Sachse A,Kuziel WA,et al.The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system[J].J Neuroimmunol,2000,110(1-2):177-185.
[27] Subang MC,Richardson PM.Influence of injury and cytokines on synthesis of monocyte chemoattractant protein-1 mRNA in peripheral nervous tissue[J].Eur J Neurosci,2001,13(3):521-528.
[28] Boivin A,Pineau I,Barrette B,et al.Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury[J].J Neurosci,2007,27(46):12565-12576.
[29] Camara-Lemarroy CR,Guzman-De LGF,Fernandez-Garza NE.Molecular inflammatory mediators in peripheral nerve degeneration and regeneration[J].Neuroimmunomodulation,2010,17(5):314-324.
[30] Fenrich K,Gordon T.Canadian Association of Neuroscience review:axonal regeneration in the peripheral and central nervous systems-current issues and advances[J].Can J Neurol Sci,2004,31(2):142-156.
[31] Fry EJ,Ho C,David S.A role for Nogo receptor in macrophage clearance from injured peripheral nerve[J].Neuron,2007,53(5):649-662.
[32] David S,Fry EJ,Lopez-Vales R.Novel roles for Nogo receptor in inflammation and disease[J].Trends Neurosci,2008,31(5):221-226.