李磊 李立安
[摘要] 19世紀(jì)60年代發(fā)現(xiàn)了腸道對(duì)葡萄糖具有調(diào)節(jié)作用。這種生理現(xiàn)象主要是由兩個(gè)被稱為“腸促胰素”的腸內(nèi)因子:胰高糖素樣肽-1(7-37)/(7-36)酰胺和葡萄糖依賴性促胰島素多肽(1-42)介導(dǎo)的。GLP-1與GLP-1受體的結(jié)合,刺激cAMP生成,增加葡萄糖依賴性胰島素分泌。研究還證明在體外人的胰島制備中,GLP-1介導(dǎo)β-細(xì)胞凋亡的減弱和胰島素反應(yīng)性增強(qiáng)。很明顯GLP-1/GLP-1受體軸是葡萄糖代謝的關(guān)鍵性生理調(diào)節(jié)器,因此GLP-1受體激動(dòng)劑和DPP-4抑制劑成為治療糖尿病藥物研發(fā)的焦點(diǎn)。
[關(guān)鍵詞] 腸促胰素效應(yīng);葡萄糖依賴性促胰島素多肽;胰高血糖素樣肽-1;GLP-1受體激動(dòng)劑;二肽基肽酶-4抑制劑;糖尿病
[中圖分類號(hào)] R977.1???[文獻(xiàn)標(biāo)識(shí)碼] A???[文章編號(hào)] 2095-0616(2012)21-58-02
Botanical and pharmaceutical research on glucagon-like peptide-1
LI?Lei1??LI?Li'an2
1.Outpatient Department, Art College of the PLA, Beijing 100081,China;2.Department of Gynaecology and Obstetrics, PLA General Hospital, Beijing 100853,China
[Abstract] The regulating effect of intestinal on glucose was found in 1960s.This physiologic phenomenon is primarily mediated by two enteric factors going by the name of the incretins: glucagon-like peptide-1 (7-37)/(7-36)-amide (GLP-1) and glucose dependent insulinotropic polypeptide (1-42). The combination of GLP-1 with GLP-1 receptor stimulates the production of cAMP and enhances the secretion of Glucose dependent insulin. It also demonstrates GLP-1 mediateds the attenuation of β-cell apoptosis and enhances the responsiveness of insulin in an?ex vivo?human islet preparation. It is clear the GLP-1/GLP-1 receptor axis is a key physiologic regulator of glucose metabolism. Therefore GLP-1 agonists and DPP-4 inhibitor become the focus of reserch and development on diabetes drugs.
[Key words] Incretin effect;Gastric inhibitory polypeptide;Glucagon-like peptide-1;GLP-1 receptor agonists; Ddipeptidyl peptidase-4 inhibitors; Diabetes mellitus
腸促胰素(incretin)的發(fā)現(xiàn)開(kāi)啟了糖尿病治療的新篇章,早在上世紀(jì)60年代,Mcintyre N等[1-2]發(fā)現(xiàn),口服葡萄糖對(duì)胰島素分泌的促進(jìn)作用明顯高于靜脈注射,證明了腸道對(duì)葡萄糖的調(diào)節(jié)作用,提出了“腸促胰素效應(yīng)”(incretin effect)。而Perley等證實(shí),這種“腸促胰素效應(yīng)”所產(chǎn)生的胰島素占進(jìn)食后胰島素總量的50%以上。腸促胰素由兩種多肽組成。一種命名為葡萄糖依賴性促胰島素多肽(gastric inhibitory polypeptide,GIP)(1-42)。另一種為胰高血糖素樣多肽-1(glucagon-like peptide-1,GLP-1)。T2DM腸促胰島素效應(yīng)降低表現(xiàn)為對(duì)GIP的治療的抵抗[3]和進(jìn)餐后GLP-1濃度升高幅度較正常人減小。而注射GLP-1引起強(qiáng)大的胰島素分泌反應(yīng)并使血糖正?;痆4],因此GLP-1及其類似物可以作為2型糖尿病治療的一個(gè)重要靶點(diǎn)。本資料僅就GLP-1的生物學(xué)及有關(guān)的藥物研究做一下介紹。
1?GLP-1的生理作用
釋放進(jìn)入血液循環(huán)的GLP-1直接作用于胰島,以葡萄糖濃度依賴性方式促進(jìn)胰島β細(xì)胞分泌胰島素(insulin),主要通過(guò)以下幾方面發(fā)揮降糖作用。(1)GLP-1通過(guò)G蛋白激活腺苷酸環(huán)化酶(AC),使cAMP水平升高,促進(jìn)胰島素基因的轉(zhuǎn)錄、胰島素的合成和分泌,并可刺激胰島β細(xì)胞的增殖和分化,抑制胰島β細(xì)胞凋亡,增加胰島β細(xì)胞數(shù)量[5]。作用于胰島α細(xì)胞,抑制胰高血糖素的釋放,作用于胰島δ細(xì)胞,促進(jìn)生長(zhǎng)抑素的分泌,而生長(zhǎng)抑素又可作為旁分泌激素參與抑制胰高血糖素的分泌。(2)GLP-1作用于中樞神經(jīng)系統(tǒng),抑制胃腸道蠕動(dòng)和胃液分泌,抑制食欲及攝食,延緩胃內(nèi)容物排空,使人產(chǎn)生飽脹感和食欲下降,從而使體重減輕。(3)GLP-1對(duì)心血管的作用已吸引了極大注意力。降低血壓、改善脂質(zhì)和內(nèi)皮/心肌功能,而且有可能改善心血管疾病的預(yù)后。最新動(dòng)物模型的數(shù)據(jù)表明,GLP-1的心臟保護(hù)和血管舒張作用(7-36)是不依賴于已知的GLP-1R,而是至少部分是由其代謝物GLP-1(9-36)介導(dǎo)的[6]。更令人興奮的是它對(duì)中樞神經(jīng)系統(tǒng)的影響。最新的臨床前數(shù)據(jù)顯示了GLP-1的神經(jīng)保護(hù)/神經(jīng)營(yíng)養(yǎng)功能,或許有可能停止/或逆轉(zhuǎn)中樞神經(jīng)系統(tǒng)疾病如阿爾茨海默病(Alzheimer's disease)的神經(jīng)退行性疾病[7]。
2?GLP-1受體(GLP-1R)
GLP-1的生理功能主要是通過(guò)激活細(xì)胞表面的GLP-1受體(GLP-1R)而引發(fā)的。GLP-1是α-螺旋肽,通過(guò)與GLP-1R的細(xì)胞外多個(gè)接觸點(diǎn)結(jié)合并相互作用引起受體信號(hào)[8]。GLP-1R是B族G蛋白偶聯(lián)受體(GPCRs),包括N端區(qū)域和中心區(qū)域兩部分。GLP-1R的N端區(qū)域保存了α-β-βα蛋白質(zhì)組成的3層折疊的B1級(jí)GPCRs,這種結(jié)構(gòu),簡(jiǎn)稱為“胞外域”(ECD)。GLP-1R利用N-末端的胞外域(ECD)作為“親和力陷阱(affinity trap)”以識(shí)別并結(jié)合肽類配體[8]。GLP-1與受體結(jié)合過(guò)程可歸為兩步走:第1步是GLP-1的C端與受體N端結(jié)合,第2步則是N端與受體中心區(qū)域結(jié)合而激活受體。GLP-1的His7等殘基為其與受體結(jié)合的關(guān)鍵位點(diǎn)[9],而GLP-1R的N端的Trp殘基對(duì)配體的親和力有重要影響。
3?作用于GLP-1R的藥物研究
隨著腸促胰島素激素領(lǐng)域取得的重要進(jìn)展及對(duì)GLP-1葡萄糖依賴性促胰島素的分泌和在2型糖尿病病理學(xué)中的作用的認(rèn)識(shí),以及天然的GLP-1被無(wú)處不在的蛋白酶DPP-4迅速降解的發(fā)現(xiàn),導(dǎo)致了對(duì)DPP-4降解抵抗的GLP-1R激動(dòng)劑和DPP-4活性的選擇性抑制劑作為治療藥物的研發(fā)。
3.1?GLP-1受體肽類激動(dòng)劑
改善GLP-1類似物代謝特性的常見(jiàn)方法是在N-末端引入取代基團(tuán)進(jìn)行修飾以減少對(duì)DPP-4的靈敏度[10]。到目前為止,通過(guò)置換天然的GLP-1肽鏈中的氨基酸,以研發(fā)作用時(shí)間長(zhǎng)的分子已取得了成功。艾塞那肽(exenatide)和利拉魯肽(liraglutide)已獲得多個(gè)政府監(jiān)管機(jī)構(gòu)批準(zhǔn)上市用于治療T2DM。
艾塞那肽是一個(gè)39個(gè)氨基酸肽的GLP-1R激動(dòng)劑,在細(xì)胞分析和與天然GLP-1受體競(jìng)爭(zhēng)性結(jié)合研究中證明是充分有效的[11]。它較GLP-1有更長(zhǎng)的作用時(shí)間,生物半衰期約為4 h。2005年4月,艾塞那肽以商品名Byetta成為第1個(gè)由美國(guó)食品和藥物管理局(FDA)批準(zhǔn)用于治療T2DM的GLP-1類似物。利拉魯肽這種分子,“脂肪酸衍生”策略被用來(lái)延長(zhǎng)GLP-1在體內(nèi)的作用。利拉魯肽的血漿消除半衰期為11~15 h[12]。利拉魯肽商品名Victoza,在2010年1月由FDA批準(zhǔn)上市用于治療T2DM。
3.2?二肽基肽酶-4(DPP-4)抑制劑
現(xiàn)在已研發(fā)的DPP-4抑制劑有西他列汀(sitagliptin)、維格列汀(vildagliptin)、沙格列?。╯axagliptin)和利格列?。╨inagliptin)。與GLP-1受體激動(dòng)劑必須按時(shí)皮下注射不同,它們的共同特點(diǎn)是口服有效,因而倍受糖尿病患者的歡迎。
DPP-4抑制劑沒(méi)有GLP-1受體激動(dòng)劑減緩胃排空、增加果腹感、促進(jìn)適度減肥的作用[13]??赡苁怯捎贒PP-4抑制劑阻斷了多肽如GIP和神經(jīng)肽Y的降解,以及對(duì)胃蠕動(dòng)和中樞神經(jīng)系統(tǒng)(CNS)對(duì)食欲的控制發(fā)揮相反的影響[14],故DPP-4抑制劑vildagliptin能顯著降低低血糖的發(fā)病率,老年患者(年齡>65歲)此作用更為明顯。從目前的臨床數(shù)據(jù)看,GLP-1類似物升高GLP-1水平、降低HbA1C和餐后血糖的效果很可能優(yōu)于DPP-4抑制劑,并可較DPP-4抑制劑更有效地發(fā)揮延遲胃排空、減少熱量攝入和改善胰島功能等作用。
隨著腸促胰素,特別是胰高血糖素樣肽-1的生物學(xué)的進(jìn)一步闡明,以及新的以胰高血糖素樣肽-1為靶點(diǎn)的藥物的不斷涌現(xiàn),為糖尿病的治療產(chǎn)生了新的理念。血糖達(dá)標(biāo)率低是全球面臨的共同難題,我國(guó)糖尿病患者中僅有不到1/3的人達(dá)標(biāo)。世界范圍內(nèi)大約80%的2型糖尿病患者糖化血紅蛋白無(wú)法控制在7%以內(nèi)。原因是傳統(tǒng)降糖藥物不能有效地保護(hù)β-細(xì)胞,使得β-細(xì)胞分泌胰島素的功能逐漸減退。而以GLP-1為靶點(diǎn)的藥物能夠刺激胰島β細(xì)胞的增殖和分化,抑制胰島β細(xì)胞凋亡,增加胰島β細(xì)胞數(shù)量,促進(jìn)胰島素的合成和分泌,因而可長(zhǎng)期穩(wěn)定的控制血糖水平,為糖尿病患者帶來(lái)了新的希望。
[參考文獻(xiàn)]
[1] Mcintyre N,Holdsworth CD,Turner DS.New interpretation of oral glucose tolerance[J].The Lancet,1964,2(7349):20-21.
[2] Elrick H,Stimmler L,Hlad CJ,et al.Plasma insulin response to oral and intravenous glucose administration[J].The Journal of Clinical Endocrinology & Metabolism,1964,24:1076-1082.
[3] Krarup T,Saurbrey N,Moody AJ.Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and typeⅡ diabetes mellitus[J].Metabolism,1987,36(7):677-682.
[4] Nauck MA,Kleine N,Orskov C,et al.Normalisation of fasting hyperglycaemia by exogenous glucagon-like peptide 1(7–36 amide)in type 2(non-insulin-dependent) diabetic patients[J].Diabetologia,1993,36:741-744.
[5] Islam D,Zhang N,Wang P,et al.Epac is involved in cAMP stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic alpha and intestinal L cell lines[J].Am J Physiol Endocrinol Metab,2009,296(1):174-181.
[6] Ban K,Noyan-Ashraf MH,Hoefer J,et al.Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways[J].Circulation,2008,117:2340-2350.
[7] Li Y,Duffy KB,Ottinger MA et al.GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer's disease[J].J Alzheimers Dis,2010,19:1205-1219.
[8]?Underwood CR,Garibay P,Knudsen LB,et al.Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor[J].The Journal of Biological Chemistry,2010,285(1):723-730.
[9] Xiao Q,Giguere J,Parisien M,et al.Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo[J].Bioiochem,2001,40(9):2860-2869.
[10]?Siegel EG,Gallwitz B,Scharf G,et al.Biological activity of GLP-1-analogues with N-terminal modifications[J].Regulatory Peptides,1999,79(2-3):93-102.
[11] Goke R,F(xiàn)ehmann HC,Linn T,et al.Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin- secreting beta-cells[J].The Journal of Biological Chemistry,1993,268(26):19650-19655.
[12] Elbrond B,Jakobsen G,Larsen S,et al.Pharmacokinetics,pharmacodynamics,safety,and tolerability of a single-dose of NN2211,a long-acting glucagon-like peptide 1 derivative,in healthy male subjects[J].Diabetes Care,2002,25(8):1398-1404.
[13] Drucker DJ,Nauck MA.The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J].The Lancet,2006,368:1696-1705.
[14] Nauck MA.Incretin-based therapies for type 2 diabetes mellitus:properties,functions,and clinical implications[J].Am J Med,2011,124(1Suppl):S3-18.
(收稿日期:2012-09-14)