高 榮,胡 慶,袁家德
(1.成都電子機(jī)械高等專科學(xué)校,四川成都 611730;2.成都大學(xué)電子信息工程學(xué)院,四川成都610106;3.福州大學(xué)物理與信息工程學(xué)院,福建福州 350108)
AMCBFM分析微帶天線陣列的電磁散射
高 榮1,胡 慶2,袁家德3
(1.成都電子機(jī)械高等專科學(xué)校,四川成都 611730;2.成都大學(xué)電子信息工程學(xué)院,四川成都610106;3.福州大學(xué)物理與信息工程學(xué)院,福建福州 350108)
用自適應(yīng)修正特征基函數(shù)法(AMCBFM)分析微帶天線的電磁散射特性。以矩量法和體面積分方程為基礎(chǔ),把微帶天線介質(zhì)部分用四面體網(wǎng)格剖分,對(duì)應(yīng)于SWG基函數(shù);微帶天線導(dǎo)體部分用三角形網(wǎng)格剖分,對(duì)應(yīng)于RWG基函數(shù)。分析了2×2微帶天線陣列的單站RCS和7×7微帶天線陣列的雙站RCS。結(jié)果表明:AMCBFM能有效分析微帶天線陣列的電磁散射特性,且具有大幅度降低阻抗矩陣大小、減少計(jì)算機(jī)內(nèi)存需求等優(yōu)點(diǎn)。
矩量法;體面積分方程;自適應(yīng)修正特征基函數(shù)方法;微帶天線
電磁場(chǎng)全波分析模型中基于積分方程的矩量法在計(jì)算電磁學(xué)中有著越來(lái)越廣泛的應(yīng)用。但隨著待分析目標(biāo)電尺寸的增加,傳統(tǒng)矩量法需要的存儲(chǔ)量和計(jì)算量也將急劇上升,為此人們提出并著手研究出了多種方法來(lái)減少矩量法的計(jì)算時(shí)間和降低內(nèi)存需求。常用的基于矩量法的快速算法有預(yù)校正-快速傅里葉變換(PFFT)[1-2]、快速多極子法(FMM)、多層快速多極子法(MLFMM)[3-5]、共軛梯度-快速傅里葉變換法(CGFFT)[6-7]、自適應(yīng)積分法(AIM)[8-10]和特征基函數(shù)法(CBFM)[11-12]等。目前,各種快速算法都已經(jīng)在目標(biāo)體的電磁特性數(shù)值分析中得到了不同程度的應(yīng)用。
相比于特征基函數(shù)法(CBFM 自適應(yīng)修正特征基函數(shù)法(AMCBFM 應(yīng)用一種新的精度判斷方法來(lái)便捷地控制電流誤差,以此判斷是否需要計(jì)算更高次的基函數(shù),這樣可以更有效控制計(jì)算精度及提高計(jì)算效率。AMCBFM已經(jīng)在基于面積分方程矩量法中得到了越來(lái)越廣泛的應(yīng)用[13-16]。在此基礎(chǔ)上,筆者將AMCBFM應(yīng)用于基于體面積分方程矩量法,并用該方法具體分析了微帶天線陣列的散射特性,其中,微帶天線介質(zhì)區(qū)域用四面體網(wǎng)格剖分,對(duì)應(yīng)于SWG基函數(shù);微帶天線導(dǎo)體區(qū)域用三角形網(wǎng)格剖分,對(duì)應(yīng)于RWG基函數(shù)。
設(shè)有一任意形狀的理想導(dǎo)體目標(biāo),其表面用S表示,一個(gè)介電常數(shù)為ε(r)的各向同性介質(zhì)目標(biāo)體,其所占空間體積用V表示。設(shè)入射到介質(zhì)金屬混合目標(biāo)體上的均勻平面電磁波電場(chǎng)的電場(chǎng)強(qiáng)度為E i(r),則在理想導(dǎo)體表面S和介質(zhì)體V內(nèi)總電場(chǎng)分別應(yīng)滿足邊界條件:
在介質(zhì)區(qū)域體內(nèi)采用文獻(xiàn)[17]提出的四面體剖分及對(duì)應(yīng)的SWG基函數(shù)將電通量展開;金屬表面電流采用文獻(xiàn)[18]提出的基于三角形面元的RWG矢量基函數(shù)展開,然后再采用伽略金法選配,即可得到矩量法阻抗矩陣并求解。
采用AMCBFM[13]把介質(zhì)金屬混合目標(biāo)體分成M塊,并分別在每個(gè)子塊上求解出初次特征基函數(shù)I p,根據(jù)初次特征基函數(shù)再求解出反映子塊與子塊間相互作用關(guān)系的高次特征基函數(shù)I s,進(jìn)而得到電流的數(shù)學(xué)表達(dá)式,具體步驟如下。
1)計(jì)算初次特征基函數(shù)I p
式中:V i為第i塊的初始激勵(lì);Z i,i為第i塊內(nèi)的自阻抗。
當(dāng)esp即電流精度控制量達(dá)到預(yù)定精度后即可停止計(jì)算更高階的特征基函數(shù),否則轉(zhuǎn)向第5)步。
微帶天線結(jié)構(gòu)尺寸為W=14 mm,L=9.6 mm,Wg=Lg=60 mm,h=0.8 mm,a=b=15 mm,如圖1所示,且相對(duì)介電常數(shù)εr=4.34。按照本文的方法將微帶天線離散為2 401個(gè)四面體單元,則共生成1 754個(gè)邊界面、1 308條公共邊和3 925個(gè)公共面,共含有未知量6 987個(gè)。入射的平面波的頻率為f=5.02 GHz。
在AMCBFM中,目標(biāo)體共被分成了4塊,電流精度控制量esp取0.03,即計(jì)算到三階基函數(shù)就可達(dá)到精度要求。由于目標(biāo)體被剖分生成的網(wǎng)格較多,如果用傳統(tǒng)矩量法則無(wú)法直接計(jì)算。用AMCBFM求出俯仰角θ為0°~90°的單站RCS,給出了數(shù)值計(jì)算結(jié)果,并與文獻(xiàn)[19]的計(jì)算結(jié)果進(jìn)行分析對(duì)比,如圖2所示。從圖2可以觀察出結(jié)果吻合得較好,這表明了用本文的網(wǎng)格模型和AMCBFM分析微帶天線陣列電磁散射特性是可靠的。用AMCBFM方法進(jìn)行分析時(shí),經(jīng)測(cè)試所需的最大內(nèi)存需求為338.264 MB。
天線結(jié)構(gòu)模型的結(jié)構(gòu)及參數(shù)描述仍如圖1所示,結(jié)構(gòu)尺寸分別為W=20 mm,Wg=250 mm,L=30 mm,h=1.6 mm,Lg=260 mm,a=4.5 mm,b=14.5 mm,相對(duì)介電常數(shù)取εr=2.55。則天線陣列被離散成19 301個(gè)四面體,共生成公共面31 960個(gè)、邊界面13 284個(gè)和公共邊13 956個(gè),共含有59 200個(gè)未知量。取入射的平面波的頻率f=4.35 GHz。
該目標(biāo)體被剖分的網(wǎng)格較多,用傳統(tǒng)矩量法同樣無(wú)法直接計(jì)算。在AMCBFM中,該目標(biāo)體被分成49塊,其中天線貼片自然分塊,接地面通過(guò)塊間重疊來(lái)保持電流的連續(xù)性[12]。esp取0.04,計(jì)算到二階基函數(shù)即可達(dá)到精度要求。計(jì)算結(jié)果如圖3所示。用AMCBFM計(jì)算時(shí),計(jì)算時(shí)間僅需51 499 s,測(cè)試的最大內(nèi)存僅需755.368 MB。
圖3 平面微帶天線7×7陣列的θθ極化雙站RCSFig.3 Bistatic RCS(θθpolarization)of microstrip antenna with 7×7 array
在體面積分方程矩量法的基礎(chǔ)上,將自適應(yīng)修正特征基函數(shù)方法應(yīng)用于分析微帶天線陣列的電磁散射特性。與傳統(tǒng)的矩量法相比,該方法在保證計(jì)算精度的同時(shí),不僅計(jì)算時(shí)間短,而且大大節(jié)約了存儲(chǔ)量,為用矩量法計(jì)算電尺寸微帶天線陣列提供了一種行之有效的途徑,大大提高了其工程實(shí)際應(yīng)用價(jià)值。
[1]OKHMATOVSKI V,YUAN M,JEFFREY I,et al.A three-dimensional precorrected-FFT algorithm for fast method of moments solutions of the mixed-potential integral equation in layered media[J].IEEE Transactions on Microwavetheory and Techniques,2009,57(12):3 505-3 517.
[2]PHILLIPS J R,WHITE J K.A precorrected-FFT method for electrostatic analysis of complicated 3-D structures[J].IEEE Trans Computer-Aided Design Integr Circuits Syst,1997,16(10):1 059-1 072.
[3]VANDE G D,MICHIELSSEN E,OLYSLAGER F,et al.A high-performance upgrade of the perfectly matched layer multilevel fast multipole algorithm for large planar microwave structures[J].IEEE Transactions on Antennas and Propagation,2009,57(6):1 728-1 739.
[4]LING F,SONG J,JIN J M.Multilevel fast multipole algorithm for analysis of large-scale microstrip structures[J].IEEE Microwave and Guided Wave Letters,1999,9(12):508-510.
[5]SERTEL K,VOLAKIS J L.Multilevel fast multipole method solution of volume integral equations using parametric geometry modeling[J].IEEE Transactions on Antennas and Propagation,2004,52(7):1 686-1 691.
[6]WANG C F,XIA L,LI L W,et al.BCG-FFT analysis of microstrip structure in multilayered media[A].Asia-Pacific Microwave Conference(APMC)[C].Taipei:[s.n.],2001.212-215.
[7]SARKAR T K,ARVAS E,RAO S M.Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies[J].IEEE Transactions on Antennas and Propagation,1986,34(5):635-640.
[8]MO L,RUI P L,ZHUANG W,et al.Fast analysis of microstrip antenna array by use of the adaptive integral method(AIM)combined with the loose GMRES method[J].IEEE Antennas and Propagation Society International Symposium,2005,53(2):479-482.
[9]GUO J L,LI J Y,LIU Q Z.Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation[J].IEEE Transactions on Antennas and Propagation,2006,54(1):1 910-1 916.
[10]LING F,WANG C F,JIN J M.An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex-image method[J].IEEE Transactions on Microwave Theory and Techniques,2000,48(5):832-839.
[11]YEO J,PRAKASH V V S,MITTRA R.Efficient analysis of a class of microstrip antennas using the characteristic basis function method(CBFM)[J].Microwave and Optical Technology Letter,2003,36(6):456-464.
[12]YEO J,PRAKASH V V S,MITTRA R.Characteristic basis function method:A new technique for efficient solution of method of moments matrix equations[J].Microwave and Optical Technology Letters,2003,36(2):95-100.
[13]HAN Guo-dong,GU Chang-qing.A hybrid QR factorization with dual-MGS and adaptively modified characteristic basis function method for electromagnetic scattering analysis[J].Microwave and Optical Technology Letters,2007,49(11):2 879-2 883.
[14]韓國(guó)棟,潘宇虎,何丙發(fā),等.AMCBFM-MBPE快速分析三維目標(biāo)的寬帶寬角散射特性[J].微波學(xué)報(bào)(Journal of Microwaves),2009,25(6):32-37.
[15]韓國(guó)棟,顧長(zhǎng)青.QR-AMCBFM技術(shù)快速分析電磁散射特性[J].電子科技大學(xué)學(xué)報(bào)(Journal of University of Electronic Science and Technology of China),2008,37(6):879-882.
[16]韓國(guó)棟,顧長(zhǎng)青.電磁散射研究中的自適應(yīng)修正特征基函數(shù)法[J].電子與信息學(xué)報(bào)(Journal of Electronics &Information Technology),2008,30(10):2 364-2 368.
[17]SCHAUBERT D H,WILTON D R,GLISSON A W.A tetrahedral modeling method for electromagnetic scattering by arbitrary shaped inhomogeneous dielectric bodies[J].IEEE Transactions on Antennas and Propagation,1984,32(1):77-85.
[18]RAO S M,WILTON D R,GLISSON A W.Electromagnetic scattering by surfaces of arbitrary shape[J].IEEE Transactions on Antennas and Propagation,1982,30(3):409-417.
[19]YUAN Ning,YEO T S,NIE Xiao-chun,et al.Analysis of probe-fed conformal microstrip antennas on finite grounded substrate[J].IEEE Transactions on Antennas and Propagation,2006,54(2):554-561.
Analysis of electromagnetic scattering of micro-strip antenna array by using AMCBFM
GAO Rong1,HU Qing2,YUAN Jia-de3
(1.Chengdu Electromechanical College,Chengdu Sichuan 611730,China;2.School of Electronic and Information Engineering,Chengdu University,Chengdu Sichuan 610106,China;3.College of Physics and Information Engineering,F(xiàn)uzhou University,F(xiàn)uzhou Fujian 350108,China)
Electromagnetic scattering characteristics of the microstrip antenna array is analyzed by using the adaptively modified characteristic basis function method(AMCBFM).Volume electric field integral equation and SWG basis function are applied to the material region,while the surface electric field integral equation and RWG basis function are applied on the conducting surface of the microstrip antenna array.The method of moments(Mo M)is used to convert the integral equation into a matrix equation.The bistatic RCS of 7×7 microstrip antenna array and the monostatic RCS of 2×2 microstrip antenna array are analyzed numerically.The results indicate that the proposed method has a series of merits:reducing the size of the matrix equation into a small level and saving the memory requirments.
method of moments(Mo M);volume-surface integral equation;AMCBFM;micro-stripantenna
TN82
A
1008-1542(2012)04-0330-04
2012-03-07;責(zé)任編輯:李 穆
福建省自然科學(xué)基金資助項(xiàng)目(2011J01348)
高 榮(1969-),女,山西大同人,講師,碩士,主要從事微波電磁場(chǎng)等方面的研究。