陳志衛(wèi), 劉峰帆, 蘇為科
(浙江工業(yè)大學 藥學院 制藥工程教育部重點實驗室,浙江 杭州 310014)
吡唑類化合物廣泛存在于天然產(chǎn)物和非天然產(chǎn)物中,具有抗菌、抗血糖、抗炎、抗腫瘤等[1~4]藥理活性。傳統(tǒng)的合成方法一般用苯肼與1,3-二羰基化合物反應得到,往往存在或多或少的缺點[5~9],如反應步驟多、原料難得、反應時間長、使用毒性溶劑或貴金屬催化劑等。
本文參考文獻[9,10]方法,環(huán)己酮(1a)與取代苯肼(2a~2f)在乙醇中于室溫反應脫水合成取代苯腙(3a~3f); 3與雙(三氯甲基)碳酸酯(BTC)與DMF制備所得的Vilsmeier試劑作用環(huán)合制得吡唑類化合物(4a~4f, Scheme 1),總收率82%~86%。擴展底物考察了環(huán)戊酮(1g),環(huán)庚酮(1h)與四氫萘酮(1i)與2a的反應(產(chǎn)物4g~4i, Scheme 2),總收率40%~88%。4的結(jié)構(gòu)經(jīng)1H NMR,13C NMR, IR和MS表征,其中4b,4c,4e,4f和4h為新化合物。
WRS-1A型數(shù)字熔點儀(溫度未校正);Varian-400 MHz型核磁共振儀(CDCl3為溶劑,TMS為內(nèi)標);Thermo Nicolet Avatar 370型紅外光譜儀(KBr壓片);Trace DSQ FINNIGSN型質(zhì)譜儀。
Scheme2
所用試劑均為市售分析純。
(1) 3的合成(以3a為例)
在兩口燒瓶中加入1a0.98 g(10 mmol),苯肼(2a) 1.08 g(10 mmol)和乙醇5 mL,攪拌下于室溫反應15 min。冷卻至0 ℃,抽濾,濾餅用少量乙醇洗滌,干燥得白色固體3a,收率98%。
用類似方法合成3b~3h。合成3i需加乙酸60 mg(0.1 mmol)作催化劑,回流反應30 min。
(2)4的合成(以4a為例)
在兩口燒瓶中加入DMF 15 mL,攪拌下于0 ℃分次加入BTC 1.93 g(6.5 mmol),加畢,自然升溫至室溫制得Vilsmeier試劑。冷卻至0 ℃,加入3a1.84 g(9.8 mmol),升至室溫反應10 min。傾入冰水(20 mL)中,充分攪拌,用飽和NaHCO3溶液調(diào)節(jié)至pH 8,用乙酸乙酯(3 ×15 mL)萃取,合并有機層,用水(3×15 mL)洗滌,乙酸乙酯(3×15 mL)萃取,合并萃取液,用無水硫酸鈉干燥,濃縮后經(jīng)硅膠柱層析[洗脫劑:V(石油醚) ∶V(乙酸乙酯)=16 ∶1]分離得4a。
表 1 合成4的實驗結(jié)果Table 1 Experamental results of synthesizing 4
用類似方法合成4b~4f和4h。4g和4i于65 ℃反應18 min合成,后處理方法同4a。4的實驗結(jié)果見表1。
4a:1H NMRδ: 7.54(d,J=7.6 Hz, 2H, ArH), 7.52(s, 1H, CH), 7.31(t,J=7.6 Hz, 2H, ArH), 7.12(t,J=7.2 Hz, 1H, ArH), 2.69(t,J=6.0 Hz, 2H, CH2), 2.52(t,J=6.0 Hz, 2H, CH2), 1.75~1.80(m, 2H, CH2), 1.66~1.70(m, 2H, CH2);13C NMRδ: 151.0, 140.4, 129.3(2C), 125.1, 123.4, 118.3(2C), 118.0, 23.6, 23.5, 23.5, 20.7; IRν: 3 050, 2 930, 2 855, 1 592, 1 506, 1 461, 1 378, 1 334 cm-1。
4b:1H NMRδ: 7.53(s, 1H, CH), 7.51(d,J=5.6 Hz, 2H, ArH), 6.92(d,J=9.2 Hz, 2H, ArH), 2.82(s, 3H, OCH3), 2.77(t,J=6.4 Hz, 2H, CH2), 2.60(t,J=6.4 Hz, 2H, CH2), 1.82~1.88(m, 2H, CH2), 1.74~1.80(m, 2H, CH2);13C NMRδ: 157.4, 150.4, 134.1, 123.7, 120.1(2C), 117.6(2C), 114.2, 55.5, 23.5(2C), 20.8(2C); IRν: 2 929, 2 853, 1 638, 1 564, 1 516, 1 378, 1 250 cm-1; HR-MS(ESI): Calcd for C14H17N2O{[M+H]+} 229.134 1, found 229.134 9。
4c:1H NMRδ: 7.56(d,J=6.8 Hz, 2H, ArH), 7.54(s, 1H, CH), 6.92(d,J=9.2 Hz, 2H, ArH), 2.76(t,J=6.0 Hz, 2H, CH2), 2.60(t,J=6.0 Hz, 2H, CH2), 1.80~1.88(m, 2H, CH2), 1.74~1.80(m, 2H, CH2);13C NMRδ: 151.4, 138.7, 130.6, 129.1(2C), 123.4, 119.4, 118.5(2C), 23.5, 23.4, 23.4, 20.7; IRν: 2 937, 2 855, 1 596, 1 567, 1 501, 1 375, 829, 813, 786 cm-1; HR-MS(ESI): Calcd for C13H14N2Cl{[M+H]+} 233.084 6, found 233.084 1。
4e:1H NMRδ: 7.65~7.67(m, 1H, ArH), 7.56(s , 1H, CH), 7.46~7.48(m, 1H, ArH), 7.28(t,J=8.8 Hz, 1H, ArH), 7.13~7.16(m, 1H, ArH), 2.75(t,J=6.0 Hz, 2H, CH2), 2.59(t,J=6.0 Hz, 2H, CH2), 1.81~1.88(m, 2H, CH2), 1.73~1.79(m, 2H, CH2);13C NMRδ: 151.4, 142.6, 138.7, 130.6, 129.4, 129.1, 123.4, 119.4, 118.5, 23.5, 23.4, 23.3, 20.7; IRν: 2 854, 1 596, 1 491, 1 373, 792, 777, 679 cm-1; HR-MS(ESI): Calcd for C13H14N2Cl{[M+H]+} 233.084 6, found 233.084 9。
4f:1H NMRδ: 7.56(s, 1H, CH), 7.47(s, 1H, ArH), 7.35(d,J=8.0 Hz, 1H, ArH), 7.23(t,J=8.0 Hz, 1H, ArH), 7.00(d,J=7.6 Hz, 1H, ArH), 2.76(t,J=6.4 Hz, 2H, CH2), 2.58(t,J=6.4 Hz, 2H, CH2), 2.36(s, 3H, CH3), 1.81~1.86(m, 2H, CH2), 1.72~1.78(m, 2H, CH2);13C NMRδ: 150.7, 140.0, 139.0, 128.7, 126.0, 123.4, 119.1, 117.8, 115.2, 23.5, 23.4, 23.4, 21.4, 20.7; IRν: 2 981, 2 854, 1 611, 1 496, 1 375 cm-1; HR-MS(ESI): Calcd for C14H17N2{[M+H]+} 213.139 2, found 213.139 1。
4g:1H NMRδ: 7.80(s, 1H, CH), 7.48~7.39(m, 1H, ArH), 7.27~7.29(m, 1H, ArH), 7.03~7.09(m, 2H, ArH), 2.72~2.94(m, 4H, CH2), 2.49~2.56 (m, 2H, CH2);13C NMRδ: 155.9, 143.4, 140.5, 124.4, 120.3, 119.6, 119.3, 118.3, 111.1, 28.7, 25.9, 24.5; IRν: 2 930, 2 849, 1 659, 1 610, 1 468, 965, 760 cm-1。
4h:1H NMRδ: 7.57(d,J=7.6 Hz, 2H, ArH), 7.55(s, 1H, CH), 7.35(t,J=7.6 Hz, 2H, ArH), 7.15(t,J=7.6 Hz, 1H, ArH), 2.83(t,J=6.0 Hz, 2H, CH2), 2.57(t,J=6.0 Hz, 2H, CH2), 1.80~1.86(m, 2H, CH2), 1.62~1.73(m, 4H, CH2);13C NMRδ: 155.8, 139.9, 129.0(2C), 125.0, 124.6, 123.2, 118.0(2C), 31.9, 29.9, 29.5, 27.9, 25.4; IRν: 2 914, 2 844, 1 574, 1 504, 1 388, 1 327 cm-1; HR-MS(ESI): Calcd for C14H17N2{[M+H]+} 213.139 2, found 213.139 5。
4i:1H NMRδ: 7.98(d,J=7.6 Hz, 1H, ArH), 7.73(d,J=7.6 Hz, 2H, ArH), 7.69(s, 1H, CH), 7.43(t,J=8.0 Hz, 2H, ArH), 7.26~7.30(m, 1H, ArH), 7.20~7.26(m, 3H, ArH), 2.98(t,J=7.2 Hz, 2H, CH2), 2.86(d,J=7.2 Hz, 2H, CH2);13C NMRδ: 149.4, 140.1, 136.6, 129.2, 129.0(2C), 128.1, 127.5, 126.6, 125.5, 123.1, 122.3, 118.5, 118.4(2C), 29.5, 19.2; IRν: 2 929, 1 596, 1 561, 1 502, 1 470, 1 440, 1 376, 1 321, 1 276 cm-1。
應用BTC替代傳統(tǒng)的POCl3與DMF制備新型的Vilsmeier試劑與相應底物進行環(huán)合反應制備目標化合物的優(yōu)點在于反應條件溫和,化學選擇性高,而且可以避免后處理中產(chǎn)生容易造成環(huán)境富氧化的磷酸鹽。在4i的合成中, Vilsmeier試劑的使用量由文獻[9]的6 eq降為2 eq,反應時間由6 h降為0.25 h。
本實驗重點考察了環(huán)合反應中原料配比和溫度對收率的影響,對其工藝進行了考察,結(jié)果表明n(3) ∶n(BTC) ∶n(DMF)=1.00 ∶0.66 ∶2.00時收率較高。隨后對反應溫度也進行了考察,15 ℃~30 ℃為較佳溫度,當反應溫度低于15 ℃時,反應時間要延長,反應溫度高于30 ℃時,反應選擇性下降,收率降低。由表1可知,苯肼上的取代基對收率有一定的影響,芳環(huán)上具有給電子取代基一般有利于反應的進行,強吸電子基團不反應(未得到4d)。環(huán)戊酮的反應收率相對較低(如4g的收率僅40%)。
[1] Manikannan R, Venkatesan R, Muthusubramanian S,etal. Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity[J].Bioorg Med Chem Let,2010,20:6920-6924.
[2] Shen D M, Brady E J, Candelore M R,etal. Discovery of novel,potent,selective,and orally active human glucagon receptor antagonists containing a pyrazole core[J].Bioorg Med Chem Lett,2001,21:76-81.
[3] Desaia D, Kaushal N, Gandhi U H. Synthesis and evaluation of the anti-inflammatory properties of selenium-derivatives of celecoxib[J].Chem Biol Interact,2010,188:446-456.
[4] Tobias P, Christina W Y, Jakob E R,etal. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction: induction of growth arrest in MCF-7 cancer cells[J].Org Biomol Chem,2007,5:3963-3970.
[5] Nakhai A, Bergman J. Synthesis of hydrogenated indazole derivatives starting with a,b-unsaturated ketones and hydrazine derivatives[J].Tetrahedron,2009,65:2298-2306.
[6] Stokes B J, Vogel C V, Urnezis L K,etal. Intramolecular Fe(Ⅱ)-catalyzed N-O or N-N bond formation from aryl azides[J].Org Lett,2010,12:2884-2887.
[7] Ka Y L, Saravanan G and Jae N K. Facile synthesis of 2H-indazole derivatives starting from the Baylis-Hillman adducts of 2-cyclohexen-1-one[J].Tetrahedron Lett,2005,46:5387-539.
[8] Peruncheralathan S, Khan T A, Junjappa H. Regioselective synthesis of 1-aryl-3,4-substituted/annulated-5-(methylthio)pyrazoles and 1-aryl-3-(methylthio)-4,5-substituted/annulated pyrazoles[J].J Org Chem,2005,70:10030-10035.
[9] Ganesabaskaran S, Radhakrishnan S, Paramasivan T P. Selective synthesis of some 4,5-dihydro-2H-benzo[g]indazoles and 8,9-dihydro-2H-benzo[e]indazoles via the Vilsmeier-Haack reaction under thermal and microwave assisted conditions[J].J Heterocycl Chem,2006,43:389.
[10] Thierry A, Badia T, Michel F,etal. A One-pot synthesis of 2-substituted 2,4,5,6-tetrahydrocyclopentapyrazoles[J].Synthesis,1988,9:742-743.