楊翠, 汪浩, 閻雪,2, 王曉萍, 樸相范, 李東浩*
(1.延邊大學(xué)長(zhǎng)白山生物資源與功能分子教育部重點(diǎn)實(shí)驗(yàn)室,吉林 延吉133002;2.國(guó)家果酒及果蔬飲品質(zhì)量監(jiān)督檢驗(yàn)中心,吉林 通化134001)
液相微萃取技術(shù)及其發(fā)展
楊翠1, 汪浩1, 閻雪1,2, 王曉萍1, 樸相范1, 李東浩1*
(1.延邊大學(xué)長(zhǎng)白山生物資源與功能分子教育部重點(diǎn)實(shí)驗(yàn)室,吉林 延吉133002;2.國(guó)家果酒及果蔬飲品質(zhì)量監(jiān)督檢驗(yàn)中心,吉林 通化134001)
樣品分析中,以采樣、萃取、分離、濃縮為一體的樣品前處理技術(shù)成為現(xiàn)代樣品分析技術(shù)發(fā)展的新趨向,它同時(shí)考慮了萃取溶劑用量以及樣品前處理裝置的小型化和自動(dòng)化.液相微萃取技術(shù)是近年來(lái)發(fā)展起來(lái)的一種新型的樣品前處理技術(shù),該技術(shù)集采樣、萃取和濃縮為一體,具有萃取溶劑量少、簡(jiǎn)便快速、萃取效率高、易與其他分析儀器聯(lián)用等特點(diǎn),是一種環(huán)境友好的萃取技術(shù).本文綜述了液相微萃取的萃取模式、取樣方式、影響因素和應(yīng)用.
液相微萃??;樣品前處理;環(huán)境分析;分析技術(shù)
樣品的前處理技術(shù)對(duì)分析的結(jié)果有著重要影響,也是整個(gè)分析過(guò)程中最薄弱的環(huán)節(jié)和誤差的主要來(lái)源[1].目前,液-液萃?。↙iquid-Liquid Extraction,LLE)是應(yīng)用最為廣泛的樣品前處理方法,但是該方法存在難于自動(dòng)操作,有機(jī)萃取劑消耗量大(引起二次污染),耗時(shí)較長(zhǎng),實(shí)驗(yàn)步驟繁瑣,液態(tài)樣品易乳化等缺陷;因此,發(fā)展省時(shí)、高效、微型化、有機(jī)溶劑用量少,并易與相關(guān)儀器分析技術(shù)聯(lián)用的樣品前處理技術(shù)逐漸成為人們關(guān)注的焦點(diǎn).近年來(lái),微萃取技術(shù)得到了較快發(fā)展,其中最典型的是液相微萃?。↙iquid Phase Microextraction,LPME),也被稱(chēng)為溶劑微萃?。⊿olvent Microextraction,SME).LPME最早是由Jeannot等[2]在液-液萃取的基礎(chǔ)上提出來(lái)的,該技術(shù)集萃取、純化、濃縮于一體,在萃取過(guò)程中僅需要極少量的有機(jī)溶劑(幾到幾十微升),其靈敏度與液-液萃取相當(dāng),而對(duì)微量或痕量目標(biāo)物的富集作用是液-液萃取所不能比擬的[3].LPME還可通過(guò)調(diào)節(jié)萃取溶劑的極性和酸堿性來(lái)達(dá)到對(duì)某一類(lèi)目標(biāo)物的選擇性萃取,從而減少基質(zhì)中雜質(zhì)成分的干擾[4],并且還可以直接同氣相色譜(GC)、高效液相色譜(HPLC)、質(zhì)譜(MS)、毛細(xì)管電泳(CE)等技術(shù)聯(lián)用.
1997年,He和Lee等人根據(jù)萃取溶劑在萃取過(guò)程中所處的狀態(tài)將LPME分為靜態(tài)液相微萃取 (Static Liquid-Phase Microextraction,Static-LPME)和動(dòng)態(tài)液相微萃?。―ynamic Liquid-Phase Microextraction,Dynamic-LPME)2種模式.
Static-LPME是用微量進(jìn)樣器抽取一定體積的有機(jī)溶劑后,將針頭浸入到水樣中,然后推出溶劑,使之以液滴的形式掛在針頭上;水樣中的目標(biāo)物通過(guò)擴(kuò)散作用分配到有機(jī)溶劑中,經(jīng)過(guò)一定時(shí)間后將溶劑抽回進(jìn)樣針頭中,再進(jìn)入GC分析(如圖1所示).Static-LPME是通過(guò)目標(biāo)物在樣品溶液和萃取溶劑之間達(dá)到分配平衡來(lái)實(shí)現(xiàn)的,但實(shí)際萃取過(guò)程由于受時(shí)間的限制,分析物在兩相間的分配達(dá)到平衡之前就已停止萃取,因此富集效果相對(duì)較差,靈敏度較低[5].但由于該模式對(duì)操作儀器要求低,操作簡(jiǎn)單,且人為因素較少,可以提供較好的重復(fù)性,因此分析工作者通常喜歡采用此種萃取模式[6-9].
Dynamic-LPME是用微量進(jìn)樣器抽取一定量溶劑后,將微量進(jìn)樣器針頭浸入到水樣中,然后抽取水樣進(jìn)入針頭,停留一定時(shí)間,讓水樣中的目標(biāo)物分配進(jìn)入針頭內(nèi)壁上的有機(jī)溶劑相;之后推出水樣但不推出溶劑,如此反復(fù)數(shù)次,最后將有機(jī)溶劑相進(jìn)入GC分析[10],如圖2所示.由于活塞抽動(dòng)的速率較快,萃取溶劑可在針管內(nèi)壁上形成1層液膜,從而使目標(biāo)物在水樣和溶劑液膜之間瞬間達(dá)到平衡,因此可通過(guò)增加活塞的抽動(dòng)次數(shù)來(lái)增加富集效率.Dynamic-LPME模式的檢測(cè)靈敏度高于Static-LPME模式,但由于微量注射器活塞的抽動(dòng)過(guò)程主要由人工完成,所以分析結(jié)果的重復(fù)性不及Static-LPME.
圖1 靜態(tài)液相微萃取示意圖
圖2 動(dòng)態(tài)液相微萃取示意圖
根據(jù)取樣方式的不同,LPME可分為直接液相微萃取、頂空液相微萃取和液相微萃取/反萃取等3種方式.
直接液相微萃取(Direct Liquid-Phase Microextraction,Direct-LPME)是將體積為1~10μL的溶劑微滴懸掛于微量進(jìn)樣器針頭上,然后浸入到樣品溶液中進(jìn)行萃取的萃取方式[11-13],如圖1所示.該技術(shù)主要用于分離富集潔凈水樣中的低濃度分析物,但對(duì)含固體顆粒的復(fù)雜水樣的萃取效果較差.實(shí)驗(yàn)表明,通過(guò)加速攪拌可以提高萃取效率,但液滴可能會(huì)損失甚至掉落.為了克服該技術(shù)存在的缺點(diǎn),1999年P(guān)edersen等首次提出了以中空纖維為載體的液相微萃取技術(shù)(Hollow Fiber-Protected Liquid-Phase Microextraction,HFLPME)[14],該技術(shù)將萃取溶劑用中空纖維保護(hù)起來(lái),將裝有萃取溶劑的中空纖維置于樣品溶液中進(jìn)行萃?。⒁狠腿∈窃诙嗫椎闹锌绽w維腔中進(jìn)行,并不與樣品溶液直接接觸,從而避免了單滴萃取中溶劑容易損失的缺點(diǎn);而且由于大分子、雜質(zhì)等不能進(jìn)入纖維孔,因此還具有固相微萃取(SPME)、SD-LPME等所不具備的樣品凈化功能,適用于復(fù)雜基質(zhì)樣品的直接分析.HF-LPME方法允許劇烈攪拌,因此該方法不僅可以提高傳質(zhì)速度,還可以有效地防止萃取溶劑的揮發(fā),確保液相微萃取在平衡條件下進(jìn)行.
頂空液相微萃?。℉ead Space Liquid-Phase Microextraction,HS-LPME)是頂空取樣和液相微萃取的結(jié)合,是指將有機(jī)溶劑液滴懸于樣品的頂空來(lái)萃取樣品中揮發(fā)、半揮發(fā)性成分的技術(shù).由于該技術(shù)是對(duì)樣品頂空中的成分進(jìn)行萃取,因此在頂空液相微萃取過(guò)程中包含2個(gè)傳質(zhì)過(guò)程:樣品相到頂空的傳質(zhì)和頂空到萃取溶劑的傳質(zhì).由于頂空液相微萃取不與樣品基質(zhì)直接接觸,該方法排除了樣品基質(zhì)的干擾,可以通過(guò)調(diào)節(jié)萃取溶劑的性質(zhì),實(shí)現(xiàn)對(duì)目標(biāo)物的選擇性萃?。瓾S-LPME除了可以對(duì)液態(tài)基質(zhì)進(jìn)行萃取外,也可以用于固體基質(zhì)中揮發(fā)性成分的頂空取樣,而且能夠克服傳統(tǒng)前處理方法中易揮發(fā)目標(biāo)物流失的弊端[15-21].
液相微萃取/反萃?。↙iquid-Phase Microextraction with Back Extraction,LPME/BE)又稱(chēng)為液-液-液微萃?。↙iquid-Liquid-Liquid Microextraction,LLLME),該方法主要是與液相色譜聯(lián)用[21-23].樣品(給體)中的分析物首先被萃取到有機(jī)溶劑(或頂空)中,接著又被反萃取到受體里[24](如圖3所示),最后抽回受體直接進(jìn)行進(jìn)樣分析,無(wú)須進(jìn)一步的處理.該方法的萃取效率與目標(biāo)分析物在給體和受體中的溶解度、有機(jī)溶劑的萃取能力等萃取條件有關(guān)[25].該方法一般適用于在有機(jī)溶劑中富集效率不是很高的分析物,如在對(duì)胺類(lèi)物質(zhì)進(jìn)行萃取時(shí)[26],通過(guò)調(diào)節(jié)樣品的p H值,使胺類(lèi)以中性形式存在,減少胺類(lèi)物質(zhì)在給體中的溶解度,這樣攪拌時(shí)胺類(lèi)化合物會(huì)很容易地被萃取到有機(jī)溶劑中,然后再通過(guò)調(diào)節(jié)受體p H值到強(qiáng)酸性,就可以把胺類(lèi)從有機(jī)溶劑中進(jìn)一步濃縮到富集能力更強(qiáng)的受體(強(qiáng)酸性溶液)里.對(duì)苯酚類(lèi)物質(zhì)[27]的萃取也可采用類(lèi)似的方法,且富集效果較好.
圖3 液相微萃取/反萃取示意圖
影響LPME富集效率的因素有萃取溶劑種類(lèi)、體積和萃取時(shí)間、溫度、攪拌速度、鹽效應(yīng)、水樣(或接收相)p H值等.
1)有機(jī)溶劑對(duì)萃取效率的影響.萃取溶劑的選擇是方法優(yōu)化的關(guān)鍵,選擇萃取溶劑主要遵循“相似相溶原理”,但對(duì)于HS-LPME,萃取溶劑的蒸汽壓也很重要[28].選擇溶劑時(shí)要考慮的有:溶劑在樣品中的溶解度[29]、揮發(fā)性,以及儀器分析[30]與輔助技術(shù)的兼容性等[31].
2)有機(jī)溶劑體積對(duì)萃取效率的影響.一般來(lái)說(shuō),萃取溶劑量越大,被分析物的萃取效率越高,但劑量過(guò)大也不宜.在靜態(tài)LPME中,過(guò)大的液滴很難穩(wěn)定地懸掛在微量注射器的針尖上;而對(duì)于動(dòng)態(tài)LPME而言,萃取溶劑體積增大則進(jìn)入針頭的水樣體積相應(yīng)減少,從而導(dǎo)致萃取相中的目標(biāo)物濃度降低.
3)萃取時(shí)間對(duì)萃取效率的影響.通常認(rèn)為,在達(dá)到分配平衡以前,萃取時(shí)間越長(zhǎng),富集倍數(shù)越大.另外,隨著萃取時(shí)間的增加,有機(jī)相在水中的溶解量也會(huì)增大,萃取效率會(huì)受到嚴(yán)重影響.
4)萃取溫度對(duì)萃取效率的影響.對(duì)樣品基質(zhì)而言,提高溫度能促進(jìn)分析物從樣品基質(zhì)中釋放出來(lái);而對(duì)萃取溶劑而言,由于分析物在萃取溶劑里的溶解過(guò)程是一個(gè)放熱過(guò)程,低溫有利于加速分析物在溶劑中的溶解.所以,實(shí)驗(yàn)時(shí)應(yīng)兼顧萃取時(shí)間和萃取效果,尋找最佳的工作溫度.
5)攪拌速率對(duì)萃取效率的影響.?dāng)嚢枘茉黾幽繕?biāo)分析物在不同介質(zhì)間的傳質(zhì)速率,縮短萃取時(shí)間,但攪拌太快容易造成溶劑微滴的脫落(SDLPME體系中)且易造成空氣泡附著在中空纖維的表面,導(dǎo)致有機(jī)溶劑的揮發(fā)或溶解加快(HFLPME體系中).
6)鹽效應(yīng)對(duì)萃取效率的影響.樣品基質(zhì)中加入一定量的無(wú)機(jī)鹽(NaC1或Na2SO4),可以增加樣品溶液的離子強(qiáng)度,進(jìn)而降低有機(jī)分析物在水相中的溶解度,達(dá)到增加分析物的萃取量、提高分析效率的目的[32-33].但也有實(shí)驗(yàn)證明,在LPME中鹽效應(yīng)并不總是正效應(yīng)[34],因?yàn)檩腿⌒侍岣吲c否也依賴(lài)于目標(biāo)化合物的性質(zhì).
7)p H值對(duì)萃取效率的影響.調(diào)節(jié)水樣和吸收液(對(duì)于三相LPME)的p H值,在適宜的范圍內(nèi)有利于提高目標(biāo)物的萃取效率.它一方面可以減少目標(biāo)物在蛋白質(zhì)、脂肪等雜質(zhì)上的吸附干擾[35],另一方面可以改變分析物的形態(tài),增加其在給體和受體間的分配系數(shù),最終達(dá)到提高萃取效率的目的.
上述液相微萃取技術(shù)的傳質(zhì)過(guò)程往往發(fā)生在一個(gè)封閉的體系里,所以,只有當(dāng)萃取達(dá)到動(dòng)態(tài)平衡狀態(tài)時(shí)才能得到最高的富集率,但這需要很長(zhǎng)的時(shí)間.為了解決在封閉體系下難于提高富集率以及萃取時(shí)間長(zhǎng)等問(wèn)題,近年來(lái)人們開(kāi)始著眼于開(kāi)放的液相微萃取體系的研究.
根據(jù)理想氣體狀態(tài)方程PV=nRT可知,隨著氣相中目標(biāo)物分壓和氣相體積的增加,氣相中某種物質(zhì)的絕對(duì)量將會(huì)增加,所以可以通過(guò)增加氣相中目標(biāo)物分壓和氣相體積的方式增加氣相中某種物質(zhì)的絕對(duì)量.然而對(duì)于復(fù)雜的樣品基質(zhì),單獨(dú)增加萃取體系內(nèi)目標(biāo)物的分壓有一定難度,相對(duì)而言,增加萃取體系內(nèi)的氣相體積比較容易.基于此理論,2009年楊翠等在頂空液相微萃取技術(shù)的基礎(chǔ)上開(kāi)發(fā)了氣流式頂空液相微萃取技術(shù)(Gas Flow Headspace Liquid Phase Microextraction,GF-HS-LPME)[36].該技術(shù)將惰性氣體引入到樣品基質(zhì)表面,與氣相中目標(biāo)物混合,由此帶動(dòng)目標(biāo)物不斷地向萃取液滴運(yùn)動(dòng),提高了動(dòng)力學(xué)傳質(zhì)過(guò)程.當(dāng)混合氣體經(jīng)過(guò)萃取液滴時(shí),目標(biāo)物被萃取溶劑吸附,惰性氣體流出萃取體系.該過(guò)程被不斷重復(fù),直到萃取結(jié)束.在整個(gè)過(guò)程中,通過(guò)氣體吹掃方式,增加了固定體系內(nèi)相對(duì)氣相體積,從而提高了氣相中待測(cè)物質(zhì)的絕對(duì)量,因此在一定程度上提高了萃取率.
GF-HS-LPME技術(shù)集萃取、精制、濃縮為一體,操作簡(jiǎn)單,對(duì)于揮發(fā)性和半揮發(fā)性目標(biāo)物具有很高的靈敏度,且克服了傳統(tǒng)樣品前處理技術(shù)耗時(shí)、耗力、多步萃取的缺點(diǎn),提高了目標(biāo)物的萃取率.但是該方法在實(shí)現(xiàn)樣品中目標(biāo)物的完全萃取上還存在一些問(wèn)題,如萃取時(shí)間長(zhǎng)(大于20 min)、操作困難(單滴萃取溶劑容易損失)、重現(xiàn)性差、定量分析存在一定難度(萃取過(guò)程為不完全萃?。┑鹊龋?/p>
為了克服GF-HS-LPME技術(shù)的缺點(diǎn),2011年楊翠等在其基礎(chǔ)上開(kāi)發(fā)了氣流吹掃微注射器萃?。℅P-MSE)技術(shù)[37].該技術(shù)利用100μL的微量調(diào)節(jié)注射器作為有機(jī)溶劑的支撐體和保護(hù)體;用微量注射器針頭隔離高溫氣化系統(tǒng)和低溫溶劑富集系統(tǒng);目標(biāo)化合物被惰性氣體帶到微量注射器的針筒內(nèi),被萃取溶劑定量捕獲,如圖4所示.GP-MSE技術(shù)的原理如下:在高溫的條件下,樣品瓶中的揮發(fā)性或半揮發(fā)性目標(biāo)化合物從樣品基質(zhì)中快速地蒸發(fā)成氣態(tài)(與GC進(jìn)樣過(guò)程是相似的),進(jìn)而被引入的惰性氣體帶到有機(jī)溶劑相.由于氣流向上推動(dòng)和自身重力的原因,有機(jī)溶劑在微量注射器針筒內(nèi)自動(dòng)往返運(yùn)動(dòng)并且在針筒內(nèi)形成有機(jī)微液膜(OSF),而目標(biāo)化合物在有機(jī)微液膜和氣相之間進(jìn)行分配.在此過(guò)程中,微量有機(jī)溶劑界面的表面積和穩(wěn)定性明顯增加,進(jìn)而提高了萃取效率和重現(xiàn)性.
GP-MSE技術(shù)克服了萃取溶劑損失和微液滴抽回針筒困難等缺點(diǎn),并且注射器能夠直接進(jìn)入GC-MS分析.最重要的是該技術(shù)實(shí)現(xiàn)了完全萃取,使簡(jiǎn)單的定量分析成為可能.另外,由于該技術(shù)具有自身凈化能力,因此有利于延長(zhǎng)色譜柱的使用壽命.該技術(shù)無(wú)需繁瑣的凈化和解析步驟,具有操作簡(jiǎn)單、萃取快速(幾分鐘)、有機(jī)溶劑用量少(幾微升)、自動(dòng)化、集成化、環(huán)境友好等優(yōu)點(diǎn),有利于復(fù)雜樣品的前處理,在醫(yī)學(xué)、環(huán)境科學(xué)、食品、煙草、香料、中草藥的真?zhèn)舞b別和農(nóng)殘檢測(cè)的質(zhì)量控制等領(lǐng)域?qū)?huì)有廣泛的應(yīng)用前景.
圖4 氣流吹掃微注射器萃取示意圖
液相微萃取技術(shù)被應(yīng)用于生物樣品(血液、血漿、尿液、唾液)中藥物的檢測(cè),并能與GC、CE和HPLC等分析儀器聯(lián)用.對(duì)樣品量較少的生物樣,LPME技術(shù)對(duì)目標(biāo)物的富集效率較高且能檢出μg·L-1的痕量物質(zhì).同時(shí),液相微萃取也是一種非常好的凈化技術(shù),它能排除大分子及其他物質(zhì)的干擾.表1中列出了LPME在生物分析中的應(yīng)用以及主要實(shí)驗(yàn)條件.
LPME是一種快速、準(zhǔn)確、靈敏和費(fèi)用低的樣品預(yù)處理技術(shù).即使在處理復(fù)雜基質(zhì)時(shí),該方法也能得到很好的富集倍數(shù)和凈化效果.目前,該技術(shù)已廣泛地應(yīng)用于環(huán)境和食品樣品中各種有毒有機(jī)化合物的檢測(cè)和監(jiān)控.表2中列出了LPME在環(huán)境和食品分析中的應(yīng)用以及主要實(shí)驗(yàn)條件.
LPME技術(shù)被廣泛地應(yīng)用于植物葉片中PAHs和有機(jī)氯農(nóng)藥(OCPs)的分析.GP-MSE是一種新型的樣品前處理技術(shù),集萃取、凈化、濃縮于一體,可用于揮發(fā)性和半揮發(fā)性目標(biāo)物的快速分離與富集.采用GP-MSE技術(shù)萃取糠椴、青楷槭、狗棗獼猴桃、色木槭、接骨木等5種植物葉片中9種PAHs(苊、苊烯、芴、菲、蒽、熒蒽、芘、苯并[a]蒽、屈),其加標(biāo)回收率分別為67.46%~103.37%,98.32%~129.58%,68.79%~115.41%,67.71%~123.99%,72.42%~119.42%;相對(duì)標(biāo)準(zhǔn)偏差均小于15%.文獻(xiàn)[38]利用該技術(shù)直接萃取落葉松中的10種OCPs(α-六六六、β-六六六、γ-六六六、六氯苯、艾氏劑、異艾氏劑、環(huán)氧七氯、氧化氯丹、α-氯丹、γ-氯丹)并且與傳統(tǒng)方法進(jìn)行了比較.傳統(tǒng)方法得到的松針中10種OCPs的回收率 為77.75%~89.76%,相 對(duì) 標(biāo) 準(zhǔn) 偏 差為3.33%~24.57%;GP-MSE方法的回收率為70.27%~92.47%,相對(duì)標(biāo)準(zhǔn)偏差為3.21%~22.67%.與傳統(tǒng)方法相比較,GP-MSE可得到滿意的回收率,同時(shí)也具有好的重復(fù)性,能滿足痕量分析的需要.
LPME技術(shù)還被廣泛地應(yīng)用于植物中揮發(fā)油成分的分析.揮發(fā)油是中藥朝鮮崖柏的主要有效成分之一,被廣泛應(yīng)用到醫(yī)藥、香料、食品等領(lǐng)域.目前,常見(jiàn)的揮發(fā)油萃取方法有水蒸氣蒸餾法(SD)、HS-SPME、HS-LPME等,但這些方法都存在各自的缺點(diǎn).GP-MSE技術(shù)是萃取植物中揮發(fā)油的新方法.利用上述4種方法對(duì)朝鮮崖柏中揮發(fā)油的成分進(jìn)行了分析,GP-MSE法得到88種成分,SD法得到69種成分,HS-SPME法得到56種成分,HS-LPME法得到43種成分.這表明,GP-MSE法較其他3種方法具有更高的萃取效率,可以快速準(zhǔn)確地分析植物中的揮發(fā)油成分.表3列出了4種萃取方法得到的揮發(fā)油主要化學(xué)成分的比較.
LPME技術(shù)具有有機(jī)溶劑用量少、操作簡(jiǎn)單、成本低、選擇性好、富集倍數(shù)高、靈敏度高、重現(xiàn)性好等優(yōu)點(diǎn),并且易與現(xiàn)代分析技術(shù)聯(lián)用,如GC、GC/MS、LC、LC/MS、CE等.該技術(shù)今后在特殊給體或受體的開(kāi)發(fā)、輔助技術(shù)開(kāi)發(fā)、自動(dòng)化微型技術(shù)開(kāi)發(fā)、在線分析技術(shù)開(kāi)發(fā)、聯(lián)用技術(shù)開(kāi)發(fā)等分析技術(shù)領(lǐng)域里有著廣闊的發(fā)展前景,而且在環(huán)境、食品、醫(yī)藥、植物成分分析以及各種組學(xué)研究等領(lǐng)域里也將有著廣闊的應(yīng)用前景.
表1 LPME在生物分析中的應(yīng)用以及主要實(shí)驗(yàn)條件
表2 LPME在環(huán)境、食品分析中的應(yīng)用以及主要實(shí)驗(yàn)條件
[1] 吳景雄,陳梅芹,馬曉國(guó).萃取技術(shù)在環(huán)境樣品預(yù)處理中的應(yīng)用及發(fā)展[J].中國(guó)環(huán)境監(jiān)測(cè),2005,21(2):10-13.
[2] Jeannot M A,Cantwell F F.Solvent microextraction into a single drop[J].Anal Chem,1996,68(13):2236-2240.
[3] Ho T S,Pedersen-Bjergaard S,Rrasmussen K E.Recovery,enrichment and selectivity in liquid-phase microextraction comparison with conventional liquid liquid extraction[J].J Chromatogr A,2002,963:3-17.
[4] Sun S H,Cheng Z H,Xie J P.Identification of volatile basic components in tobacco by headspace liquid-phase microextraction coupled to matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry[J].Rapid Commun Mass Spectrom,2005,19(8):1-6.
[5] He Y,Lee H K.Liquid-phase microextraction in a single drop of organic solvent by using a conventional micmsyringe[J].Anal Chem,1997,69(22):4634-4640.
[6] Yamini Y,Hosseini M H,Hojaty M.Headspace solvent microextraction of trihalomethane compounds into a single drop[J].J Chromatogr Sci,2004,42(1):32-36.
[7] Psillakis E,Kalogerakis N.Application of solvent microextraction to the analysis of nitriaromatic explosives in water samples[J].J Chromatogr A,2001,907:211-219.
[8] de Jager L S,Andrews A R J.Development of a screening method for cocaine and cocaine metabolites in urine using solvent in conjunction with gas chromatography[J].J Chromatogr A,2001,911(1):97-105.
[9] 趙汝松,徐曉白,劉秀.液相微萃取技術(shù)的研究進(jìn)展[J].分析化學(xué)評(píng)述與進(jìn)展,2004,32(9):1245-1251.
[10] 孫世豪,宗永立,謝劍平.頂空液相微萃取技術(shù)綜述[J].煙草化學(xué),2006,5:41-46.
[11] Choi K,Kim Y,Chung D S.Liquid-phase microextraction as an on-line preconcentration method in capillary electrophoresis[J].Anal Chem,2004,3(76):855-858.
[12] Kang Shaoying,Wang Haibo,Ma Ming.Determination of lidocaine in urine by liquid-phase microextraction coupled with high performance liquid chromatography[J].Chinese J Anal Chem,2004,11(32):1425-1470.
[13] Myung S W,Yoon S H,Kim M.Analysis of benzene ethylamine derivatives in urine using the programmable dynamic liquid-phase microextraction(LPME)device[J].Analyst,2003,128:1443-1446.
[14] Pedersen-Bjergaard S,Rasmussen K E.Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J].Anal Chem,1999,71(14):2650-2656.
[15] Theis A L,Waldack A J,Hansen S M.Headspace solvent microextraction[J].Anal Chem,2001,73:5651-5654.
[16] Zhao R S,Lao W J,Xu X B.Headspace liquidphase microextraction of trihalomethanes in drinking water and their gas chromatographic determination[J].Talanta,2004,62:751-756.
[17] Yadollah Y,Mohammad H,Majid H H.Headspace solvent microextraction a new method applied to the preconcentration of 2-butoxyethanol from aqueous solutions into a single microdrop[J].Talanta,2004,62:265-270.
[18] Przyjazny A,Kokosa J M.Analytical characteristics of the determination of benzene,toluene,ethylbenzene and xylenes in water by headspace solvent microextraction[J].J Chromatogr A,2002,977(2):143-153.
[19] Shen G,Lee H K.Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection[J].Anal Chem,2003,75(1):98-103.
[20] Shariati F S,Yamini Y,Bahramifa N.Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water samples[J].Anal Chim Acta,2003,489:21-31.
[21] Ma M,Kang S Y,Zhao Q.Liquid-phase microextraction combined with high-performance liquid chromatography for the determination of local anaesthetics in human urine[J].J Pharm Biomed A-nal,2006,40:128-135.
[22] Hou L,Lee H K.Dynamic three-phase microextraction as a sample preparation technique prior to capillary electrophoresis[J].Anal Chem,2003,75:2784-2789.
[23] Sarafraz-Yazdi A,Beiknejad D,Es’haghi Z.LC determination of mono-substituted phenols in water using liquid-liquid-liquid phase microextraction[J].Chromatographia,2005,62:49-54.
[24] Ma M,Cantwell F F.Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration:quantitative extraction[J].Anal Chem,1998,70(18):3912-3919.
[25] 楊新磊,羅明標(biāo),唐毓萍.三相中空纖維式液相微萃取用于快速富集血漿中的尼古?。跩].色譜,2004,24(6):555-559.
[26] Yamini Y,Reimann C T,Vatanara A,et al.Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier[J].J Chromatogr A,2006,1124(1):57-67.
[27] Zhao L,Lee H K.Determination of phenols in water using liquid phase microextraction with back extraction combined with high-performance liquid chromatography[J].J Chromatogr A,2001,931:95-105.
[28] Yan X,Yang C,Ren C,Li D.Importance of extracting solvent vapor pressure in headspace liquidphase microextraction[J].J Chromatogr A,2008,1205:182-185.
[29] Zhao L,Lee H K.Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry[J].Anal Chem,2002,74(11):2486-2492.
[30] Vanessa C,Chrystelle B M,Lu Y.Headspace single-drop microextraetion for the detection of organotin compounds[J].Talanta,2004,63:555-560.
[31] 羅明標(biāo),楊新磊,曹維鵬.液相微萃取技術(shù)及其在環(huán)境分析中的應(yīng)用[J].環(huán)境污染與防治,2006,2:1-9.
[32] Palit M,Pardasani D,Gupta A K,et al.Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry[J].Anal Chem,2005,77(2):711-717.
[33] Hauser B,Schellin M,Popp P.Membrane-assisted solvent extraction of triazin,organochlorine,and organophosphorus compounds in complex Samples combined with large-volume injection-gas chromatogramphy/mass spectrometric detection[J].Anal Chem,2004,76(20):6029-6038.
[34] Pan H J,Ho W H.Determination of fungicides in water using liquid phase microextraction and gas chromatography with electron capture detection[J].Anal Chim Acta,2004,527:61-67.
[35] Halvorsen T G,Pedersen-Bjergaard S,Rasmussen K E.Liquid-phase microextraction and capillary electrophoresis of citalopram,an antidepressant drug[J].J Chromatogr A,2001,909:87-93.
[36] Cui Y,Jin X Q,Yan C R,et al.Gas flow headspace liquid phase microextraction[J].J Chromatogr A,2009,1216:7694-7699.
[37] Cui Y,Xiang F P,Jin X Q,et al.Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals[J].J Chromatogr A,2011,1218:1549-1555.
[38] 王娟,崔美玉,趙香愛(ài).松針中有機(jī)氯農(nóng)藥的氣流式微注射器直接萃?。跩].延邊大學(xué)學(xué)報(bào):自然科學(xué)版,2011,37(2):136-139.
[39] Hou L,Wen X,Tu C,et al.Combination of liquid-phase microextraction and on-column stacking for trace analysis of amino alcohols by capillary electrophoresis[J].J Chromatogr A,2002,979(1):163-169.
[40] Halvorsen T G,Pedersen-Bjergarrd S,Rasmussen K E.Reduction of extraction times in liquid-phase microextraction[J].J Chromatogr B,2001,760:219-226.
[41] Rasmussen K E,Pedersen-Bjergaard S,Krogh M.Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography,capillary electrophoresis and high-performance liquid chromatography[J].J Chromatogr A,2000,873(1):3-11.
[42] Pedersen-Bjergaard S,Rasmussen K E.Liquidphase microextraction and capillary electrophoresis of acidic drugs[J].Electrophoresis,2000,21(3):579-585.
[43] Andersen S,Halvorsen T G,Pedersen-Bjergaard S,et al.Liquid-phase microextraction combined with capillary electrophoresis,a promising tool for the determination of chiral drugs in biological matrices[J].J Chromatogr A,2002,963(1):303-312.
[44] Kramer K E,Andrews A R J.Screening method for 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in urine using hollow fiber membrane solvent microextraction with in-tube derivatization[J].J Chromatogr B,2001,760(1):27-36.
[45] Jager L D,Andrews A R J.Development of a screening method for cocaine and cocaine metabolites in saliva using hollow fiber membrane solvent microextraction[J].Anal Chim Acta,2002,458(2):311-320.
[46] Ugland H G,Krogh M,Rasmussen K E.Liquidphase microextraction as a sample preparation technique prior to capillary gas chromatographicdetermination of benzodiazepines in biological matrices[J].J Chromatogr B,2000,749(1):85-92.
[47] Halvorsen T G,Pedersen-Bjergaard S,Reubsaet J L E,et al.Liquid-phase microextraction combined with flow-injection tandem mass spectrometry Rapid screening of amphetamines from biological matrices[J].J Sep Sci,2001,24(7):615-622.
[48] Pedersen-Bjergaard S,Ho T S,Rasmussen K E.Fundamental studies on selectivity in 3-phase liquid-phase microextraction(LPME)of basic drugs[J].J Sep Sci,2002,25(3):141-146.
[49] Basheer C,Lee H K,Obbard J P.Determination of organochlorine pesticides in seawater using liquid-phase hollow fibre membrane microextraction and gas chromatography-mass spectrometry[J].J Chromatogr A,2002,968(1):191-199.
[50] Psillakis E,Kalogerakis N.Hollow-fibre liquidphase microextraction of phthalate esters from water[J].J Chromatogr A,2003,999:145-153.
[51] King S,Meyer J S,Andrews A R J.Screening method for polycyclic aromatic hydrocarbons in soil using hollow fiber membrane solvent microextraction[J].J Chromatogr A,2002,982(2):201-208.
[52] Zhao L,Zhu L,Lee H K.Analysis of aromatic amines in water samples by liquid-liquid-liquid microextraction with hollow fiber and high performance liquid chromatography[J].J Chromatogr A,2002,963:239-248.
[53] Zhu L,Lee H K.Liquid-liquid-liquid microextraction of nitrophenols with hollow fiber prior to capillary high performance liquid chromatography[J].J Chromatogr A,2001,924:407-414.
[54] Zhu L,Ee K H,Zhao L,et al.Analysis of phenoxy herbicides in bovine milk by means of liquidliquid-liquid microextraction with a hollow-fiber membrane[J].J Chromatogr A,2002,963(1):335-343.
[55] Shen G,Lee H K.Hollow fiber-protected liquidphase microextraction of triazine herbicides[J].A-nal Chem,2002,74(3):648-654.
Technique and evaluation of liquid-phase microextraction
YANG Cui1, WANG Hao1, YAN Xue1,2, WANG Xiao-ping1, PIAO Xiang-fan1, LI Dong-h(huán)ao1*
(1.Key Laboratory of Nature Resource of the Changbai Mountain and Functional Molecular(Yanbian University),Ministry of Education,Yanji 133002,China;2.National Ratafia and Fruits and Vegetables Drinks Quality Surveillance Test Center,Tonghua 134001,China)
Sample pretreatment techniques that integrates sampling,extraction,separation and concentration are a new concern in the modern sample analyses.It has been simultaneously considered amount of extraction solvent,minimization and automation of the sample pretreatment equipment.Among the several microextraction techniques,the liquid phase microextraction is a new technique developed in recent years.It integrates sampling,extraction,cleanup and concentration into one step.The liquid-phase microextraction is fast,simple,inexpensive,high extract efficiency,little solvent used,easy combined with other analysis instrument,is one kind of environment friendly extraction technique.The extraction types,sampling modes,influencing factors,and application of liquid-phase microextraction technique are discussed in this paper.
liquid-phase microextraction;sample pretreatment;environmental analysis;analysis technique
O656.31
A
1004-4353(2012)03-0208-08
20120613 基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(21027009;21065014)
*通信作者:李東浩(1965—),男,博士,教授,研究方向?yàn)闃悠非疤幚砑夹g(shù)開(kāi)發(fā)、環(huán)境分析和儀器分析.