靳建軍, 郭 軍, 陸慰萱
(1鄭州大學(xué)第一附屬醫(yī)院呼吸與危重醫(yī)學(xué)科, 鄭州 450052; 2中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)院呼吸內(nèi)科, 北京 100730)
他汀類藥物具有不依賴降脂作用的多效性, 能夠發(fā)揮改善內(nèi)皮功能、抑制炎癥反應(yīng)[1]、減輕氧化應(yīng)激、增強(qiáng)纖溶活性[2]和抗血栓形成[3]等多種有益作用。近年研究證實(shí), 他汀類藥物能夠降低靜脈血栓栓塞癥的發(fā)生風(fēng)險(xiǎn)[4,5], 減輕缺血性腦卒中引起的神經(jīng)功能損害[6], 甚至可以降低肝硬化導(dǎo)致的門脈高壓[7], 但他汀類藥物對(duì)急性肺栓塞(acute pulmonary embolism, APE)的影響尚不清楚。鑒于內(nèi)皮功能障礙、局部炎癥反應(yīng)、氧化應(yīng)激、繼發(fā)血栓形成等病理生理學(xué)異常在 APE的發(fā)病機(jī)制中扮演重要角色,我們推測(cè), 他汀類藥物有可能憑借其多效性而對(duì)APE產(chǎn)生保護(hù)效應(yīng)。他汀類藥物還能夠激活NO-cGMP信號(hào)通路[8]、增加內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)的表達(dá)[9],由于激活NO-cGMP信號(hào)通路可以抑制APE引起的肺血管收縮和肺動(dòng)脈壓力增加[10,11], 因此, 我們?cè)O(shè)想,應(yīng)用他汀類藥物干預(yù)可能會(huì)減輕 APE所致的肺動(dòng)脈高壓,而對(duì)APE產(chǎn)生保護(hù)效應(yīng),并對(duì)此進(jìn)行了初步探討。
10周齡雄性Sprague-Dawley大鼠72只(購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物有限公司), 隨機(jī)分為假手術(shù)組、肺栓塞模型組、辛伐他汀干預(yù)組, 每組24只。各組又隨機(jī)分為2 h、6 h和24 h三個(gè)時(shí)間點(diǎn), 每個(gè)時(shí)間點(diǎn)8只動(dòng)物。
在造模前 2周, 各組分別接受生理鹽水和辛伐他汀干預(yù): 假手術(shù)組和肺栓塞模型組生理鹽水灌胃、辛伐他汀干預(yù)組辛伐他?。?0 mg/kg)灌胃,每日1次,連續(xù)14 d,第 13 d經(jīng)左股動(dòng)脈取血制備自體栓子,第14 d經(jīng)左頸外靜脈注入1.5 ml生理鹽水。
右頸外靜脈插管, 采用右心導(dǎo)管法測(cè)定平均肺動(dòng)脈壓(mean pulmonary arterial pressure, mPAP)和右心室收縮壓(right ventricular systolic pressure, RVSP);右頸動(dòng)脈插管, 取動(dòng)脈血0.1 ml, 行動(dòng)脈血?dú)夥治觥7叛幩来笫? 行胸部正中切口, 將左肺以 10%的甲醛溶液固定, 石蠟包埋切片, 蘇木素-伊紅(HE)染色, 觀察肺組織病理學(xué)改變。免疫組織化學(xué)染色檢測(cè)肺動(dòng)脈eNOS蛋白的表達(dá)。Image-Pro Plus病理圖像分析系統(tǒng)進(jìn)行平均光密度(累積光密度值/面積)半定量分析。
采用SPSS11.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)處理, 組間比較采用t檢驗(yàn)和單因素方差分析。P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
肺栓塞模型組 6 h PaO2明顯降低, 與假手術(shù)組比較差異具有統(tǒng)計(jì)學(xué)意義(P<0.01); 辛伐他汀干預(yù)組 6 h PaO2與肺栓塞模型組比較明顯升高(P<0.05), 但與假手術(shù)組比較仍明顯降低(P<0.05)。肺栓塞模型組6 h肺泡-動(dòng)脈氧分壓差(A-aDO2)明顯增加, 與假手術(shù)組比較差異具有統(tǒng)計(jì)學(xué)意義(P<0.01); 辛伐他汀干預(yù)組6 h A-aDO2與肺栓塞模型組比較明顯降低(P<0.05), 但與假手術(shù)組比較仍明顯升高(P<0.05)。肺栓塞模型組6 h二氧化碳分壓(PaCO2)升高, 但與假手術(shù)組和辛伐他汀干預(yù)組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(表1)。
表1 各組大鼠造模后6 h動(dòng)脈血?dú)饨Y(jié)果Table 1 Arterial blood gas analysis of rats at 6 h after model establishment in different groups (n = 8, mmHg,±s)
表1 各組大鼠造模后6 h動(dòng)脈血?dú)饨Y(jié)果Table 1 Arterial blood gas analysis of rats at 6 h after model establishment in different groups (n = 8, mmHg,±s)
注: PaO2: 氧分壓; PaCO2: 二氧化碳分壓; A-aDO2: 肺泡-動(dòng)脈氧分壓差。1mmHg=0.133kPa。與假手術(shù)組比較, *P<0.05, **P<0.01;與肺栓塞模型組比較, #P<0.05
組別 PaO2 PaCO2 A-aDO2假手術(shù)組 90.51±5.63 42.07±8.84 9.18±3.68肺栓塞模型組 66.02±10.26** 51.68±10.14 34.52±11.75**辛伐他汀干預(yù)組 77.29±6.35*# 47.89±5.80 21.94±7.47*#
肺栓塞模型組大鼠不同時(shí)間點(diǎn)的 mPAP,RVSP均較假手術(shù)組明顯升高,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01)。給予辛伐他汀干預(yù)后, 辛伐他汀干預(yù)組大鼠不同時(shí)間點(diǎn)的mPAP和RVSP與肺栓塞模型組比較顯著降低, 差異具有統(tǒng)計(jì)學(xué)意義(P<0.05),但與假手術(shù)組比較仍明顯升高, 差異具有統(tǒng)計(jì)學(xué)意義(P<0.05; 表 2)。
表2 各組大鼠不同時(shí)間點(diǎn)mPAP和RVSPTable 2 mPAP and RVSP of rats at indicated time points in different groups (n = 8, mmHg,±s)
表2 各組大鼠不同時(shí)間點(diǎn)mPAP和RVSPTable 2 mPAP and RVSP of rats at indicated time points in different groups (n = 8, mmHg,±s)
注: mPAP: 平均肺動(dòng)脈壓; RVSP: 右心室收縮壓; 1mmHg=0.133kPa。與假手術(shù)組比較, *P<0.05, **P<0.01; 與肺栓塞模型組比較, #P<0.05。
組別 造模后2h 造模后6h 造模后24h 造模后2h 造模后6h 造模后24h mPAP RVSP假手術(shù)組 21.96±2.31 20.89±2.16 22.06±2.26 28.75±4.30 26.92±3.53 27.94±4.17肺栓塞模型組 31.19±3.70** 30.38±3.76** 30.22±3.01** 43.73±3.75** 43.43±4.42** 41.75±4.34**辛伐他汀干預(yù)組 26.53±2.46*# 25.54±2.39*# 26.10±2.65*# 38.32±3.46**# 37.36±5.35**# 36.57±3.25**#
肺組織免疫組化研究表明, eNOS蛋白陽(yáng)性反應(yīng)產(chǎn)物呈棕黃色, 主要分布于血管內(nèi)皮細(xì)胞、支氣管上皮細(xì)胞和肺泡上皮細(xì)胞的胞漿中。造模后 6h, 肺栓塞模型組大鼠肺動(dòng)脈 eNOS蛋白的平均光密度值較假手術(shù)組降低, 差異具有統(tǒng)計(jì)學(xué)意義(P<0.01);辛伐他汀干預(yù)組大鼠肺動(dòng)脈 eNOS蛋白的平均光密度值較肺栓塞模型組組明顯升高, 差異具有統(tǒng)計(jì)學(xué)意義(P<0.05), 但仍明顯低于假手術(shù)組, 差異具有統(tǒng)計(jì)學(xué)意義(P<0.01; 圖1)。
與假手術(shù)組大鼠比較, 肺栓塞模型組大鼠各時(shí)間點(diǎn)血漿白細(xì)胞介素 6(interleukin-6,IL-6)和腫瘤壞死因子(tumor necrosis factor-α,TNF-α)水平有升高趨勢(shì), 但差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。與肺栓塞模型組大鼠比較, 辛伐他汀干預(yù)組大鼠各時(shí)間點(diǎn)的血漿IL-6和TNF-α水平雖略有降低, 但差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。辛伐他汀干預(yù)組和假手術(shù)組大鼠比較, 各時(shí)間點(diǎn)的血漿 IL-6和 TNF-α濃度無(wú)明顯差異(表 3)。假手術(shù)組、肺栓塞模型組24 h時(shí)間點(diǎn)的TNF-α水平均較2 h時(shí)間點(diǎn)明顯升高, 差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。辛伐他汀干預(yù)組不同時(shí)間點(diǎn)的TNF-α水平無(wú)明顯差異。
圖1 各組大鼠6 h時(shí)間點(diǎn)肺動(dòng)脈eNOS蛋白表達(dá)的比較Figure 1 Expression of eNOS protein at 6 hours in different groups (n=8)
表3 各組大鼠不同時(shí)間點(diǎn)血漿IL-6含量變化Table 3 Serum IL-6 and TNF-α level of rats at indicated time points in different groups (n = 8, ng/L,±s)
表3 各組大鼠不同時(shí)間點(diǎn)血漿IL-6含量變化Table 3 Serum IL-6 and TNF-α level of rats at indicated time points in different groups (n = 8, ng/L,±s)
注: IL-6: 白細(xì)胞介素6; TNF-a: 腫瘤壞死因子a。與造模后2 h比較, *P<0.05
組別 造模后2 h 造模后6 h 造模后24 h 造模后2 h 造模后6 h 造模后24 h IL-6 TNF-α假手術(shù)組 58.67±10.33 63.69±10.83 69.76±14.03 44.89±11.55 57.48±10.79 73.19±16.22*肺栓塞模型組 71.31±9.34 74.09±16.26 86.36±10.91 58.28±12.95 64.49±13.94 92.55±32.54*辛伐他汀干預(yù)組 62.51±15.73 67.16±12.71 73.02±17.30 53.08±7.04 61.12±8.77 68.92±21.86
急性PTE常引起不同程度的呼吸功能障礙, 可表現(xiàn)為低氧血癥和低碳酸血癥。應(yīng)用Rho激酶抑制劑[12]、西地那非[13]、NO[14]等藥物能夠減輕急性PTE時(shí)的低氧血癥。本研究發(fā)現(xiàn), 辛伐他汀干預(yù)能夠增加急性PTE大鼠的動(dòng)脈氧分壓, 表明辛伐他汀可部分逆轉(zhuǎn)急性PTE導(dǎo)致的氧合障礙。由于他汀類藥物具有抑制Rho激酶的作用[15], 我們推測(cè)辛伐他汀改善低氧血癥的機(jī)制可能與抑制Rho激酶信號(hào)通路有關(guān), 一方面, 辛伐他汀可能通過(guò)抑制 Rho激酶松弛支氣管平滑肌[16,17]、減輕支氣管痙攣引起的通氣受限; 另一方面, 辛伐他汀有可能抑制栓塞后血流再分布而改善通氣血流比例失調(diào)。近期研究表明, 匹伐他汀干預(yù)可減輕膿毒癥小鼠的急性肺損傷, 改善低氧血癥[18]。因此辛伐他汀改善低氧血癥的機(jī)制也可能與減輕急性PTE后的肺組織損傷有關(guān)。
有研究發(fā)現(xiàn), 辛伐他汀腹腔注射3 d即可有效地降低野百合堿誘導(dǎo)的肺動(dòng)脈高壓大鼠和低氧性肺動(dòng)脈高壓大鼠的 PAP[19], 表明辛伐他汀具有較強(qiáng)的肺血管擴(kuò)張作用。另有學(xué)者證實(shí), 辛伐他汀具有內(nèi)皮依賴性和非內(nèi)皮依賴的急性血管擴(kuò)張作用[20]。這促使我們?cè)O(shè)想, 應(yīng)用辛伐他汀干預(yù)急性PTE有可能抑制神經(jīng)體液機(jī)制激活引起的肺血管收縮, 降低肺血管阻力和肺動(dòng)脈壓, 減輕右心室后負(fù)荷而改善預(yù)后。本研究顯示, 急性 PTE可引起右室收縮壓和mPAP; 應(yīng)用辛伐他汀干預(yù)能夠減輕急性 PTE引起的肺動(dòng)脈高壓, 表明辛伐他汀具有選擇性的肺血管擴(kuò)張作用。因此, 辛伐他汀有可能成為血流動(dòng)力學(xué)不穩(wěn)定的APE患者的輔助治療選擇。
Toba等[12]應(yīng)用聚苯乙烯微球體靜脈注射誘導(dǎo)大鼠形成急性PTE, 發(fā)現(xiàn)急性PTE時(shí)eNOS蛋白表達(dá)下降, 同時(shí)伴有血漿內(nèi)皮素 1水平升高, 表明急性PTE可引起內(nèi)皮細(xì)胞功能障礙; 另有學(xué)者應(yīng)用免疫組化和RT-PCR技術(shù)檢測(cè)自體血栓急性PTE大鼠肺組織eNOS蛋白和mRNA表達(dá), 發(fā)現(xiàn)急性PTE時(shí)肺組織eNOS蛋白和mRNA表達(dá)下降[21]; 但亦有研究認(rèn)為, 急性 PTE時(shí)肺組織 eNOS表達(dá)無(wú)變化[22],甚至有研究認(rèn)為, 急性PTE時(shí)eNOS表達(dá)增加[23,24]。上述各研究中肺組織 eNOS表達(dá)結(jié)果不一致, 可能與栓子性質(zhì)、栓塞范圍、測(cè)定時(shí)機(jī)等因素存在差異有關(guān)。本研究表明, 急性PTE時(shí)肺組織eNOS蛋白表達(dá)下降, 與多數(shù)文獻(xiàn)報(bào)道一致。肺組織 eNOS蛋白表達(dá)下降可能與栓子引起的肺血管內(nèi)皮細(xì)胞損傷有關(guān)。此外, 由于激活 Rho激酶信號(hào)通路能夠抑制eNOS蛋白表達(dá)[25], 急性PTE引起的肺組織Rho激酶激活[12]可能也參與了 eNOS蛋白表達(dá)的下調(diào)過(guò)程。本研究結(jié)果還顯示, 辛伐他汀干預(yù)可增加PTE大鼠肺組織 eNOS蛋白表達(dá), 表明辛伐他汀能夠改善急性PTE引起的內(nèi)皮細(xì)胞功能障礙。辛伐他汀上調(diào) eNOS蛋白表達(dá)的機(jī)制可能是通過(guò)抑制RhoA/Rho激酶信號(hào)通路[15], 導(dǎo)致eNOS mRNA的半衰期延長(zhǎng)[9]。
本研究比較了各組大鼠不同時(shí)間點(diǎn)的血漿TNF-α水平變化, 未發(fā)現(xiàn)各組大鼠血漿TNF-α水平有明顯差別。Eagleton等[26]應(yīng)用微血管夾阻滯下腔靜脈的方法誘導(dǎo)大鼠自體血栓形成, 48h后使血栓脫落形成肺栓塞, 研究發(fā)現(xiàn)急性PTE對(duì)肺動(dòng)脈壁和肺組織TNF-α, IL-10水平無(wú)影響。Tsang等[27]將自體血凝塊注入左下葉肺動(dòng)脈, 導(dǎo)致豬形成急性 PTE,雖然肺動(dòng)脈壓明顯增加, PaO2降低, 但血漿 TNF-α,IL-1β和IL-8水平變化不明顯。結(jié)合上述研究結(jié)果,可以認(rèn)為自體血栓急性PTE對(duì)血漿TNF-α水平無(wú)影響。本研究同時(shí)發(fā)現(xiàn), 假手術(shù)組和肺栓塞模型組24 h時(shí)間點(diǎn)的TNF-α水平較2 h時(shí)間點(diǎn)明顯升高, 但辛伐他汀干預(yù)組24 h時(shí)間點(diǎn)和2 h時(shí)間點(diǎn)的TNF-α水平無(wú)顯著差別, 表明辛伐他汀能夠抑制手術(shù)刺激引起TNF-α水平升高。
急性PTE時(shí)肺動(dòng)脈壁和肺組織均存在明顯炎癥反應(yīng), 這些局部炎癥反應(yīng)可能與栓子溶解和內(nèi)膜增生有關(guān)[26,28], 但全身炎癥在急性PTE發(fā)病機(jī)制中的作用尚不清楚。有研究發(fā)現(xiàn), 部分急性PTE患者血漿IL-6水平增加[29,30]。但這些患者常合并下肢靜脈血栓形成, 而下肢深靜脈血栓形成可引起血漿 IL-6水平升高[31], Dolci等[32]經(jīng)肺動(dòng)脈導(dǎo)管注入聚苯乙烯微球體誘導(dǎo)豬形成急性 PTE, 使肺動(dòng)脈平均壓加倍可引起低氧血癥和右心室功能障礙, 盡管肺泡灌洗液蛋白質(zhì)含量輕度增加, 但血漿 IL-6水平無(wú)升高。本研究發(fā)現(xiàn), 與假手術(shù)組大鼠相比, 急性 PTE大鼠血漿IL-6水平無(wú)明顯變化, 表明急性PTE引起的肺部炎癥被局限化, 沒(méi)有產(chǎn)生顯著的全身效應(yīng)。
總之, 辛伐他汀干預(yù)能夠?qū)毙訮TE產(chǎn)生多方面的保護(hù)效應(yīng), 包括改善低氧血癥、降低肺動(dòng)脈壓、恢復(fù)內(nèi)皮細(xì)胞功能等, 因而有可能成為血流動(dòng)力學(xué)不穩(wěn)定的急性PTE的輔助治療手段。
[1]Meroni PL, Luzzana C, Ventura D. Anti-inflammatory and immunomodulating properties of statins. An additional tool for the therapeutic approach of systemic autoimmune diseases[J].Clin Rev Allergy Immunol, 2002, 23(3): 263-277.
[2]Bourcier T, Libby P. HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2000, 20(2): 556-562.
[3]Obi C, Wysokinski W, Karnicki K,et al. Inhibition of platelet-rich arterial thrombusin vivo: acute antithrombotic effect of intravenous HMG-CoA reductase therapy[J].Arterioscler Thromb Vasc Biol, 2009, 29(9): 1271-1276.
[4]Ramcharan AS, Van Stralen KJ, Snoep JD,et al. HMG-CoA reductase inhibitors, other lipid-lowering medication,antiplatelet therapy, and the risk of venous thrombosis[J]. J Thromb Haemost, 2009, 7(4): 514-520.
[5]Glynn RJ, Danielson E, Fonseca FA,et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism[J]. N Engl J Med, 2009, 360(18): 1851-1861.
[6]Shabanzadeh AP, Shuaib A, Wang CX. Simvastatin reduced ischemic brain injury and perfusion deficits in an embolic model of stroke[J]. Brain Res, 2005, 1042(1): 1-5.
[7]Trebicka J, Hennenberg M, Laleman W,et al. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase[J]. Hepatology, 2007, 46(1): 242-253.
[8]Kao PN. Simvastatin treatment of pulmonary hypertension:an observational case series[J]. Chest, 2005, 127(4): 1446-1452.
[9]Laufs U, La Fata V, Plutzky J,et al. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors[J]. Circulation, 1998, 97(12): 1129-1135.
[10]Souza-Silva AR, Dias-Junior CA, Uzuelli JA,et al.Hemodynamic effects of combined sildenafil and L-arginine during acute pulmonary embolism-induced pulmonary hypertension[J]. Eur J Pharmacol, 2005, 524(1-3): 126-131.
[11]Dias-Junior CA, Montenegro MF, Florencio BC,et al.Sildenafil improves the beneficial haemodynamic effects of intravenous nitrite infusion during acute pulmonary embolism[J]. Basic Clin Pharmacol Toxicol, 2008, 103(4):374-379.
[12]Toba M, Nagaoka T, Morio Y,et al. Involvement of Rhokinase in the pathogenesis of acute pulmonary embolisminduced polystyrene microspheres in rats[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 298(3): L297-303.
[13]Dias-Junior CA, Vieira TF, Moreno H Jr,et al. Sildenafil selectively inhibits acute pulmonary embolism-induced pulmonary hypertension[J]. Pulm Pharmacol Ther, 2005,18(3): 181-186.
[14]Szold O, Khoury W, Biderman P,et al. Inhaled nitric oxide improves pulmonary functions following massive pulmonary embolism: a report of four patients and review of the literature[J]. Lung, 2006, 184(1): 1-5.
[15]Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide[J]. Circ Res, 2005, 97(12): 1232-1235.
[16]Iizuka K, Shimizu Y, Tsukagoshi H,et al. Evaluation of Y-27632, a Rho-kinase inhibitor, as a bronchodilator in guinea pigs[J]. Eur J Pharmacol, 2000, 406(2): 273-279.
[17]Chiba Y, Sato S, Misawa M. Inhibition of antigen-induced bronchial smooth muscle hyperresponsiveness by lovastatin in mice[J]. J Smooth Muscle Res, 2008, 44(3-4): 123-128.
[18]Takano K, Yamamoto S, Tomita K,et al. Successful treatment of acute lung injury with pitavastatin in septic mice:potential role of glucocorticoid receptor expression in alveolar macrophages[J]. J Pharmacol Exp Ther, 2011,336(2): 381-390.
[19]Hsu HH, Ko WJ, Hsu JY,et al. Simvastatin ameliorates established pulmonary hypertension through a heme oxygenase-1 dependent pathway in rats[J]. Respir Res, 2009, 10: 32.
[20]Mukai Y, Shimokawa H, Matoba T,et al. Acute vasodilator effects of HMG-CoA reductase inhibitors: involvement of PI3-kinase/Akt pathway and Kv channels[J]. J Cardiovasc Pharmacol, 2003, 42(1): 118-124.
[21]Zhang J, Xia L, Zhang X,et al. Influence of L-arginine on the expression of eNOS and COX2 in experimental pulmonary thromboembolism[J]. J Huazhong Univ Sci Technolog Med Sci, 2006, 26(5): 524-527.
[22]Watts JA, Marchick MR, Gellar MA,et al. Up-regulation of arginase II contributes to pulmonary vascular endothelial cell dysfunction during experimental pulmonary embolism[J].Pulm Pharmacol Ther, 2011, 24(4): 407-413
[23]Wan J, Lu LJ, Miao R,et al. Alterations of bone marrow-derived endothelial progenitor cells following acute pulmonary embolism in mice[J]. Exp Biol Med (Maywood),2010, 235(8): 989-998.
[24]Zhang X, Jin Y, Xia L,et al. Hsp90 mediates the balance of nitric oxide and superoxide anion in the lungs of rats with acute pulmonary thromboembolism[J]. Int Immunopharmacol,2009, 9(1): 43-48.
[25]Eto M, Barandiér C, Rathgeb L,et al. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelinconverting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase[J]. Circ Res, 2001, 89(7): 583-590.
[26]Eagleton MJ, Henke PK, Luke CE,et al. Southern Association for Vascular Surgery William J. von Leibig Award. Inflammation and intimal hyperplasia associated with experimental pulmonary embolism[J]. J Vasc Surg,2002, 36(3): 581-588.
[27]Tsang J, Simon M, Stewart K,et al. Proinflammatory cytokines are not released in the circulation following acute pulmonary thromboembolism in pigs[J]. J Invest Surg, 2002,15(1): 29-35.
[28]Zagorski J, Debelak J, Gellar M,et al. Chemokines accumulate in the lungs of rats with severe pulmonary embolism induced by polystyrene microspheres[J]. J Immunol,2003, 171(10): 5529-5536.
[29]Marchena Yglesias PJ, Nieto Rodríguez JA, Serrano Martínez S,et al. Acute-phase reactants and markers of inflammation in venous thromboembolic disease: correlation with clinical and evolution parameters[J]. An Med Interna,2006, 23(3): 105-110.
[30]K?ktürk N, Kanbay A, Bukan N,et al. The value of serum procalcitonin in differential diagnosis of pulmonary embolism and community-acquired pneumonia[J]. Clin Appl Thromb Hemost, 2010, 17(5): 519-525
[31]Roumen-Klappe EM, den Heijer M, van Uum SH,et al.Inflammatory response in the acute phase of deep vein thrombosis[J]. J Vasc Surg, 2002, 35(4): 701-706.
[32]Dolci DT, Fuentes CB, Rolim D,et al. Time course of haemodynamic, respiratory and inflammatory disturbances induced by experimental acute pulmonary polystyrene microembolism[J]. Eur J Anaesthesiol, 2010, 27(1): 67-76.