陳怡霏等
殼聚糖(chitosan,CTS)作為甲殼素脫乙酞氨基后的一種產(chǎn)物,又稱為脫乙酞甲殼素,是纖維素以外第二大最豐富的天然高分子化合物[1]。殼聚糖具有抗微生物、調(diào)節(jié)血脂、增強(qiáng)機(jī)體免疫能力以及抑制腫瘤等生物活性。由于殼聚糖與機(jī)體內(nèi)的氨基葡萄糖類具有相似結(jié)構(gòu),類似于人體骨膠原組織,而且具有無(wú)毒害、良好的生物相容性等特點(diǎn),在骨組織工程的應(yīng)用和研究中發(fā)展迅速,現(xiàn)針對(duì)殼聚糖及其衍生物的生物相容性綜述如下。
1CTS的結(jié)構(gòu)特點(diǎn)及其生物活性
CTS作為一種甲殼素的脫乙酞化產(chǎn)物,結(jié)構(gòu)上與聚多糖類似,游離的氨基可使其溶解度及其生物活性大幅度提高[2]。研究表明,CTS具有良好的促成骨作用[3-4],還可促進(jìn)小血管生成[5]。Muzzarelli [6]對(duì)犬類的研究發(fā)現(xiàn),CTS對(duì)成年犬骨缺陷的治療具有良好療效。由于在中性以及堿性環(huán)境中溶解度較低,在酸性環(huán)境下溶解較大,從而導(dǎo)致其在機(jī)體內(nèi)的運(yùn)用受到較大限制。Wang[7]提出根據(jù)仿生構(gòu)建的相關(guān)理論,對(duì)CTS進(jìn)行磷酸酯化處理,同時(shí)引入鈣離子,使之親水性增加。李曉龍[8]對(duì)磷酸化的CTS研究發(fā)現(xiàn),由于其具有磷酸酯集團(tuán),從而對(duì)血漿中磷酸酯有較好的吸附作用,同時(shí)將磷酸酯固定在其表面,形成仿生生物膜,有效地降低了表面物質(zhì)與血漿蛋白的作用,且可降低血小板的粘附及其活性,進(jìn)而防止血栓形成。CTS作為羥基磷灰石類無(wú)機(jī)質(zhì)以及膠原蛋白為主要成分的有機(jī)物,而在仿生材料中將其具有生物活性的部分植入其骨組織的連接界面,從而對(duì)缺損部位進(jìn)行修復(fù)[9]。對(duì)改性后的CTS研究發(fā)現(xiàn),它具有良好的生物活性,有利于成骨細(xì)胞、牙周膜細(xì)胞等吸附以及聚集,從而促進(jìn)細(xì)胞的分化以及增殖[10]。
2CTS在羥基磷灰石復(fù)合材料中的應(yīng)用
羥基磷灰石復(fù)合材料作為一種具有表面活性物質(zhì)的陶瓷,廣泛用于骨組織工程,其不僅具有良好的強(qiáng)度,適應(yīng)機(jī)體運(yùn)動(dòng)力學(xué)性質(zhì)要求,而且具有良好的韌性,確保長(zhǎng)期使用不會(huì)變形[11]。Wang [12]指出當(dāng)羥基磷灰石復(fù)合材料植入機(jī)體后,將加速機(jī)體的骨礦化過(guò)程,從而誘導(dǎo)骨再生,且由于其降解后無(wú)毒害物質(zhì)產(chǎn)生而被廣泛運(yùn)用。多孔陶瓷由于空隙大、表面粗糙、脆性大而難以塑性,而CTS具有良好的修飾性,且可加速細(xì)胞的吸附,從而可將其塑造成為多種形狀[13-14]。Chen [15]對(duì)單純CTS支架與納米羥基磷灰石/殼聚糖復(fù)合支架的研究發(fā)現(xiàn),種子細(xì)胞在后者中增殖分化的程度明顯高于前者。復(fù)合支架可檢測(cè)到骨鈣素的表達(dá),而且復(fù)合支架具有良好的生物相容性以及骨傳導(dǎo)性[16]。CTS作為一種可降解的生物材料,其結(jié)構(gòu)與聚多糖類似,在機(jī)體中游離的氨基可使其溶解度以及生物活性明顯增加,但是將其作于一種植骨材料時(shí)則暴露出其缺乏生長(zhǎng)引導(dǎo)和誘導(dǎo)特性的缺點(diǎn)。為了提高其在骨修復(fù)中的作用,將CTS與促進(jìn)骨生長(zhǎng)以及相關(guān)細(xì)胞增殖的材料進(jìn)行復(fù)合使用,磷酸鈣鹽不但具有良好的生物相容性,而且具有變異低等特點(diǎn),其鈣離子以及磷離子可釋放并沉積在新生骨中,而其釋放的類骨磷灰石微晶可加速骨細(xì)胞的增殖和分化,提高其生物相容性以及生物作用[17]。
3CTS與可吸收膠原復(fù)合支架材料的聯(lián)合應(yīng)用
CTS以及膠原作為一種生物體內(nèi)的高聚物,是骨組織中的主要構(gòu)成蛋白,而且也是天然的骨移植支架生物材料,具有植骨后生物相容性好,來(lái)源充足以及免疫排除反應(yīng)小等特點(diǎn)[18-19]。但是由于其機(jī)械強(qiáng)度低,含水量過(guò)大以及骨誘導(dǎo)性差等缺點(diǎn),使其在骨移植中的應(yīng)用受到限制[20]。膠原具有特異性分子的識(shí)別功能,可促進(jìn)細(xì)胞的增殖和粘附,而且可對(duì)細(xì)胞的分化有一定的誘導(dǎo)作用,且膠原在機(jī)體內(nèi)降解為氨基酸,具有無(wú)刺激、無(wú)毒以及無(wú)過(guò)敏原等特點(diǎn)而作為細(xì)胞支架材料廣泛應(yīng)用于組織工程,但同時(shí)由于其力學(xué)特點(diǎn)差,且在體內(nèi)使用時(shí)降解速度過(guò)快,也使其應(yīng)用受到一定限制[21-24]。Ragetly等 [25]采用可吸收膠原海綿作為載體研究骨再生作用,發(fā)現(xiàn)CTS與可吸收膠原海綿聯(lián)合組患者,新骨區(qū)以及損傷恢復(fù)區(qū)明顯高于單純組,從而認(rèn)為骨可吸收膠原海綿可作為一種對(duì)殼聚糖進(jìn)行緩解的良好載體,使其以穩(wěn)定速度的釋放,保證骨的形成。
4CTS與聚乳酸復(fù)合支架的聯(lián)合應(yīng)用
聚乳酸作為一種人工合成的高分子物質(zhì),不但具有良好的生物活性,而且具有降解可調(diào)控,可誘導(dǎo)部分基因轉(zhuǎn)錄上調(diào)等優(yōu)點(diǎn),但該類物質(zhì)也具有親水能力差且降解產(chǎn)物為酸性物質(zhì),可改變局部環(huán)境的酸堿度等缺點(diǎn)[26]。實(shí)驗(yàn)發(fā)現(xiàn),聚乳酸聯(lián)合CTS的骨修復(fù)材料,既能良好地保留兩種生物材料的優(yōu)點(diǎn),如:生物活性、生物相容性以及力學(xué)性質(zhì)等,而且還改善了生物材料的加工性能,同時(shí),它們的降解產(chǎn)物可相互中和,從而減小了對(duì)局部環(huán)境酸堿度的影響[27]。Cai [28]對(duì)CTS的研究發(fā)現(xiàn),CTS具有較多的氫鍵,從而保證了在其水解過(guò)程中對(duì)水的滲透以及擴(kuò)散進(jìn)行抑制,降低聚乳酸的降解速度。體外研究發(fā)現(xiàn),細(xì)胞可迅速擴(kuò)散到聚乳酸聯(lián)合殼聚糖支架的間隙,而且吸附能力較好,提示這種復(fù)合材料具有良好的親水性[29]。通過(guò)植入肌肉的實(shí)驗(yàn)也證實(shí),聯(lián)合材料植入后局部炎癥反應(yīng)少,其生物活性和組織相容性明顯提高[30]。
5含有生長(zhǎng)因子的CTS復(fù)合材料的應(yīng)用
生長(zhǎng)因子通過(guò)調(diào)節(jié)細(xì)胞的分化以及細(xì)胞產(chǎn)物的合成,對(duì)成骨過(guò)程進(jìn)行調(diào)節(jié)[31]。其中轉(zhuǎn)化生長(zhǎng)因子作為一種多功能的生長(zhǎng)因子,能夠促進(jìn)細(xì)胞的分化、增殖以及細(xì)胞外基質(zhì)的合成,從而提高了生物材料的活性[32]。此外,生物因子在促進(jìn)新骨形成、創(chuàng)傷愈合以及骨組織重建等過(guò)程中也有較好作用[33]。Lopes等 [34]對(duì)骨形態(tài)發(fā)生蛋白的研究發(fā)現(xiàn),它具有良好的骨誘導(dǎo)作用,主要誘導(dǎo)間充質(zhì)細(xì)胞分化成為骨細(xì)胞以及軟骨細(xì)胞。同時(shí),骨形態(tài)發(fā)生蛋白可異位誘導(dǎo)新骨的形成,但其本身不能作為支架材料,需要一種支架材料進(jìn)行復(fù)合作用。而CTS本身含有大量的帶有正電的自由氨基,具有良好的吸附能力,復(fù)合加入生長(zhǎng)因子后,能夠促進(jìn)骨的生長(zhǎng)[35-36]。
6展望
骨組織工程作為一種新興學(xué)科,主要研究方向?yàn)橹Ъ懿牧?、種子細(xì)胞以及調(diào)節(jié)因子等[37-38]。而現(xiàn)階段的骨組織工程主要由生長(zhǎng)因子以及細(xì)胞外基質(zhì)構(gòu)成,其中細(xì)胞外基質(zhì)作為一種非細(xì)胞性物質(zhì),作為軟骨和骨種子的重要構(gòu)成部分,它為非膠原蛋白和膠原蛋白與糖胺聚糖構(gòu)成的化學(xué)以及物理方法進(jìn)行聯(lián)絡(luò)的網(wǎng)絡(luò)[39]。CTS作為一種與機(jī)體內(nèi)糖胺聚糖的類似物,具有良好的生物相容性[40]。由于它可與多種生物材料相復(fù)合,從而達(dá)到可促進(jìn)骨生長(zhǎng)的目的[41]。但現(xiàn)階段對(duì)于支架的研究仍有較多問(wèn)題需要解決,如支架材料降解與新骨形成的速率不相同,生物材料表面活性物質(zhì)程度較差,材料的細(xì)胞吸附以及促進(jìn)增殖功能較差等[42]。隨著生命科學(xué)以及材料科學(xué)的發(fā)展,從而保證了生物材料向組織工程學(xué)等發(fā)展,同時(shí)隨著納米材料的廣泛運(yùn)用,也是生物材料的發(fā)展方向。
[參考文獻(xiàn)]
[1]Karakecili AG,Satriano C,Gumusderelioglu M,et al.Enhancement of fibroblastic proliferation on chitosan surfaces by immobilized epidermal growth factor[J].Acta Biomater,2008,4(4):989-996.
[2]Cheng NC,Wang S,Young TH.The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities[J].Biomaterials,2012,33(6):1748-1758.
[3]劉昊,張永剛,郭全義,等.新型脫細(xì)胞骨基質(zhì)-殼聚糖骨組織工程支架的制備及性能評(píng)價(jià)[J].軍醫(yī)進(jìn)修學(xué)院學(xué)報(bào),2011,32(6):616-619.
[4]Pulavendran S,Rose C,Mandal AB. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice[J].J Nanobiotechnology,2011,9:15.
[5]Wawro D,Pighinelli L.Chitosan Fibers Modified with HAp/beta-TCP Nanoparticles[J].Int J Mol Sci,2011,12(11):7286-7300.
[6]Muzzarelli RA.Biomedical Exploitation of Chitin and Chitosan via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying[J].Mar Drugs,2011,9(9):1510-1533.
[7]Wang W,Lin S,Xiao Y,et al.Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats[J].Life Sci,2008,82(3-4):190-204.
[8]李曉龍,穆長(zhǎng)征,馬云勝.膠原-殼聚糖支架材料與間充質(zhì)干細(xì)胞的組織相容性[J].中國(guó)組織工程研究與臨床康復(fù),2011, 15(8):1377-1380.
[9]Canter HI,Vargel I,Korkusuz P,et al. Effect of use of slow release of bone morphogenetic protein-2 and transforming growth factor-Beta-2 in a chitosan gel matrix on cranial bone graft survival in experimental cranial critical size defect model[J].Ann Plast Surg,2010,64(3):342-350..
[10]劉巍,朱新輝,張潔,等.Matrigel凝膠和殼聚糖/磷酸甘油凝膠兩種支架體外構(gòu)建組織工程軟骨的比較[J].江蘇醫(yī)藥,2011,37(6):627-629.
[11]Kashiwazaki H,Kishiya Y,Matsuda A,et al.Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties[J].Biomed Mater Eng,2009,19(2-3):133-140.
[12]Wang Z,Hu Q.Preparation and properties of three-dimensional hydroxyapatite/chitosan nanocomposite rods[J].Biomed Mater,2010,5(4):045007.
[13]Rajiv Gandhi M,Kousalya GN, Meenakshi S.Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite[J].Int J Biol Macromol,2011,48(1):119-124.
[14]Han J,Zhou Z,Yin R,et al.Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization[J].Int J Biol Macromol,2010,46(2):199-205.
[15]Chen J,Zhang G,Yang S,et al.Effects of in situ and physical mixing on mechanical and bioactive behaviors of nano hydroxyapatite-chitosan scaffolds[J].J Biomater Sci Polym Ed,2011,22(15):2097-2106.
[16]Ge H,Zhao B,Lai Y,et al.From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method[J].J Mater Sci Mater Med,2010,21(6):1781-1787.
[17]Pramanik N,Mishra D,Banerjee I,et al.Chemical synthesis, characterization, and biocompatibility study of hydroxyapatite/chitosan phosphate nanocomposite for bone tissue engineering applications[J].Int J Biomater,2009,2009:512417.
[18]Uriarte-Montoya MH,Arias-Moscoso JL,Plascencia-Jatomea M,et al.Jumbo squid (Dosidicus gigas) mantle collagen: extraction, characterization, and potential application in the preparation of chitosan-collagen biofilms[J].Bioresour Technol,2010,101(11):4212-4219.
[19]Yang Z,Mo L,Duan H,et al.Effects of chitosan/collagen substrates on the behavior of rat neural stem cells[J].Sci China Life Sci,2010,53(2):215-222.
[20]Chiu LL,Radisic M.Controlled release of thymosin beta4 using collagen-chitosan composite hydrogels promotes epicardial cell migration and angiogenesis[J].J Control Release,2011,155(3):376-385.
[21]Sawaguchi N,Majima T,F(xiàn)unakoshi T,et al.Effect of cyclic three-dimensional strain on cell proliferation and collagen synthesis of fibroblast-seeded chitosan-hyaluronan hybrid polymer fiber[J].J Orthop Sci,2010, 15(4):569-577.
[22]劉建斌.殼聚糖-明膠/β-磷酸三鈣復(fù)合體作為組織工程軟骨支架材料的實(shí)驗(yàn)研究[J].組織工程與重建外科,2010,6(6) :319-322.
[23]Kung S,Devlin H,F(xiàn)u E,et al.The osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces in rats[J].J Periodontal Res,2011,46(1):126-133.
[24]Porporatto C,Canali MM,Bianco ID,et al.The biocompatible polysaccharide chitosan enhances the oral tolerance to type II collagen[J].Clin Exp Immunol,2009,155(1):79-87.
[25]Ragetly G,Griffon DJ,Chung YS.The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis[J].Acta Biomater,2010,6(10):3988-3997.
[26]Araujo AB,Lemos AF,F(xiàn)erreira JM.Rheological,microstructural,and in vitro characterization of hybrid chitosan-polylactic acid/hydroxyapatite composites[J]. J Biomed Mater Res A,2009,88(4):916-922.
[27]Shen H,Shen ZL,Zhang PH,et al.Ciliary neurotrophic factor-coated polylactic-polyglycolic acid chitosan nerve conduit promotes peripheral nerve regeneration in canine tibial nerve defect repair[J].J Biomed Mater Res B Appl Biomater,2010,95(1):161-170.
[28]Cai X,Tong H,Shen X,et al.Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties[J].Acta Biomater,2009,5(7):2693-2703.
[29]Jung UW,Song KY,Kim CS,et al.Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect[J].Biomed Mater,2007,2(3):S101-105.
[30]Fu J,Wang D,Wang T,Yet al.High entrapment efficiency of chitosan/polylactic acid/tripolyphotspate nanosized microcapsules for rapamycin by an emulsion-evaporation approach[J].J Biomed Nanotechnol,2010,6(6):725-728.
[31]Leipzig ND,Wylie RG,Kim H,et al.Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds[J].Biomaterials,2011,32(1):57-64.
[32]Tang DW,Yu SH,Ho YC,et al.Heparinized chitosan/poly(gamma-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin[J].Biomaterials,2010,31(35):9320-9332.
[33]Degim Z,Celebi N,Alemdaroglu C,et al.Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing[J].Int Wound J,2011,8(4):343-354.
[34]Lopes JB,Dallan LA,Moreira LF,et al.Synergism between keratinocyte growth factor and carboxymethyl chitosan reduces pericardial adhesions[J].Ann Thorac Surg,2010,90(2):566-572.
[35]Supaprutsakul S,Chotigeat W,Wanichpakorn S,et al.Transfection efficiency of depolymerized chitosan and epidermal growth factor conjugated to chitosan-DNA polyplexes[J].J Mater Sci Mater Med,2010,21(5):1553-1561.
[36]Nakamura S,Nambu M,Ishizuka T,et al.Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization[J].J Biomed Mater Res A,2008,85(3):619-627.
[37]Salva E,Kabasakal L,Eren F,et al.Chitosan/short hairpin RNA complexes for vascular endothelial growth factor suppression invasive breast carcinoma[J].Oligonucleotides,2010,20(4):183-190.
[38]Choi JS,Yoo HS.Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties[J].J Biomed Mater Res A,2010,95(2):564-573.
[39]Rakkiettiwong N,Hengtrakool C,Thammasitboon K,et al.Effect of novel chitosan-fluoroaluminosilicate glass ionomer cement with added transforming growth factor beta-1 on pulp cells[J].J Endod,2011,37(3):367-371.
[40]Ho YC,Wu SJ,Mi FL,et al.Thiol-modified chitosan sulfate nanoparticles for protection and release of basic fibroblast growth factor[J].Bioconjug Chem,2010,21(1):28-38.
[41]Canter HI.Comment on "the effect of continuous release of recombinant human epidermal growth factor (rh-EGF) in chitosan film on full thickness excisional porcine wounds"[J].Ann Plast Surg,2009,63(4):468.
[收稿日期]2012-04-16[修回日期]2012-06-05
編輯/李陽(yáng)利