王師平 郭樹(shù)忠
組織工程是應(yīng)用生命科學(xué)和工程學(xué)原理,研究開(kāi)發(fā)能夠修復(fù)、維持或改善組織損傷能力的生物替代物的一門(mén)學(xué)科[1]。利用組織工程方法再造軟骨,為臨床上軟骨缺損的修復(fù)帶來(lái)了新的途徑,種子細(xì)胞作為軟骨組織工程學(xué)研究的首要方面,它的來(lái)源途徑也就尤為重要。目前的組織工程軟骨種子細(xì)胞的來(lái)源主要為自體軟骨細(xì)胞、同種異體軟骨細(xì)胞、成纖維細(xì)胞、干細(xì)胞、轉(zhuǎn)基因細(xì)胞等,成熟軟骨細(xì)胞是最常被關(guān)注的種子細(xì)胞,人們已經(jīng)深入研究了其產(chǎn)生、維持和改造軟骨細(xì)胞外基質(zhì)的作用;成纖維細(xì)胞來(lái)源廣泛,并能誘導(dǎo)其直接向軟骨轉(zhuǎn)化[2];干細(xì)胞的研究則成為近期的熱點(diǎn),它不但有多向分化潛能并可來(lái)源于多種組織,這類細(xì)胞可在維持其分化潛能的前提下通過(guò)多種途徑擴(kuò)增,此外干細(xì)胞還能通過(guò)基因?qū)W上的改變來(lái)誘導(dǎo)或增強(qiáng)軟骨化過(guò)程。目前的研究目標(biāo)就是找到一種能被簡(jiǎn)單分離出來(lái),具有擴(kuò)增能力并能在培養(yǎng)過(guò)程中表達(dá)和合成軟骨特異成分(如Ⅱ型膠原和糖胺多糖)的理想種子細(xì)胞[3]。
1各種成熟軟骨細(xì)胞
自體軟骨細(xì)胞是當(dāng)前組織工程研究中最常用的種子細(xì)胞來(lái)源。目前,許多研究?jī)A向于使用關(guān)節(jié)軟骨細(xì)胞作為軟骨修復(fù)的可行性細(xì)胞來(lái)源,但是獲取關(guān)節(jié)軟骨是有創(chuàng)的并且潛在供區(qū)并發(fā)癥和功能損傷。此外,細(xì)胞收獲率低、分裂速度慢和生物活性低等缺陷都進(jìn)一步限制了關(guān)節(jié)軟骨的臨床應(yīng)用。由于以上限制,研究者已著手尋找其他自體軟骨細(xì)胞來(lái)源,這包括耳軟骨、鼻軟骨和肋軟骨等。由于這些自體軟骨在部位、功能和組成上的不同而造成它們?cè)诩?xì)胞外基質(zhì)的生成、生化、物理性質(zhì)和生物力學(xué)方面的差異,因此,應(yīng)根據(jù)實(shí)際情況具體選擇使用[3]。
彈性軟骨包括形成耳的耳廓軟骨和會(huì)厭軟骨,Van Osch等[4]提出人類耳廓軟骨有應(yīng)用于軟骨修復(fù)的潛力。與關(guān)節(jié)軟骨相比,耳廓軟骨的細(xì)胞獲取量可提高20%并且其細(xì)胞增殖速度較前者快4倍;體內(nèi)培養(yǎng)時(shí),通過(guò)特殊染色觀察到它可形成富含蛋白多糖的基質(zhì);此外,在體內(nèi)培養(yǎng)時(shí)耳廓軟骨與關(guān)節(jié)軟骨相比,前者在生物化學(xué)和組織學(xué)上與未成熟軟骨有更高的相似性[5-7]。鼻軟骨是一種透明軟骨,它在顱頜面外科與整形外科得到了廣泛的應(yīng)用。成體鼻軟骨能生成較多的Ⅰ/Ⅱ型膠原并能蓄積GAG[8]。此外,鼻軟骨在單層培養(yǎng)時(shí)細(xì)胞增殖速度較關(guān)節(jié)軟骨快4倍[8],并能低密度種植培養(yǎng)且不會(huì)發(fā)生去分化作用[9]。同時(shí),在不同的載體和支架上,鼻軟骨細(xì)胞已被成功地培養(yǎng)成多細(xì)胞大顆粒聚集體[10-11]。其他研究還表明在去血清培養(yǎng)時(shí),鼻軟骨細(xì)胞能對(duì)TGF-β1、FGF-2、BMP-2和IGF-1[12]等生長(zhǎng)因子應(yīng)答,同時(shí)其增殖速度和基質(zhì)沉積量也有所提高。
在一項(xiàng)軟骨細(xì)胞來(lái)源的對(duì)照研究中,研究者把牛鼻軟骨、肋軟骨和耳軟骨細(xì)胞置于多聚合物支架上生長(zhǎng)4周[13],不同軟骨細(xì)胞的增殖率和基因表達(dá)情況各不相同,其中Ⅱ型膠原和蛋白聚糖表達(dá)量最高的是肋軟骨細(xì)胞,然后是鼻軟骨、關(guān)節(jié)軟骨和耳軟骨細(xì)胞;同時(shí)不同細(xì)胞增殖后構(gòu)成的形狀也有差別,關(guān)節(jié)軟骨細(xì)胞增殖后直徑最大而肋軟骨細(xì)胞形成結(jié)構(gòu)則最厚。另一項(xiàng)研究關(guān)注生長(zhǎng)因子對(duì)以上各軟骨細(xì)胞的作用,其具體作用表現(xiàn)為可加快細(xì)胞增殖速度、提高GAG/DNA含量和增量調(diào)節(jié)Ⅱ型膠原的表達(dá);然而再分化現(xiàn)象僅發(fā)生于耳廓軟骨和鼻軟骨細(xì)胞增殖過(guò)程中[14]。此外,Johnson等[15]指出在活體內(nèi),關(guān)節(jié)、耳和肋軟骨細(xì)胞在纖維蛋白膠軟骨合成物上培養(yǎng)時(shí),可形成新的軟骨基質(zhì)。
2成纖維細(xì)胞
成纖維細(xì)胞容易培養(yǎng),且擴(kuò)增性極好,對(duì)組織工程學(xué)來(lái)說(shuō),成纖維細(xì)胞不但來(lái)源充足,并且從皮膚取材其創(chuàng)傷較小。雖然將成纖維細(xì)胞直接植入軟骨缺損區(qū)會(huì)導(dǎo)致纖維組織生成[16],可是在適當(dāng)?shù)呐囵B(yǎng)條件下,成纖維細(xì)胞可重新向軟骨組織分化。經(jīng)IGF-1預(yù)先處理的人皮膚成纖維細(xì)胞培養(yǎng)于蛋白多糖樣聚合物上,其GAGs和Ⅱ型膠原染色呈陽(yáng)性[17];此外,當(dāng)培養(yǎng)于去礦物質(zhì)骨[18]或生長(zhǎng)于乳酸[4]環(huán)境中,皮膚成纖維細(xì)胞可表達(dá)軟骨特異性的基質(zhì)蛋白,如蛋白聚糖和Ⅱ型膠原。同時(shí),成纖維細(xì)胞可表達(dá)TGF-β,將其注射入軟骨缺損處,在6周后可觀察到有新生透明軟骨生成[19]。最近,Deng等[20]分離出一種皮膚來(lái)源的細(xì)胞亞群,這種細(xì)胞命名為“真皮來(lái)源蛋白多糖敏感細(xì)胞(DIAS)”。此外,DIAS細(xì)胞的立體自我分化增殖可形成豐富的軟骨特異性細(xì)胞外基質(zhì)。
3干細(xì)胞
近來(lái),干細(xì)胞作為自身軟骨種子細(xì)胞來(lái)源的又一選擇,引起了組織工程界的廣泛關(guān)注。1998年,研究者發(fā)現(xiàn)骨髓干細(xì)胞在有TGF-β1存在下以細(xì)胞團(tuán)塊的方式培養(yǎng)時(shí)可有軟骨形成[21]。之后,脂肪組織被發(fā)現(xiàn)也可作為一種干細(xì)胞來(lái)源,并且它可通過(guò)簡(jiǎn)單的局麻手術(shù)即可分離獲得[22],此外,研究用于軟骨修復(fù)的干細(xì)胞還可來(lái)源于肌肉[23]、滑膜[24]和骨膜[25]等。
3.1 骨髓間充質(zhì)干細(xì)胞(BMSCs):骨髓中只含有少量間充質(zhì)干細(xì)胞,僅占骨髓細(xì)胞的0.01/萬(wàn)~1.00/萬(wàn),并隨年齡的增加而減少。體外單層培養(yǎng)的間充質(zhì)干細(xì)胞外形類似成纖維細(xì)胞,呈長(zhǎng)梭形且體積較大。原代細(xì)胞接種貼壁后可形成2~4個(gè)細(xì)胞組成的細(xì)胞團(tuán),經(jīng)過(guò)2~4天的潛伏期后開(kāi)始迅速地克隆性擴(kuò)增,類似漩渦狀盤(pán)旋排布,經(jīng)傳代的細(xì)胞形態(tài)更趨一致,對(duì)數(shù)增長(zhǎng)期細(xì)胞倍增時(shí)間為33~38h。具有強(qiáng)大的增殖擴(kuò)增能力是BMSCs一個(gè)重要的生物學(xué)特征,其可穩(wěn)定傳至20~25代而不改變細(xì)胞性狀,Conget等[26]檢測(cè)人BMSCs中約有20%的細(xì)胞處于靜止期(G0期),此比例足以維持增殖分化所需的細(xì)胞供給。Colter等[27]報(bào)道極低密度培養(yǎng)能保持BMSCs的增殖力,20ml的骨髓樣本經(jīng)3代6周的培養(yǎng)可擴(kuò)增2×109倍,達(dá)1013個(gè)細(xì)胞,相當(dāng)于成年人體細(xì)胞總數(shù)。具有多向分化的潛能是BMSCs最重要的生物學(xué)特征,近年來(lái)已被大量研究所證實(shí)。在適宜的體內(nèi)或體外環(huán)境下BMSCs不僅可以分化為間充質(zhì)組織,還保持有內(nèi)外胚層的組織發(fā)育分化潛能,可以分化為神經(jīng)系統(tǒng)、肝臟、肺臟、上皮組織等。Friedenstein首先證實(shí)了BMSCs具有分化為骨、軟骨、纖維組織的能力。有學(xué)者在單層培養(yǎng)條件下大量擴(kuò)增BMSCs,也有學(xué)者在單層培養(yǎng)下對(duì)BMSCs 進(jìn)行定向分化誘導(dǎo)。Worster等[28]對(duì)來(lái)源于馬的BMSCs定向誘導(dǎo)成軟骨細(xì)胞,檢測(cè)到軟骨細(xì)胞特征標(biāo)識(shí)物及觀察到具有軟骨細(xì)胞形態(tài)的細(xì)胞,但未觀測(cè)到軟骨樣組織形成。Yoo等[29]對(duì)體外單層或聚集立體培養(yǎng)下的成人BMSCs進(jìn)行比較,發(fā)現(xiàn)在其他條件相同時(shí),立體培養(yǎng)的BMSCs發(fā)生了定向軟骨分化,而單層培養(yǎng)則無(wú)軟骨形成。Liechty等[30]將人BMSCs移植入早期妊娠的胎羊,異種的細(xì)胞入住多種組織存活達(dá)13 個(gè)月,并按接種部位特異性地分化為軟骨細(xì)胞、脂肪細(xì)胞、肌細(xì)胞、心肌細(xì)胞,說(shuō)明BMSCs不僅保持了多分化潛能且具有獨(dú)特的免疫學(xué)特性。
3.2 脂肪干細(xì)胞:脂肪組織中可分離出外形類似成纖維細(xì)胞樣的脂肪干細(xì)胞,其在體外培養(yǎng)時(shí)有穩(wěn)定的增殖速度且不易老化。經(jīng)免疫熒光法和流式細(xì)胞計(jì)數(shù)分析確定,這些細(xì)胞起源于間充質(zhì)細(xì)胞,它們?cè)赥GF-β、維生素C和地塞米松存在并通過(guò)立體培養(yǎng)可向軟骨細(xì)胞分化 [31]。高濃度微塊培養(yǎng)[32]或?qū)⑵浣臃N在藻酸鹽[33-34]、瓊脂糖[33]和膠原支架[33,35]時(shí)分化可以實(shí)現(xiàn)。體外培養(yǎng)時(shí),成軟骨誘導(dǎo)的脂肪衍生干細(xì)胞(ADSCs)可產(chǎn)生軟骨特異性細(xì)胞外基質(zhì),并且存在均一的張力和剪切模量以及硫酸化的GAGs沉積[33]。Masuoka等證實(shí),將ADSCs接種于Ⅰ型膠原構(gòu)成的蜂窩狀支架,在兔身上構(gòu)建的透明軟骨可修復(fù)全層軟骨缺損[35]。此外,一種新的彈力膠原樣多肽已被證明能在無(wú)培養(yǎng)基的情況下促進(jìn)ADSCs向軟骨分化[36],培養(yǎng)兩周后其聚集的硫酸化GAGs和Ⅱ型膠原量與在標(biāo)準(zhǔn)培養(yǎng)基培養(yǎng)的情況類似。
3.3 胚胎干細(xì)胞:胚胎干細(xì)胞來(lái)源于植入子宮前的胚胎,可來(lái)自早期胚胎的內(nèi)細(xì)胞團(tuán)或尿生殖嵴, 是一種可在體外長(zhǎng)期培養(yǎng)并保持高度分化潛能的細(xì)胞。目前,人胚胎干細(xì)胞的細(xì)胞系己成功建立。胚胎干細(xì)胞是全能干細(xì)胞, 可分化為三個(gè)胚層所有類型的細(xì)胞, 種植于體內(nèi)可形成包含三胚層細(xì)胞的畸胎瘤。改變體外培養(yǎng)條件, 可使胚胎干細(xì)胞向不同的細(xì)胞系分化。己有文獻(xiàn)報(bào)道胚胎干細(xì)胞在BMP-2和BMP-4的作用下分化為軟骨細(xì)胞[37]。但使用胚胎干細(xì)胞作為組織工程的種子細(xì)胞主要是存在倫理學(xué)問(wèn)題, 此外, 如何控制干細(xì)胞向特定類型細(xì)胞分化,分化后的種子細(xì)胞在宿主體內(nèi)是否具有致瘤性等問(wèn)題仍值得深入研究。在軟骨組織工程的潛在種子細(xì)胞中, 干細(xì)胞與已分化的成熟軟骨細(xì)胞相比, 除具有更強(qiáng)的增殖能力外, 還具有再生潛能, 可維持整個(gè)生命過(guò)程中細(xì)胞的更新和正常功能, 因而干細(xì)胞作為種子細(xì)胞可能更具優(yōu)勢(shì)。
4轉(zhuǎn)基因細(xì)胞
細(xì)胞的生長(zhǎng)、定向分化和活性維持均需生長(zhǎng)因子的調(diào)控。利用轉(zhuǎn)基因技術(shù)將生長(zhǎng)因子基因轉(zhuǎn)入種子細(xì)胞, 轉(zhuǎn)基因細(xì)胞可在缺損局部持續(xù)表達(dá)高生物活性的內(nèi)源性生長(zhǎng)因子, 調(diào)控其自身增殖分化, 延緩體外培養(yǎng)種子細(xì)胞的老化及去分化, 同時(shí)促進(jìn)軟骨細(xì)胞增殖、分化, 提高修復(fù)質(zhì)量。Mason等[38]首先報(bào)道用基因治療和組織工程法結(jié)合修復(fù)關(guān)節(jié)軟骨。以逆轉(zhuǎn)錄病毒為載體把BMP27脫氧核糖核酸導(dǎo)入兔骨髓干細(xì)胞,種植至PGA支架培養(yǎng)后,移植至兔關(guān)節(jié)軟骨損傷模型,8~12 周軟骨基本修復(fù)。Davidson等[39]用FGF218通過(guò)其受體3促進(jìn)了軟骨細(xì)胞生長(zhǎng)?;蜣D(zhuǎn)染可以用來(lái)調(diào)控軟骨種子細(xì)胞增殖和維持其表型, 軟骨細(xì)胞、間充質(zhì)干細(xì)胞、胚胎干細(xì)胞均可作基因治療的受體細(xì)胞。通過(guò)體外軟骨細(xì)胞轉(zhuǎn)染基因, 既可對(duì)軟骨基質(zhì)的結(jié)構(gòu)蛋白的突變起到補(bǔ)償,還可以釋放細(xì)胞因子增加基質(zhì)的合成, 促進(jìn)軟骨的修復(fù), 又可對(duì)抗局部炎癥的發(fā)生。將具有免疫抑制作用的基因轉(zhuǎn)入種子細(xì)胞可克服同種異體甚至異種細(xì)胞的免疫原性, 大大地拓展了軟骨組織工程種子細(xì)胞的范圍。
5展望
目前, 雖然對(duì)何種來(lái)源的細(xì)胞作為軟骨組織工程的首選種子細(xì)胞仍有爭(zhēng)議, 軟骨組織工程種子細(xì)胞的許多問(wèn)題尚待解決,如:種子細(xì)胞的改造、種子細(xì)胞培養(yǎng)擴(kuò)增技術(shù)的完善,如何延長(zhǎng)細(xì)胞的壽命、降低細(xì)胞抗原性及增強(qiáng)宿主免疫耐受等。但目前一般認(rèn)為, 隨著體外細(xì)胞培養(yǎng)技術(shù)的成熟, 大家公認(rèn)的體外培養(yǎng)的自體細(xì)胞已經(jīng)運(yùn)用于臨床, 且發(fā)揮了一定的作用。人胚胎干細(xì)胞和轉(zhuǎn)基因細(xì)胞具有巨大的應(yīng)用前景, 已開(kāi)始逐漸成為軟骨組織工程學(xué)研究的熱點(diǎn)。
[參考文獻(xiàn)]
[1]Jadlowiec JA,Celil AB,Hollinger JO.Bone tissue engineering:recent advances and promising therapeutic agents [J].Expert Opin Biol Ther,2003,3(3):409-423.
[2]Nicoll SB,WedrychowskaA,SmithNR,et al.Modulation of proteoglycan and collagen profiles in human dermal fibroblasts by high density micromass culture and treatment with lactic acid suggests change to a chondrogenic phenotype [J].Connect Tissue Res,2001,42(1):59-69.
[3]Chung C,Burdick JA.Engineering cartilage tissue [J].Adv Drug Deliv Rev,2008,60(2):243-262.
[4]Van Osch GJ,Mandl EW,Jahr H,et al.Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering [J].Biorheology,2004,41(3-4):411-421.
[5]Panossian A,AshikuS,KirchhoffCH,et al.Effects of cell concentration and growth period on articular and ear chondrocyte transplants for tissue engineering [J].Plast Reconstr Surg,2001,108(2):392-402.
[6]Yuan T,Luo H,Tan J,et al.The effect of stress and tissue fluid microenvironment on allogeneic chondrocytes in vivo and the immunological properties of engineered cartilage [J].Biomaterials,2011,32(26):6017-6024.
[7]Gong YY,Xue JX,Zhang WJ,et al.A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes [J].Biomaterials,2011,32(9):2265-2273.
[8]Kafienah W,Jakob M,Demarteau O,et al.Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes [J].Tissue Eng,2002,8(5):817-826.
[9]Hicks DL,Sage AB,Schumacher BL,et al.Growth and phenotype of low-density nasal septal chondrocyte monolayers [J].Otolaryngol Head Neck Surg,2005,133(3):417-422.
[10]Miot S,Woodfield T,Daniels AU,et al.Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition [J].Biomaterials,2005,26(15):2479-2489.
[11]Vinatier C,Magne D,Moreau A,et al.Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel [J].J Biomed Mater Res A,2007,80(1):66-74.
[12]Richmon JD,Sage AB,Shelton E,et al.Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer [J].Laryngoscope,2005,115(9):1553-1560.
[13]Isogai N,Kusuhara H,Ikada Y,et al.Comparison of different chondrocytes for use in tissue engineering of cartilage model structures [J].Tissue Eng,2006,12(4):691-703.
[14]Tay AG,F(xiàn)arhadi J,Suetterlin R,et al.Cell yield proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes [J].Tissue Eng,2004,10(5-6):762-770.
[15]Johnson TS,Xu JW,Zaporojan VV,et al.Integrative repair of cartilage with articular and nonarticular chondrocytes [J].Tissue Eng,2004,10(9-10):1308-1315.
[16]Yan H,Yu C.Repair of full-thickness cartilage defects with cells of different origin in a rabbit model [J].Arthroscopy,2007,23(2):178-187.
[17]French MM,Rose S,Canseco J,et al.Chondrogenic differentiation of adult dermal fibroblasts [J].Ann Biomed Eng,2004,32(1):50-56.
[18]Yates KE,F(xiàn)orbes RL,Glowacki J.New chondrocyte genes discovered by representational difference analysis of chondroinduced human fibroblasts [J].Cells Tissues Organs,2004,176(1-3):41-53.
[19]Lee KH,Song SU,Hwang TS,et al. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts [J]. Hum Gene Ther,2001,12 (14):1805-1813.
[20]Deng Y,Hu JC,Athanasiou KA.Isolation and chondroinduction of a dermis-isolated, aggrecan sensitive subpopulation with high chondrogenic potential [J]. Arthritis Rheum,2007,56(1):168-176.
[21]Johnstone B,Hering TM,Caplan AI,et al.In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells [J]. Exp Cell Res,1998,238(1):265-272.
[22]Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies [J].Tissue Eng,2001,7(2):211-228.
[23]Nawata M,Wakitani S,Nakaya H,et al.Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage [J].Arthritis Rheum,2005,52(1):155-163.
[24]Sakaguchi Y,Sekiya I,Yagishita K,et al.Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source [J].Arthritis Rheum,2005,52(8):2521-2529.
[25]Fukumoto T,Sperling JW,Sanyal A,et al.Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro [J].Osteoarthritis Cartilage,2003,11(1):55-64.
[26]Conget PA,Minguell JJ.Phenotypicaland functional properties of human bonemarrow mesenchymal progenitor cells [J].J Cell Physiol,1999,181(1):67-73.
[27]Colter DC,Class R,DiGirolamo CM,et al.Rapid expansion of re2 cycling stemcells in cultures of plastic-adherent cell s f rom human bone marrow [J].Proc Nat Acad Sci USA,2000,97(7):3213-3218.
[28]Worster AA,Nixon AJ,Brower To land BD,et al.Effect of transforming growth facto rbeta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells [J].Am J VetRes,2000,61(9):1003- 1011.
[29]Yoo JU,Bart hel TS,Nish imura K,et al.The chondrogenicpotential of human bone-marrow derived mesenchymal progenitorcells [J]. J Bone Joint Surg(Am),1998,8(12):17-25.
[30]Liechty KW,MacKenzie TC,ShaabanAF,et al.Human mesenchymal stemcells engraft and demonst rate sitespecific differentiation after in utero transplantation in sheep [J].Nat Med,2000,6(11):1282-1286.
[31]Zuk PA,Zhu M,Ashjian P,et al.Human adipose tissue is a source of multipotent stem cells [J].Mol Biol Cell,2002,13(12):4279-4295.
[32]Chiou M,Xu Y,Longaker MT.et al.Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells [J].Biochem Biophys Res Commun,2006,343(2):644-652.
[33]Awad HA,Wickham MQ,Leddy HA,et al.Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].Biomaterials,2004,25(16):3211-3222.
[34]Lin Y,Luo E,Chen X,et al.Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo [J].J Cell Mol Med,2005,9(4):929-939.
[35]Masuoka K,Asazuma T,Hattori H,et al.Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits [J].J Biomed Mater Res B Appl Biomater,2006,79(1):25-34.
[36]Betre H,Ong SR,Guilak F,et al.Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide [J].Biomaterials,2006,27(1):91-99.
[37]Kramer J,Hegert C,Guan K,et al.Embryonic stem cell - derivedchon drogenic differentiation in vitro : activation by BMP-2 and BMP-4 [J].Mech Dev,2000,92(2):193-205.
[38]Mason JM,Breitbart AS,Barcia M,et al.Cartilage and bone regeneration using gene enhanced tissue engineering [J].Clin Orthop Relat Res,2000,(379 Suppl):S171-178.
[39]Davidson D,Blanc A,F(xiàn)ilion D,et al.Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis [J]. J Biol Chem,2005,280(21):20509-20515.
[收稿日期]2012-05-28[修回日期]2012-07-13
編輯/李陽(yáng)利