孫 蘭 敏
(衡水學(xué)院 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,河北 衡水 053000)
論常量函數(shù)的充分必要條件
孫 蘭 敏
(衡水學(xué)院 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,河北 衡水 053000)
常量函數(shù)是最簡(jiǎn)單的函數(shù),判定滿(mǎn)足某些條件的函數(shù)是否為常量函數(shù)并不簡(jiǎn)單.由拉格朗日中值定理容易得出:“在區(qū)間I上f(x)為常量函數(shù)的充分必要條件是對(duì)任意的x∈I都有f′(x)=0”.在此基礎(chǔ)上進(jìn)一步給出并證明了函數(shù)為常量函數(shù)的另外幾個(gè)充分必要條件,在理論上為證明“滿(mǎn)足某些條件的函數(shù)是常量函數(shù)”提供了切實(shí)可行的證明方法.
常量函數(shù);連續(xù);極限
由拉格朗日中值定理容易得出下面結(jié)論:
定理[1]設(shè)f(x)在區(qū)間I上有定義,則f(x)為常量函數(shù)的充分必要條件是對(duì)任意的x∈I都有f′(x)=0.
該定理是研究函數(shù)是否為常量函數(shù)的重要依據(jù),但證明函數(shù)為常量函數(shù)的方法遠(yuǎn)遠(yuǎn)超過(guò)于此,下面給出并證明函數(shù)為常量函數(shù)的幾個(gè)充分條件,易見(jiàn)這些條件也是必要的.
命題1設(shè)f(x)在(0,+∞)滿(mǎn)足f(x)=f(2x),并且=A,則在(0,+∞)上f(x)為常量函數(shù),并且f(x)=A.
證明假設(shè)存在x0∈ (0, +∞)使f(x0)≠A,由已知條件f(x)=f(2x)得:對(duì)任意的正整數(shù)n有B=f(x0)=f(2x0)=…=f(2nx0)≠A,另一方面由已知條件=A得:對(duì)ε=A?B>0,存在正數(shù)X,使得當(dāng)x>X時(shí)有:f(x) ?A<ε,取n足夠大使 2nx>X則有,即
所以,對(duì)任意的x∈(0,+∞)有f(x)=A.
命題2設(shè)f(x)在R上有定義,在x=0,1兩點(diǎn)連續(xù),若對(duì)任意x∈R有f(x)=f(x2)成立,則f(x)在R上為常量函數(shù).
證明
1) 證明對(duì)任意x∈[?1,1]有f(x)=f(0).
事實(shí)上:對(duì)任意x∈(?1,1)并且x≠0,由所給條件得:對(duì)任意的正整數(shù)n有:f(x)=f(x2)=f(x4)=…f(x2n),因?yàn)椋篺(x)在x=0連續(xù),所以:
由f(x)在x=1連續(xù)知:f(1 )=xli→m1?f(x) =f(0).
由以上可知:對(duì)任意x∈[?1,1] 有f(x) =f(0).
2) 證明對(duì)任意x∈(1,+∞)有f(x)=f(0).
事實(shí)上:對(duì)x∈(1,+∞),反向利用已知條件得:
對(duì)任意的正整數(shù)n有:
3) 證明對(duì)任意x∈(? ∞,?1)有f(x)=f(0).
事實(shí)上,若x∈(? ∞,?1),則x2∈ (1,+∞),從而f(x)=f(x2)=f(0).
綜上所述,對(duì)任意x∈R有f(x)=f(0).故f(x)在R上為常量函數(shù).
命題3設(shè)f(x)在R上有定義,若對(duì)任意的a,b∈R恒有:成立.(其中:α>1,M>0,均為常數(shù)),則在R上f(x)是常量函數(shù).
證明設(shè)α=1+β(β>0),任取x0∈R,x∈R,則由已知條件得:
令x→x0則得:f′(x0)=0,由x0的任意性知對(duì)任意的x∈R均有f′(x)=0,所以f(x)是常量函數(shù).
因而有:
顯然有:
[1] 劉玉璉,傅沛仁.數(shù)學(xué)分析講義:上冊(cè)[M].北京:高等教育出版社, 1992:207.
The Judgment of Constant Function
SUN Lan-min
(College of Mathematics and Computer Science, Hengshui University, Hengshui, Hebei 053000, China)
Constant function is the simplest function, but its judgment is not simple. It is clear to see from Lagrange theorem“The enough and essential condition off(x)being constant function isf/(x)≡0”. Several enough and essential conditions off(x) being constant function are given to prove it. It also supply practical ways to prove that “function meeting certain requirements is constant function”.
a constant function; continuation; limit
O174
A
1673-2065(2011)04-0006-02
2011-02-20
孫蘭敏(1963-),女,河北深州人,衡水學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院教授.
(責(zé)任編校:李建明英文校對(duì):李玉玲)