袁京莉, 史博穎, 魯 豐, 曹勝利
(首都師范大學(xué) 化學(xué)系,北京 100048)
吡咯并[2,3-d]嘧啶是重要的雜環(huán)化合物母體。近年來,以2,4-二氨基吡咯并[2,3-d]嘧啶或2-氨基-4-氧代吡咯并[2,3-d]嘧啶為母體的經(jīng)典或非經(jīng)典抗葉酸劑的合成及生物活性研究,在抗癌藥物研究中占有重要的位置[1,2]。文獻(xiàn)報(bào)道的這兩類化合物的合成路線較多,所用的原料和反應(yīng)條件也有較大差別。在合成2,4-二氨基吡咯并[2,3-d]嘧啶類化合物(Ⅰ, Chart 1)的文獻(xiàn)中,大多是先合成2-氨基-3-氰基呋喃類衍生物,再與胍反應(yīng)形成吡咯并嘧啶類化合物;也有以吡咯、2,4,6-三氨基嘧啶或者2-氨基-4-氧代吡咯并[2,3-d]嘧啶為原料來合成的報(bào)道。而合成2-氨基-4-氧代吡咯并[2,3-d]嘧啶類化合物(Ⅱ, Chart 1)則大多以2,6-二氨基-4-氧代嘧啶為原料,再形成吡咯環(huán)。本文歸納總結(jié)了這兩類化合物的主要合成方法,并對(duì)各種方法的優(yōu)缺點(diǎn)進(jìn)行簡(jiǎn)要評(píng)價(jià)。
Chart1
Taylor等[3]將4-位取代的2-氨基-3-氰基呋喃與游離的胍(用等摩爾比的NaOMe調(diào)節(jié)鹽酸胍得來)在乙醇中回流反應(yīng)24 h后,再用乙酸酸化反應(yīng)液得5-位取代的2,4-二氨基吡咯并[2,3-d]嘧啶(1~3, Scheme 1),收率分別為67%, 66%和42%。此方法條件溫和,收率也較高。
Scheme1
Scheme2
Scheme3
Scheme4
Gangjee等[4,5]以甲醇為溶劑,在三乙胺存在下,將羥基丙酮與丙二腈在室溫下攪拌過夜制得2-氨基-3-氰基-4-甲基呋喃。再與鹽酸胍在甲醇鈉的乙醇溶液中回流反應(yīng)24 h合成了1(Scheme 2),兩步收率48%。此方法省去了乙酸調(diào)節(jié)pH值的步驟,比Taylor的方法操作簡(jiǎn)單。Gangjee等[6]又用此法,以1-羥基-2-丁酮為原料,合成了2(Scheme 2),第二步收率為66%。
Gangjee等[7]將丙二腈和三乙胺溶于無水甲醇中,向反應(yīng)液中滴加1-羥基-2-戊酮,室溫?cái)嚢?4 h,減壓蒸除溶劑后經(jīng)柱色譜法提純得到2-氨基-3-氰基-4-丙基呋喃,收率60%。再將其加到鹽酸胍、甲醇鈉的乙醇溶液中,回流反應(yīng)過夜;減壓蒸除溶劑后經(jīng)柱色譜法提純得到2,4-二氨基-5-丙基吡咯并[2,3-d]嘧啶(4, Scheme 3),收率50%。利用上述方法,還合成了2,4-二氨基-5-異丙基吡咯并[2,3-d]嘧啶(5, Scheme 3),兩步總收率為44%。
Rosowsky等[8,9]將丙二腈和三乙胺溶于無水甲醇中,向反應(yīng)液中滴加1-羥基-2-苯基乙酮或1-羥基-3-芳基丙酮,室溫反應(yīng)24 h得到4-位取代的2-氨基-3-氰基呋喃,收率40%~60%。將此中間體加到鹽酸胍、甲醇鈉的乙醇溶液中,回流反應(yīng)過夜得到5-位取代的2,4-二氨基吡咯并[2,3-d]嘧啶(6, Scheme 4),收率30%~60%。Gangjee等[10]用相似的方法,將反應(yīng)原料改為5-芳基取代的1-羥基-2-戊酮,得到2,4-二氨基-5-(3-芳基丙基)吡咯并[2,3-d]嘧啶(6, Scheme 4),收率50%~90%。
Edward等[11]使用與Gangjee等[4,5]類似的方法,將4-[3-(5-氨基-4-氰基呋喃)丙基]苯甲酸乙酯與鹽酸胍反應(yīng)、甲醇鈉溶于乙醇中,回流反應(yīng)24 h得到4-[3-(2,4-二氨基吡咯并[2,3-d]嘧啶-5-)]丙基苯甲酸乙酯(7, Scheme 5),收率44%。
Scheme5
Scheme6
Scheme7
Scheme8
Scheme9
Gangjee等[12]將2-氨基-3,4-二氰基-5-溴吡咯和5%Pd-BaCO3溶于DMF和甲醇中,在50 Psi下氫化3 h得到2-氨基-3,4-二氰基吡咯(A),收率64%。以Dowtherm-A為溶劑,將A與氯甲脒鹽酸鹽反應(yīng),于160 ℃~170 ℃反應(yīng)48 h得到2,4-二氨基-5-氰基吡咯并[2,3-d]嘧啶(8, Scheme 6),粗品收率79%。 8不經(jīng)純化直接用于下步反應(yīng)。此方法反應(yīng)時(shí)間較長(zhǎng),反應(yīng)條件比較苛刻,但產(chǎn)率較高。他們又將2-氨基-3,4-二氰基呋喃在乙醇鈉存在下與鹽酸胍反應(yīng),但沒有得到預(yù)期的產(chǎn)物。
Zhu等[13]用氯乙腈與甲酸甲酯在以甲醇鈉為堿的條件下反應(yīng)得到2-氯-2-甲?;译?B),收率60%。將Ⅲ與乙酸鈉的水溶液混和,于50℃/1 h內(nèi)滴加B;于室溫反應(yīng)12 h后再回流反應(yīng)1 h得8(Scheme 7),收率66%。此方法收率較高,但操作較為復(fù)雜。
Gangjee等[14]將1-硝基-4-芳基戊烯與Ⅲ在乙酸乙酯/水中反應(yīng)16 h得到2,4,6-三氨基-5-(1-硝基-4-芳基-2-戊基)嘧啶(C),收率80%~84%。將C加入2 mol·L-1NaOH(3 mL)中,于室溫反應(yīng)2 h;冷卻至0 ℃,加入2.5 mol·L-1H2SO44 mL;在0 ℃下,用2 mol·L-1NaOH調(diào)至pH 7;于室溫反應(yīng)1 h后再用冰醋酸酸化。最后經(jīng)柱色譜法純化得2,4-二氨基-5-(2-芳基丙基)-吡咯并[2,3-d]嘧啶(9, Scheme 8),收率45%~53%。
Gangjee等[15]以N,N-二甲基苯胺為溶劑,將2-氨基-4-氧代-6-甲基吡咯并[2,3-d]嘧啶與三氯氧磷在140 ℃下反應(yīng)4 h得到2-氨基-4-氯-6-甲基吡咯并[2,3-d]嘧啶(D),收率32%。冰浴冷卻下,將D加入到飽和的氨/甲醇溶液中,于125 ℃~135 ℃反應(yīng)48 h得到2,4-二氨基-6-甲基吡咯并[2,3-d]嘧啶(10, Scheme 9),收率76%。
Scheme10
最近,Gangjee等[16]將2-氨基-4-氧代-5-氯-3,9-二氫吡啶并[4,5-b]吲哚與2,2-二甲基丙酸酐、DMAP和三乙胺加入到DMF中,于60 ℃反應(yīng)48 h得到氨基被保護(hù)的產(chǎn)物(E),收率40%。將E溶于三氯氧磷中,加熱至110 ℃~120 ℃反應(yīng)4 h得到N-(4,5-二氯吡啶并[4,5-b]吲哚基)-2,2-二甲基丙酰胺(F)。將其加入飽和氨氣的甲醇溶液中,于130 ℃反應(yīng)48 h得到5-氯-吡啶并[4,5-b]吲哚-2,4-二氨基丙酰胺(G)。最后,在微波輻照下,將G和硫酚或?qū)谆蚍?、碳酸鉀、NMP于250 ℃反應(yīng)30 min得產(chǎn)物11或12(Scheme 10),收率分別為97%, 87%。此方法反應(yīng)步驟較多,操作復(fù)雜,但產(chǎn)率較高。
Charles等[17]將Ⅳ, C3-位取代的2-溴丙酮和乙酸鈉溶于體積比為1∶1的乙腈/水溶液中,于40 ℃反應(yīng)2 h~4 h得到5-取代的2-氨基-4-氧代吡咯并[2,3-d]嘧啶類衍生物(13~15, Scheme 11),收率50%~80%。此方法反應(yīng)條件溫和,收率較好。
Scheme11
Gangjee等[18]采用類似的方法,將Ⅳ與2-氯-2-甲?;译婊?-氯-2-甲?;宜峒柞ゼ尤氲揭宜徕c水溶液中,回流反應(yīng)5 h得到2-氨基-4-氧代-5-氰基吡咯并[2,3-d]嘧啶(16)或2-氨基-4-氧代吡咯并[2,3-d]嘧啶-5-甲酸甲酯(17, Scheme 12),收率分別為72%, 62%。
Scheme12
Gangjee等[19]將Ⅳ加入到乙酸鈉的水溶液中,加熱至回流后滴加4-氯乙?;宜嵋阴ィ萎?,繼續(xù)反應(yīng)18 h得到2-氨基-4-氧代-6-乙酸甲酯基吡咯并[2,3-d]嘧啶(18, Scheme 13),收率54%。
Scheme13
Gangjee等[20]將Ⅳ與氯乙醛加入到乙酸鈉的水溶液中,回流反應(yīng)4 h得到2-氨基-4-氧代吡咯并[2,3-d]嘧啶(19, Scheme 14),收率82%。此方法操作簡(jiǎn)單,收率較高。
Scheme14
Gangjee等[21]將氯甲基-3-(4′-甲氧苯基)丙酮加入Ⅳ的無水DMF溶液中,于40 ℃~50 ℃反應(yīng)3 d得到4-[3-(2-氨基-4-氧代-吡咯并[2,3-d]嘧啶基)丙基]苯甲酸甲酯(20, Scheme 15),收率40%。此方法操作簡(jiǎn)單,但收率較低。
Scheme15
Gangjee等[22]將Ⅳ加入到乙酸鈉的水溶液中,于100 ℃加入2-氯-2-甲?;译?,回流反應(yīng)4 h得到2-氨基-4-氧代-6-甲基吡咯并[2,3-d]嘧啶(21, Scheme 16),收率70%。
Scheme16
Gangjee等[5]將丙醛溶于二氧六環(huán)中,于0 ℃緩慢滴加液溴,反應(yīng)10 min得2-溴丙醛(H),收率62%。將H和Ⅳ,三乙胺溶于DMSO中,于室溫反應(yīng)1 h后經(jīng)柱色譜法純化得到2-氨基-4-氧代-6-甲基吡咯并[2,3-d]嘧啶(22, Scheme 17),收率71%。此方法反應(yīng)時(shí)間短,收率較高。
Scheme17
Gangjee等[23]將Ⅳ和1-溴-2-丁酮溶于DMF中,氮?dú)獗Wo(hù)下于40 ℃~50 ℃反應(yīng)72 h。減壓蒸除溶劑后經(jīng)柱色譜法純化得到2-氨基-4-氧代-6-乙基吡咯并[2,3-d]嘧啶(23, Scheme 18),收率40%。
Scheme18
Gangjee等[24]將Ⅳ和4-(3-氯-2-羰基丙基)苯甲酸甲酯溶于DMF中,于50 ℃~60 ℃反應(yīng)2 d得到4-(2-氨基-4-氧代吡咯并[2,3-d]嘧啶-6-)苯甲酸甲酯(24, Scheme 19),收率60%。
Scheme19
Zhu等[13]用氯乙腈與甲酸甲酯在甲醇鈉為堿的條件下合成B,收率60%。將Ⅳ加入乙酸鈉水溶液中,于50 ℃滴加B(1 h內(nèi))。冷卻至室溫,攪拌12 h后回流反應(yīng)1 h得到16(Scheme 20),收率72%。此方法比Gangjee等[5]的方法操作復(fù)雜,反應(yīng)時(shí)間長(zhǎng),收率并沒有很大提升。
Scheme20
Scheme21
Min等[25]將Ⅳ加入水和甲醇混合液中;加入4-(3-溴-3-甲?;?苯甲酸甲酯和醋酸鈉,于45 ℃反應(yīng)3 h得產(chǎn)物25(Scheme 21),收率85%。
最近,Gangjee等[26,27]用兩種方法合成了21。方法一:將Ⅳ和一氯丙酮溶于DMF中,于60 ℃反應(yīng)48 h得到21(Scheme 22),但同時(shí)產(chǎn)生副產(chǎn)物2,4-二氨基-5-甲基呋喃并[2,3-d]嘧啶。方法二:將Ⅳ加入到乙酸鈉的水溶液中,溶液變澄清后加熱至100 ℃后快速加入一氯丙酮,反應(yīng)4 h得21(Scheme 22),收率70%。方法二比方法一反應(yīng)條件溫和,無副產(chǎn)物,收率較高。Tangeda等[28]在方法一的基礎(chǔ)上改進(jìn),將Ⅳ加入到乙酸鈉水溶液中,于80 ℃快速加入一氯丙酮, 繼續(xù)反應(yīng)4 h得到21,收率68%。
Scheme22
Wang等[29]將1-溴-5-己炔-2-酮及其延長(zhǎng)碳鏈的類似物分別與Ⅳ溶于DMF中,于室溫反應(yīng)3 d得到6-位取代的2-氨基-4-氧代吡咯并[2,3-d]嘧啶類衍生物(26, Scheme 23),收率51%~74%。此方法操作簡(jiǎn)單,收率較高,并且對(duì)反應(yīng)溫度要求較低。
Scheme23
Scheme24
Gangjee等[30]將Ⅳ加入2-甲氧基乙醇中,加熱至沸騰后加入4-(4-戊酮基)苯甲酸甲酯得到中間體2,6-二氨基-4-氧代嘧啶衍生物(H),收率85%。將H加入二苯醚中,回流反應(yīng)5 h得到{[2-(2-氨基-6-甲基-4-氧代吡咯并[2,3-d]嘧啶-5-]乙基}苯甲酸甲酯(27, Scheme 24),收率47%。此方法條件溫和,但產(chǎn)率較低。
由于2,4-二氨基吡咯并[2,3-d]嘧啶或2-氨基-4-氧代吡咯并[2,3-d]嘧啶類化合物可特異性地作用于DNA合成的兩種關(guān)鍵酶,特別是2-氨基-4-氧代吡咯并[2,3-d]嘧啶類化合物還具有二氫葉酸還原酶和胸苷酸合成酶雙效抑制劑的作用,因此在抗癌藥物研究與開發(fā)中具有廣闊的發(fā)展前景。本研究組曾將2-甲基-4(3H)-喹唑啉酮作為母體,合成了具有氨基二硫代甲酸酯側(cè)鏈的4(3H)-喹唑啉酮衍生物,其中多個(gè)化合物對(duì)幾種人腫瘤細(xì)胞表現(xiàn)出顯著的細(xì)胞毒活性[31~33]。鑒于吡咯并[2,3-d]嘧啶類化合物是4(3H)-喹唑啉酮類化合物的生物電子等排體,并且具有二氫葉酸還原酶、胸苷酸合成酶雙抑制劑的作用,目前本研究組正以2,4-二氨基吡咯并嘧啶和2-氨基-4-氧代吡咯并嘧啶為母體,設(shè)計(jì)合成其氨基二硫代甲酸酯衍生物,進(jìn)而研究抗腫瘤活性,以期發(fā)現(xiàn)具有多作用靶點(diǎn)的抗腫瘤先導(dǎo)化合物。
[1] Itoh F, Russello O, Akimoto H,etal. Novel pyrrolo[2,3-d]pyrimidine antifolate TNP-351:Cytotoxic effect on methotrexate-resistant CCRF-CEM cells and inhibition of transformylases of de novo purine biosynthesis[J].Cancer Chemotherapy and Pharmacolog,1994,34(4):273-279.
[2] Parenti M D, Pacchioni S, Ferrari A M,etal. Three-dimensional quantitative structure-activity relationship analysis of a set of plasmodium falciparum dihydrofolate reductase inhibitors using a pharmacophore generation approach[J].J Med Chem,2004,47:4258-4267.
[3] Taylor E C, Patel H H, Junt J G. A one-step ring tansformation/ring annulation approach to pyrrolo[2,3-d]pyrimidines.A new synthesis of the potent dihydrofolate reductase inhibitor TNP-351[J].J Org Chem,1995,60:6684-6687.
[4] Gangjee A, Lin X, Sherry F. Design,synthesis,and biological evaluation of 2,4-diamino-5-methyl-6-substituted-pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors[J].J Med Chem,2004,47:3689-3692.
[5] Gangjee A, Lin X, Roy L,etal. Synthesis ofN-{4-[(2,4-diamino-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-L-glutamic acid andN-{4-[(2-amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-L-glutamic acid as dual inhibitors of dihydrofolate reductase and thymidylate synthase and as potential antitumor agents[J].J Med Chem,2005,48:7215-7222.
[6] Gangjee A, Zeng Y, Talreja T J,etal. Design and synthesis of classical and nonclassical 6-arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as antifolates[J].J Med Chem,2007,50:3046-3053.
[7] Gangjee A, Hiteshkumar D, Queener S F,etal. The effect of 5-alkyl modification on the biological activity of pyrrolo[2,3-d]pyrimidine containing classical and nonclassical antifolates as inhibitors of dihydrofolate reductase and as antitumor and/or antiopportunistic infection agents[J].J Med Chem,2008,51:4589-4600.
[8] Rosowsky A, Fua H, Queener S F. Synthesis of new 2,4-diamino-7H-pyrrolo[2,3-d]pyrimidines via the taylor ring transformation/ring annulation strategy[J].J Heterocyclic Chem,2001,38:1197-1202.
[9] Rosowsky A, Chen H, Fua H,etal. Synthesis of new 2,4-diaminopyrido[2,3-d]pyrimidine and 2,4-diaminopyrrolo[2,3-d]pyrimidine inhibitors of pneumocystis carinii,toxoplasma gondii,and mycobacterium avium dihydrofolate reductase[J].Bioorg Med Chem,2003,11:59-67.
[10] Gangjee A, Ye Z, Queener S F. Synthesis of three carbon atom bridged 2,4-diaminopyrrolo[2,3-d]pyrimidines as nonclassical dihydrofolate reductase inhibiters[J].J Heterocyclic Chem,2005,42:1127-1133.
[11] Edward C, Taylor, Bin Liu. A new and efficient synthesis of pyrrolo[2,3-d]pyrimidine anticancer agents: alimta(LY231514,MTA),homo-alimta,TNP-351,and some aryl 5-substituted pyrrolo[2,3-d]pyrimidines[J].J Org Chem,2003,68:9938-9947.
[12] Gangjee A, Mavandadi F, Queener S F,etal. Novel 2,4-diamino-5-substituted-pyrrolo[2,3-d]pyrimidianes as classical and nonclassical antifolate inhibitors of dihydrofolate reductases[J].J Med Chem,1995,38:2158-2165.
[13] Zhu G J, Liu Z, Xu Y,etal. Synthesis of prrrolo[2,3-d]pyrimidine analogues of the potent antitumor agentN-{4-[3-(2,4-diamino-7H-prrrolo[2,3-d]pyrimidine-5-yl)propyl]benzoyl}-l-glutamic acid(TNP-351)[J].Heterocycles,2008,75:1631-1638.
[14] Gangjee A, Yanga J, Queener S F,etal. Novel non-classical C9-methyl-5-substituted-2,4-diaminopyrrolo-[2,3-d]pyrimidines as potential inhibitors of dihydrofolate reductase and as anti-opportunistic agents[J].Bioorg Med Chem,2006,14:8341-8351.
[15] Gangjee A, Jain H D, Queener S F. Design,synthesis and biological evaluation of 2,4-diamino-6-methyl-5-substitutedpirrolo[2,3-d]pyrimidines as dihrdrofolate reductase inhibitors[J].J Heterocyclic Chem,2005,42:589-594.
[16] Gangjee A, Zaware N, Raghavan S,etal. Single agents with designed combination chemotherapy potential:Synthesis and evaluation of substituted pyrimido[4,5-b]indoles as receptor tyrosine kinase and thymidylate synthase inhibitors and as antitumor agents[J].J Med Chem,2010,53:1563-1578.
[17] Charles J, Barnett, Grubb L M. Synthesis of pyrrolo[2,3-d]pyrimidines via cyclocondensation of b-alkoxy- and b-amino-a-bromoaldehydes[J].Tetrahedron Lett,2000,41:9741-9745.
[18] Gangjee A, Vidwans A, Elzein E,etal. Synthesis,antifolate,and antitumor activities of classical and nonclassical 2-amino-4-oxo-5-substituted-pyrrolo[2,3-d]pyrimidines[J].J Med Chem,2001,44:1993-2003.
[19] Gangjee A, Dubash N P, KisLiuk R L. Synthesis of novel,nonclassical 2-amino-4-oxo-6-(arylthio)ethylpy rrolo[2,3-d]pyrimidines as potential inhibitors of thymidylate synthase[J].J Heterocyclic Chem,2001,38:349-354.
[20] Gangjee A, Yu J, KisLiuk R L. 2-Amino-4-oxe-6-substituted-pyrrolo[2,3-d]pyrimidines as potential inhibitors of thymidylate synthase[J].J Heterocyclic Chem,2002,39:833-840.
[21] Gangjee A, Zeng Y, McGuire J J,etal. Synthesis of classical,three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates[J].J Med Chem,2004,47:6893-6901.
[22] Gangjee A, Jain H D, Phan J,etal. Synthesis of 2-amino-4-oxo-5-substitutedbenzylthiopyrrolo[2,3-d]py rimidines as potential inhibitors of thymidylate sythase[J].J Heterocyclic Chem,2005,42:165-168.
[23] Gangjee A, Jain H D, Phan J,etal. Dual inhibitors of thymidylate synthase and dihydrofolate reductase as antitumor agents:Design,synthesis,and biological evaluation of classical and nonclassical pyrrolo[2,3-d]pyrimidine antifolates[J].J Med Chem,2006,49:1055-1065.
[24] Gangjee A, Yang J, McGuireb J J,etal. Synthesis and evaluation of a classical 2,4-diamino-5-substitutedfuro[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substitutedpyrrolo[2,3-d]pyrimidine as antifolates[J].Bioorg Med Chem,2006,14:8590-8598.
[25] Min T, Yi B, Zhang P,etal. Novel furoxan NO-donor pemetrexed derivatives:Design,synthesis,and preliminary biological evaluation[J].Med Chem Res,2009,18:495-510.
[26] Gangjee A, Mavandadi F, Kisliuk R L,etal. 2-Amino-4-oxo-5-substituted-pyrrolo[2,3-d]pyrimidines as nonclassical antifolate inhibitors of thymidylate synthase[J].J Med Chem,1996,39:4563-4568.
[27] Gangjee A, Jain H D, Phan J,etal. 2,4-Diamino-5-methyl-6-substituted arylthio-furo[2,3-d]pyrimidines as novel classical and nonclassical antifolates as potential dual thymidylate synthase and dihydrofolate reductase inhibitors[J].Bioorg Med Chem,2010,18(2):953-961.
[28] Tangeda S J, Garlapati A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives and evaluation of their activities against human colon cancer cell lines[J].Euro J Med Chem,2010,45(4):1453-1458.
[29] Wang L, Cherian C, Desmoulin S K,etal. Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry[J].J Med Chem,2010,53:1306-1318.
[30] Gangjee A, Yu J, Kisliuk R L,etal. Design,synthesis,and biological activities of classicalN-{4-[2-(2-amino-4-ethylpyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl}-L-glutamicacid and its 6-methyl derivative as potential dual inhibitors of thymidylate synthase and dihydrofolate reductase and as potential antitumor agents[J].J Med Chem,2003,46:591-600.
[31] Cao S L, Feng Y P, Jiang Y Y,etal. Synthesis and in vitro antitumor activity of 4(3H)-quinazlinone derivatives with dithiocarbamate side chains[J].Bioorg Med Chem Lett,2005,15(7):1915-1917.
[32] Cao S L, Jiang Y Y, Feng Y P,etal. Synthesis of substituted benzylamino and heterocyclylmethylamino carbodithioate derivatives of 4(3H)-quinazlinone and their cytotoxic activity[J].Arch Pharm Chem Life Sci,2006,339(5):250-254.
[33] Cao S L, Wang Y, Zhu L,etal. Synthesis and cytotoxic activity ofN-[(2-methyl-4(3H)-quinazolinone-6-yl)methyl]dithiocarbamates[J].Eur J Med Chem,2010,45:3850-3857.