朱 紅
(常州紡織服裝職業(yè)技術(shù)學(xué)院 常州市新型紡織材料重點實驗室,江蘇 常州,213164)
基于SPSS回歸模型的經(jīng)向波形織物成形工藝
朱 紅
(常州紡織服裝職業(yè)技術(shù)學(xué)院 常州市新型紡織材料重點實驗室,江蘇 常州,213164)
為優(yōu)化經(jīng)向波形織物的設(shè)計制作工藝,提高織物經(jīng)向波形曲線的波形設(shè)計的準(zhǔn)確性,通過織機的關(guān)鍵部件包括鋼筘、打緯機構(gòu)等改進(jìn)設(shè)計,設(shè)計正交試驗方案,研制系列波形織物,并測試其波形外觀效應(yīng)等相關(guān)參數(shù),運用SPSS多重線性回歸分析,探討了鋼筘、打緯機構(gòu)及織物緯密等對波形效應(yīng)的顯著性影響,得出影響因素與波寬、波窄、波高之間的回歸方程,為織物經(jīng)向波形曲線的波形設(shè)計提供支持。
經(jīng)向波形織物;花式鋼筘;鋼筘位移;SPSS
傳統(tǒng)機織物結(jié)構(gòu)中,經(jīng)緯紗呈現(xiàn)有規(guī)律的平行排列,經(jīng)緯紗交織方式為垂直相交。近年來,一種外觀新穎的織物——波形織物應(yīng)運而生,通過數(shù)字控制式鋼筘移動式打緯系統(tǒng),與花式鋼筘及織物緯密設(shè)計等工藝結(jié)合使用,有效改變了機織物經(jīng)直緯平的規(guī)則外觀??椢镏薪?jīng)緯紗的經(jīng)直緯平的排列變化為經(jīng)向有規(guī)律的曲線形排列,使織物經(jīng)向呈現(xiàn)波浪形的外觀[1],即經(jīng)向波形織物。
經(jīng)向波形織物不僅外觀獨特新穎,還能與其他織物組織配合使用,如管狀組織、凸條組織、紗羅和提花組織等[2-3]??椢锝?jīng)緯密度的變化與組織、色紗排列、織物結(jié)構(gòu)等共同變化,可以形成更加豐富多彩的織物外觀,拓展紡織品應(yīng)用性能和產(chǎn)業(yè)化發(fā)展空間。
經(jīng)向波形織物的經(jīng)向外觀呈現(xiàn)出有規(guī)律的弧形或波浪形曲線,其形成原理是通過改變織物經(jīng)緯紗交織過程中經(jīng)紗在織物中的排列位置。即每一緯引入時,鋼筘在筘座架的帶動下有規(guī)律地上升或下降,經(jīng)紗在斜向排列的鋼筘筘片帶動下產(chǎn)生向左或向右的位移。在與緯紗交織后固定位置并保持一定的位移,鋼筘筘片傾斜角隨每一緯引入時的筘座移動而變化,使得經(jīng)紗位置變化呈現(xiàn)出規(guī)律性遞增或遞減,從而在布面上形成規(guī)律性的經(jīng)向弧形曲線。
選用半自動小樣織機,波形織物織造控制關(guān)鍵部件打緯機構(gòu)設(shè)計和改進(jìn)方法如圖1所示:在筘座1和筘座支架2下端設(shè)置鉸接,其鉸接點設(shè)置在滑套3上,滑套3內(nèi)設(shè)有螺孔,滑套3與絲桿4嚙合,同時絲桿4旁平行設(shè)置導(dǎo)向桿6,導(dǎo)向桿6上滑動套接導(dǎo)向套7,導(dǎo)向套7與滑套固定連接;絲桿4通過一對相互嚙合的圓錐齒輪8與伺服電機5連接,且兩者間設(shè)有變速組件9。
1)織機在工作時,根據(jù)所設(shè)計波形織物的波寬、波高等參數(shù),選用花式筘片排列鋼筘,預(yù)先設(shè)置好每緯的鋼筘位移量。
圖1 半自動小樣織機波形織物織造控制關(guān)鍵部件示意Fig.1 Key components of wave forming by semi-automatic sample waving machine
2)根據(jù)設(shè)定好的計算機程序控制,實現(xiàn)每緯的微量升降移動的精確控制。伺服電機5通過變速組件9、圓錐齒輪8將扭矩傳遞至絲桿4,使得與其嚙合的滑套3做上下直線移動,同時通過導(dǎo)向桿6與導(dǎo)向套7的配合,精確限定滑套3的移動,從而使得筘座支架2的鉸接點做上下方向的移動。
3)根據(jù)波形織物結(jié)構(gòu)調(diào)整鋼筘位置。在滑套移動的上、中、下3個位置設(shè)置傳感器,傳感器向伺服電機發(fā)出正反方向轉(zhuǎn)動信號,在每緯引入之前,滑套3回復(fù)到原始位置,當(dāng)筘座支架2帶動筘座1和鋼筘上升到上點或下降至下點時,下一個運動自動轉(zhuǎn)為下降運動或上升運動;每次的升降量可以實現(xiàn)動態(tài)變化,根據(jù)織物設(shè)計的圖案變化進(jìn)行控制,最終形成外觀新穎的經(jīng)向波形織物。
普通鋼筘筘片呈平行排列,花式鋼筘中部分筘片以一定的傾斜角排列或全部筘片按一定規(guī)律傾角排列,如圖2所示。鋼筘筘片采用斜排或斜直交錯的排列方式,利用花式鋼筘與織機絲桿和滑套的運動配合,打緯過程鋼筘發(fā)生上下移動,實現(xiàn)織造時織物經(jīng)紗的動態(tài)波形變化,完成經(jīng)向波形織物的制作。
圖2 花式鋼筘結(jié)構(gòu)及照片示意Fig.2 Structure and photo of the special reeds
經(jīng)向波形織物外觀肌理特征:經(jīng)向呈現(xiàn)有規(guī)律性的波形曲線,曲線邊緣輪廓清晰,曲線形狀優(yōu)雅美觀,曲線流暢不間斷,波形規(guī)律性明顯,波高、波寬比例的設(shè)計接近黃金分割比,以滿足審美需求。
制作的單層與三層經(jīng)向波形織物實物照片如圖3所示。由圖3可見,經(jīng)紗向左或向右呈現(xiàn)漸變位移而形成波形曲線排列,織物局部出現(xiàn)細(xì)微的經(jīng)密和緯密疏密變化,經(jīng)緯紗交織后織物波形排列秩序明顯。
圖3 單層與三層經(jīng)向波形織物實物照片F(xiàn)ig.3 Photos of single and three layers of warp-direction wave fabrics
經(jīng)、緯紗均采用棉紗(14.5 tex×2),根據(jù)正交試驗設(shè)計原理,采用擬水平法,通過分析確定影響波形織物效應(yīng)的主要因素有:筘號、花式鋼筘筘片排列方式、打緯機構(gòu)控制的鋼筘位移量和織物緯密。因此,選擇花式鋼筘筘號及其筘片排列方式、織物緯密、鋼筘位移量3個自變量,確定3因素6水平的因素水平如表1所示。分析織物經(jīng)向波形效應(yīng)及其影響因素之間所存在的線性關(guān)系或非線性關(guān)系,從而分析判定其對織物波形曲線的變化規(guī)律,進(jìn)一步對經(jīng)向波形織物的曲線工藝設(shè)計及其表征方法進(jìn)行優(yōu)化分析研究。
表1 因素水平Tab.1 The factors and levels
根據(jù)表1參照3因素7水平正交表,制定波形織物設(shè)計方案,如表2所示。表2中每個因素的水平一共出現(xiàn)14次,其他的5水平出現(xiàn)了7次。3個因素分別是花式鋼筘筘號及筘片排列方式、織物緯密、每緯鋼筘位移量,各個因素水平變化值見表1。每個因素中的1.0代表該因素的水平1,每個因素中的2.0代表該因素的水平2,依此類推。
表2 波形織物試樣及數(shù)據(jù)測試Tab.2 Data test of warp-direction wave fabrics
在小樣織機關(guān)鍵機構(gòu)改造的基礎(chǔ)上,根據(jù)正交試驗表研制波形織物試樣49只,其波形效應(yīng)如圖4所示。經(jīng)向波形織物曲線是由形成織物波形的波寬、波窄和1個完整波形循環(huán)的高度(長度)構(gòu)成,測試其波形織物外觀波寬、波窄、波高參數(shù)(表2)。
圖4 經(jīng)向波形織物波形效應(yīng)示意Fig.4 The structure of warp-direction wave fabrics
SPSS軟件具有完整的數(shù)據(jù)輸入、編輯、統(tǒng)計分析、報表、圖形制作等功能,其數(shù)據(jù)分析結(jié)果清晰直觀,試驗結(jié)合所研制的波形織物利用SPSS軟件建立多重線性回歸模型[4]。將表2中的數(shù)據(jù)輸入到SPSS Data Editor中[5-6],分別進(jìn)行方差分析和多重線性回歸分析。
波形織物波形效應(yīng)的參數(shù)主要有波寬、波窄、波高,其影響因素主要有筘號、花式鋼筘筘片排列方式、打緯機構(gòu)控制的鋼筘位移量和織物緯密等,利用SPSS中方差分析探討其影響波形效應(yīng)的顯著性。
3.1.1 波高分析
各個主體因素對波高的影響分析如表3所示,校正模型中F=4.768,對應(yīng)的p=0.000,說明模型顯著,可以進(jìn)行方差分析。筘號X1的F=2.619,對應(yīng)的p=0.042,由于p=0.042,小于0.05(α=0.05),說明筘號對波高有顯著影響。同樣緯密X2的F=0.520,對應(yīng)的p=0.759,說明鋼筘的筘齒排列及筘號對波高影響不顯著。鋼筘位移X3的F=11.164,對應(yīng)的p=0.000,說明鋼筘位移對波高有顯著影響。因此,筘號、鋼筘位移是影響波高的重要因素。
表3 波高方差分析結(jié)果Tab.3 Variance analysis of wave height
3.1.2 波寬分析
各個主體因素對波高的影響分析如表4。從表4可以看出,校正模型中F=13.072,對應(yīng)的p=0.000,說明模型顯著。筘號的F=37.318,對應(yīng)的p=0.000,說明筘號對波寬有顯著影響。同樣的緯密的F=1.398,對應(yīng)的p=0.251,說明鋼筘對波寬無顯著影響。鋼筘位移的F=0.499,對應(yīng)的p=0.775,說明鋼筘位移對波寬無顯著影響。因此,筘號是影響波寬的主要因素。
表4 波寬方差分析結(jié)果Tab.4 Variance analysis of wave width
3.1.3 波窄分析
各個主體因素對波窄的影響分析如表5。從表5可以看出,校正模型中F=10.330,對應(yīng)的p=0.000,說明模型顯著。筘號的F=28.205,對應(yīng)的p=0.000,說明鋼筘筘號對波窄有顯著影響。同樣的緯密的F=0.479,對應(yīng)的p=0.789,說明鋼筘對波窄無顯著影響。鋼筘位移的F=2.306,對應(yīng)的p=0.067,說明鋼筘位移對波窄無顯著影響。因此,對波窄而言鋼筘筘號是主要因素。
表5 波窄方差分析結(jié)果Tab.5 Variance analysis of wave narrow
3.2.1 波形織物波幅變量的回歸分析
波形織物的每一個波形均由波寬、波窄和波高構(gòu)成。為了研究波寬和波窄與各個因素的變化規(guī)律,定義一個波幅變量y1,令這個變量等于波寬減去波窄,然后利用SPSS分析變量y1與筘號x1、緯密x2、鋼筘x3的關(guān)系。得到波幅變量y1與筘號x1、緯密x2、鋼筘x3的多元回歸方程為:
系統(tǒng)分析這個模型的多重判定系數(shù)R=0.730,R2=0.553,修正判定系數(shù)R2=0.502。模型的顯著性檢驗F=17.127,對應(yīng)的p=0.000,說明模型具有很好的顯著性。結(jié)果顯示:經(jīng)向波形織物波形設(shè)計時,應(yīng)充分考慮筘號選用、緯密設(shè)計與波寬、波窄的相互影響關(guān)系,準(zhǔn)確完成波形織物的設(shè)計與制作。
3.2.2 波形織物波高回歸分析
利用SPSS分析波高變量y2與筘號x1、緯密x2、鋼筘x3的關(guān)系,得到波高y2的多元回歸方程為:
這個模型多重判定系數(shù)R=0.385,R2=0.143,修正判定系數(shù)R2=0.091。模型的顯著性檢驗F=2.608,對應(yīng)的p=0.063,由于p=0.063,大于0.05,說明該模型不夠顯著,也就是說波高y2與筘號x1、緯密x2、鋼筘x3間不是多元線性關(guān)系,應(yīng)考慮非線性關(guān)系進(jìn)行分析。
通過一系列試驗,對經(jīng)向波形織物基本參數(shù)與工藝因素的關(guān)系進(jìn)行了系統(tǒng)分析。方差分析和回歸分析結(jié)果表明:織物經(jīng)向波形設(shè)計制作過程中,花式鋼筘筘號及其筘片排列方式、織物緯密、鋼筘位移量等因素對經(jīng)向外觀波形效應(yīng)及波高、波寬、波窄具有重要的影響?;ㄊ戒擉伢靥柤捌潴仄帕蟹绞?、鋼筘位移量對經(jīng)向波形的波高有顯著影響,花式鋼筘筘號及其筘片排列方式對經(jīng)向波形的波寬、波窄有顯著影響。
研究過程中發(fā)現(xiàn),由于花式鋼筘筘號及其筘片排列方式產(chǎn)生的經(jīng)紗張力變化情況比較復(fù)雜,在部分產(chǎn)品(圖3)表面引起起皺和布面不平整現(xiàn)象,另外緯向織縮率對經(jīng)向波形產(chǎn)生的修正,對織物波形成形也有一定影響,還有待進(jìn)一步分析探討。
[1] 張國輝.弧形織物的生產(chǎn)原理[J].上海紡織科技,2010,38(2):2-4.
[2] 張國輝,郭其生.弧形織物與局部管狀織物的生產(chǎn)[J].棉紡織技術(shù),2006,34(1):33-34.
[3] 張國輝.經(jīng)向弧形與紗羅聯(lián)合織物的生產(chǎn)[J].毛紡科技,2006(2):28-31.
[4] 馮力.回歸分析方法原理及SPSS實際操作[M].北京:中國金融出版社,2004:20-53.
[5] 盧紋岱.SPSS統(tǒng)計分析[M].北京:電子工業(yè)出版社,2000:284-339.
[6] 郝拉娣,張嫻,劉琳.科技論文中正交試驗結(jié)果分析方法的使用[J].編輯學(xué)報,2007,19(5):340-341.
Study of warp-direction wave fabric forming technology based on the SPSS model
ZHU Hong
(Changzhou Key Laboratory of New Textile Material, Changzhou Textile Garment Institute, Changzhou 213164, China)
To optimize the design and process of the warp-direction wave fabric, and improve the veracity of the warp-direction wave curve, the key assemblies such as the reeds and weft beating frameworks were improved.A series of wave fabrics were designed with orthogonal experiment, and the wave parameters were also tested.Based on the SPSS model, the influences of the reeds, the weft beating frameworks and weft densities on the effect of wave were analyzed. The regression equation among the influence factor, the wave width and the wave height were also reached, which can provide reference for the design of the warp-direction wave fabric.
Wave of warp direction; Special reeds; Moving of reed; SPSS
TS105.11
A
1001-7003(2011)11-0018-04
2011-08-30
江蘇省教育廳高??蒲谐晒a(chǎn)業(yè)化推進(jìn)資助項目(2011-58)
朱紅(1966- ),女,副教授,主要從事紡織品設(shè)計及其產(chǎn)業(yè)化研究。