段曉燕 范建高
第61屆美國(guó)肝病研究學(xué)會(huì)(the American Association for the Study of Liver Diseases,AASLD)年會(huì)于 2010年10月28日至11月2日在美國(guó)波士頓召開。以下就本次會(huì)議上有關(guān)非酒精性脂肪性肝?。∟AFLD)和酒精性肝?。ˋLD)的研究進(jìn)展簡(jiǎn)述如下:
(一)發(fā)病機(jī)制
1、炎癥 美國(guó)Csak通過(guò)體內(nèi)實(shí)驗(yàn)證實(shí)NASH存在炎癥活動(dòng),而脂肪酸可通過(guò)致敏LPS誘導(dǎo)的肝細(xì)胞炎癥活動(dòng)而參與NASH發(fā)生[1]。美國(guó)Zhang報(bào)道了小鼠缺乏硫酯酶超家族成員1(THEM1)/STARD14可對(duì)抗飲食誘導(dǎo)的肝脂變的發(fā)生,白色脂肪組織炎癥反應(yīng)在其中起一定作用[2]。日本Kamada報(bào)道了雌激素缺乏可加劇高脂高膽固醇飲食喂養(yǎng)小鼠脂肪性肝炎的進(jìn)展并可增加巨噬細(xì)胞浸潤(rùn)[3]。英國(guó)Banz報(bào)道了枯否細(xì)胞依賴IL-17分泌和Th17細(xì)胞募集而促進(jìn)鼠類NASH的發(fā)生[4]。美國(guó)Thapaliya通過(guò)體內(nèi)實(shí)驗(yàn)證明了BAX激活在脂肪性肝炎發(fā)生中的作用[5]。
2、纖維化 美國(guó)Dixon報(bào)道了飲食誘導(dǎo)的脂肪性肝炎中半胱天冬酶1參與肝纖維形成的調(diào)節(jié)[6]。美國(guó)Rangwala報(bào)道了NASH時(shí)氣球樣變的肝細(xì)胞sonic hedgehog(SHH)產(chǎn)生增加與纖維化進(jìn)展有關(guān)[7]。
3、細(xì)胞增殖和腫瘤 日本Kumamoto報(bào)道了飲食果糖而不是脂肪可影響二乙基亞硝胺誘導(dǎo)的大鼠肝腫瘤發(fā)生率[8]。德國(guó)Sydor報(bào)道了西餐可增加70%肝切除小鼠模型死亡受體和脂肪酸運(yùn)載體的表達(dá),并可致肝細(xì)胞增殖增加[9]。
4、免疫 日本Ikejima報(bào)道了自然殺傷細(xì)胞(NKT)缺失可增加小鼠對(duì)飲食誘導(dǎo)的脂肪性肝炎的易感性[10]。日本Sawada報(bào)道了高脂飲食誘導(dǎo)的NAFLD小鼠模型中,肝臟和腸道TLR信號(hào)分子的分布情況[11]。
5、氧應(yīng)激 美國(guó)Ji報(bào)道了去除肝特異性關(guān)鍵分子伴侶GRP78/BIP可加劇急、慢性應(yīng)激誘導(dǎo)的肝損傷[12]。美國(guó)Soon報(bào)道了應(yīng)激信號(hào)通路在蛋氨酸膽堿缺乏飲食誘導(dǎo)的鼠類脂肪性肝病模型中的作用[13]。日本Kon報(bào)道了反式脂肪酸可通過(guò)加重KK-AY小鼠脂變肝臟的氧化應(yīng)激而誘導(dǎo)肝細(xì)胞凋亡[14]。
6、遺傳和環(huán)境因素 美國(guó)Baffy報(bào)道了NAFLD發(fā)生是遺傳和環(huán)境因素相互作用的結(jié)果[15]。美國(guó)Dasarathy報(bào)道了在飲食誘導(dǎo)的NAFLD中,飲食和遺傳背景對(duì)肝microRNA的表達(dá)具有不同作用[16]。美國(guó)Pasricha報(bào)道了脂肪性肝病的數(shù)量性狀遺傳位點(diǎn)分析[17]。
7、血管反應(yīng) 比利時(shí)Francque報(bào)道了特異性環(huán)氧合酶2相關(guān)機(jī)制介導(dǎo)肝脂變誘導(dǎo)的門脈高壓中血管的低反應(yīng)性[18]。比利時(shí)Coulon報(bào)道了NASH小鼠模型存在肝血管發(fā)生及VEGF 的上調(diào)[19]。
8、代謝綜合征 美國(guó)Buck報(bào)道了TNF-α誘導(dǎo)的C/EBPβ絲氨酸-239磷酸化對(duì)肥胖和脂肪肝的發(fā)生是至關(guān)重要的[20]。美國(guó)Moylan報(bào)道了來(lái)自NAFLD患者纖維化肝臟的一些信號(hào)分子可能促進(jìn)糖尿病和肥胖的發(fā)生[21]。比利時(shí)Lanthier報(bào)道了枯否細(xì)胞與脂肪組織之間的“對(duì)話”在IR發(fā)生中的作用[22]。美國(guó)Stoll報(bào)道了磷酸卵磷酯轉(zhuǎn)移蛋白(PC-TP)缺乏小鼠可對(duì)抗飲食誘導(dǎo)的由于肝糖產(chǎn)生減少所致的糖尿病[23]。美國(guó)Song報(bào)道了一種新的肥胖相關(guān)脂肪肝的機(jī)制,即高果糖喂養(yǎng)可致銅缺乏[24]。美國(guó)Siddiqui報(bào)道了高脂飲食喂養(yǎng)的A/J小鼠抗代謝綜合征,其SREBP-1c活性和功能降低[25]。
9、其他 美國(guó)Syn報(bào)道了骨橋蛋白可促進(jìn)NAFLD進(jìn)展[26]。澳大利亞Skoien通過(guò)體外實(shí)驗(yàn)證實(shí),脂肪酸誘導(dǎo)的肝細(xì)胞衰老參與NASH的發(fā)生[27]。德國(guó)Kanuri報(bào)道了纖溶酶原激活物抑制劑(PAI-1)、微粒體甘油三酯轉(zhuǎn)運(yùn)蛋白(MTTP)以及NKT細(xì)胞在果糖誘導(dǎo)的小鼠肝脂變發(fā)生中的重要作用[28]。西班牙Ariazu報(bào)道了SPP1可促進(jìn)蛋氨酸膽堿缺乏飲食喂養(yǎng)的小鼠NASH的發(fā)生[29]。美國(guó)Kang報(bào)道了硫酯酶超家族成員2(THEM2)與PC-TP相互作用可限制肝TG分泌[30]。德國(guó)Sydor報(bào)道了游離脂肪酸增加人原代培養(yǎng)肝細(xì)胞FABP-1和cFLIPL的表達(dá),與介導(dǎo)細(xì)胞凋亡和ERK激活的死亡受體減少有關(guān)[31]。法國(guó)Zufiiga報(bào)道了維生素D受體失活可促進(jìn)肝脂變的發(fā)生[32]。英國(guó)Lokman通過(guò)體外肝脂變模型證明了游離脂肪酸和活性氧對(duì)CIDE-B表達(dá)有影響[33]。美國(guó)Softic報(bào)道了胰島素信號(hào)分子會(huì)以U型劑量依賴的方式通過(guò)脂肪酸運(yùn)載蛋白(FATPS)介導(dǎo)肝脂變的發(fā)生[34]。日本Imajo報(bào)道了在鼠類NASH模型中,脂多糖可誘導(dǎo)肝微粒體甘油三酯轉(zhuǎn)運(yùn)蛋白mRNA水平降低以及肝組織病理學(xué)的進(jìn)展[35]。
(二)新的NASH動(dòng)物模型
美國(guó)Viker報(bào)道了用快餐飲食喂養(yǎng)小鼠復(fù)制了一種新NASH小動(dòng)物模型,該模型類似于人類發(fā)病過(guò)程,伴有進(jìn)展性肝纖維化[36]。美國(guó)Wu通過(guò)喂養(yǎng)小鼠含共軛亞油酸的飲食而復(fù)制了一種新的NASH模型[37]。美國(guó)Folli報(bào)道了在肥胖/胰島素抵抗的非人類靈長(zhǎng)目動(dòng)物中,狒狒作為一種NAFLD模型,其肝內(nèi)脂肪含量增加,胰島素信號(hào)級(jí)聯(lián)反應(yīng)也受損[38]。
(三)治療
美國(guó)Gupta報(bào)道了GLP-1受體激動(dòng)劑在減少遭受缺血再灌注損傷的ob/ob小鼠肝脂變和凋亡中的作用[39]。美國(guó)Rector報(bào)道了與熱量限制相比,每日運(yùn)動(dòng)可削弱OLETF大鼠體重的增加并預(yù)防NAFLD的發(fā)生[40]。西班牙Solís-Mufioz報(bào)道了褪黑激素對(duì)伴有NAFLD的ob/ob小鼠線粒體呼吸鏈復(fù)合體及肝病理的影響[41]。日本Ueno報(bào)道了脂聯(lián)素可抑制NASH中的內(nèi)質(zhì)網(wǎng)應(yīng)激[42]。美國(guó)Liang報(bào)道了抗艾滋病新藥Raltegravir可通過(guò)增強(qiáng)自噬而阻止HIV蛋白酶抑制劑所致的肝脂變的發(fā)生[43]。日本Okada報(bào)道了羅蘇伐他汀可通過(guò)抑制NASH模型大鼠氧化應(yīng)激而改善肝臟炎癥和纖維化[44]。以色列Adar報(bào)道了通過(guò)口服IgG強(qiáng)化初乳而誘導(dǎo)的CD4+CD25+FOXP3+調(diào)節(jié)性T細(xì)胞可抑制ob/ob小鼠慢性炎癥狀態(tài),減輕胰島素抵抗和肝損傷[45]。美國(guó)Mells報(bào)道了每日給予C57BL6小鼠新型抗糖尿病藥利拉魯肽(liraglutide)可改善高果糖玉米糖漿和反式脂肪酸誘導(dǎo)的NAFLD的有害效應(yīng)[46]。意大利Salamone報(bào)道了水飛薊素可改善NAFLD小鼠肝損傷和脂肪組織炎癥[47]。美國(guó)Trevaskis報(bào)道了艾塞那肽(exenatide)與西他列汀(sitagliptin)和匹格列酮相比具有顯著的對(duì)抗糖尿病性LEPOB/LEPOB小鼠肝脂變的作用[48]。法國(guó)Lavallard報(bào)道了自噬在NASH肝細(xì)胞死亡中的作用[49]。巴西Mazo報(bào)道了S-亞硝基-N-乙酰半胱氨酸(SNAC)可調(diào)節(jié)實(shí)驗(yàn)性NASH模型肝星狀細(xì)胞活性,并有抗肝纖維化特性[50]。美國(guó)Derdak報(bào)道了P53抑制劑,P-硝基pifithrin-α可減輕小鼠NAFLD病變[51]。以色列Adar報(bào)道了增加的Akt磷酸化可改善胰島素抵抗及其相關(guān)的肝損傷,且口服胰島素與β糖脂具有協(xié)同作用[52]。日本Kajikawa報(bào)道了二十碳五烯酸對(duì)NASH肝纖維化大鼠模型的治療作用[53]。韓國(guó)Lee報(bào)道了水飛薊素對(duì)蛋氨酸膽堿缺乏飲食誘導(dǎo)的IR的NASH大鼠的治療作用[54]。美國(guó)Malhi報(bào)道了C/EBP可對(duì)抗小鼠NASH[55]。以色列Adar報(bào)道了類固醇誘導(dǎo)的IR及其相關(guān)的肝損傷可被β葡萄糖基神經(jīng)酰胺所逆轉(zhuǎn),并指出這可作為NASH保肝治療的新輔助策略[56]。美國(guó)Trevaskis報(bào)道了GLP-1受體激動(dòng)劑可改善NASH小鼠模型的生化學(xué)和組織學(xué)指標(biāo)[57]。韓國(guó)Jun報(bào)道了肉毒堿可通過(guò)恢復(fù)異常線粒體功能而阻止游離脂肪酸誘導(dǎo)的肝臟脂毒性[58]。美國(guó)Setshedi報(bào)道了在體外肝切片培養(yǎng)模型中,神經(jīng)酰胺抑制劑和PPAR激動(dòng)劑可減輕乙醇誘導(dǎo)的脂肪性肝炎[59]。
(一)基礎(chǔ)研究 美國(guó)Han報(bào)道了在ALD發(fā)生過(guò)程中,microRNAs在控制肝膽管細(xì)胞凋亡和轉(zhuǎn)化中的新作用[60]。臺(tái)灣Lin報(bào)道了增強(qiáng)自噬可減輕乙醇誘導(dǎo)的小鼠脂肪肝[61]。美國(guó)Ambade報(bào)道了靶向性熱休克蛋白90(HSP90),存在于酒精性肝損傷中的一種分子伴侶,可抑制脂多糖誘導(dǎo)的TNFα產(chǎn)生[62]。美國(guó)Levin報(bào)道了肝細(xì)胞缺氧誘導(dǎo)因子1α(HIF-1α)需要通過(guò)Toll樣受體4依賴的途徑才能激活,HIF-1α激活可致長(zhǎng)期乙醇喂養(yǎng)的小鼠發(fā)生肝脂變[63]。美國(guó)Derdak報(bào)道了纖維化相關(guān)轉(zhuǎn)錄因子早期生長(zhǎng)反應(yīng)基因1(EGR-1)可通過(guò)激活固醇調(diào)節(jié)元件結(jié)合蛋白1(SREBP1)而促進(jìn)乙醇喂養(yǎng)的Long Evans大鼠肝脂變的發(fā)生[64]。美國(guó)Kirpich報(bào)道了狂飲乙醇誘導(dǎo)的小泡性肝脂變和肝損傷與肝臟組蛋白去乙酰化酶(HDAC)1、7、9、10、11 下調(diào)以及 HDAC 3 上調(diào)有關(guān)[65]。美國(guó)Howarth報(bào)道了激活轉(zhuǎn)錄因子6(ATF-6)與非折疊蛋白反應(yīng)(UPR)在急性乙醇誘導(dǎo)的斑馬魚肝脂變中起重要作用[66]。比利時(shí)Degré報(bào)道了趨化因子配體2(CCL2),亦即單核細(xì)胞趨化蛋白1(MCP-1),中性粒細(xì)胞募集與酒精性肝炎的疾病嚴(yán)重度有關(guān),而IL-17依賴的途徑可能參與其中[67]。美國(guó)Ki報(bào)道了IL-22治療可減輕長(zhǎng)期狂飲酒精所致的一種鼠類模型酒精性肝損傷,并證明信號(hào)轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子3(STAT3)可能參與發(fā)病[68]。
(二)臨床研究 比利時(shí)Trépo報(bào)道了幾種常見(jiàn)的PNPLA3基因多態(tài)性與ALD肝脂變和纖維化的關(guān)系[69]。法國(guó)Louvet通過(guò)分析重度酒精性肝炎患者的長(zhǎng)期資料,發(fā)現(xiàn)酒精復(fù)飲是存活的關(guān)鍵因素[70]。西班牙Altamirano報(bào)道了急性腎損傷(AKI)對(duì)酒精性肝炎患者的短期存活有負(fù)面影響,指出治療上應(yīng)加以注意[71]。法國(guó)Louvet通過(guò)比較幾個(gè)現(xiàn)有的預(yù)后模型發(fā)現(xiàn),預(yù)后積分可有效用于皮質(zhì)激素治療重度酒精性肝炎患者的預(yù)后評(píng)估[72]。法國(guó)Louvet報(bào)道了“應(yīng)答指導(dǎo)治療”用于皮質(zhì)激素治療重度酒精性肝炎患者的臨床情況[73]。Hiramine報(bào)道了日本男性中飲酒患者以及脂肪肝的發(fā)生風(fēng)險(xiǎn)[74]。法國(guó)Amathieu報(bào)道了質(zhì)子磁共振波譜法檢測(cè)血液代謝化合物變化可用于酒精性肝硬化患者慢性肝衰竭的評(píng)估[75]。美國(guó)Ellefson報(bào)道了激素印跡影響酒精誘導(dǎo)的早期肝損傷[76]。法國(guó)Louvet進(jìn)行了一項(xiàng)前瞻性研究,結(jié)果發(fā)現(xiàn)重度酒精性肝炎時(shí)肝靜脈壓力梯度與存活率無(wú)關(guān)[77]。美國(guó)Asrani進(jìn)行了一項(xiàng)基于人群的關(guān)于酒精性肝炎患者存活率的研究[78]。美國(guó)Singal通過(guò)一項(xiàng)大型全國(guó)住院病人數(shù)據(jù)樣本研究,調(diào)查了HCV感染與急性酒精性肝炎嚴(yán)重度增加的關(guān)系[79]。美國(guó)Thuluvath報(bào)道了HCV和肝性腦病對(duì)確診的酒精性肝炎患者結(jié)局的影響[80]。Liangpunsakul報(bào)道了在美國(guó)住院的酒精性肝炎患者的臨床特征和死亡率[81]。
[1]CSAK T,GANZ M,KODYS K,et al.Inflammasome activation occurs in NASH in vivo and it is mediated by fatty acids through sensitization to LPS-induced inflammasome activation in hepatocytes[J].Hepatology,2010,52(S1):77A.
[2]ZHANG Y,LIU SH,LEE CH,et al.Mice lacking thioesterase superfamily member1(THEM1)/STARD14 are protected against diet-induced hepatic steatosis:role of white adipose inflammation[J].Hepatology,2010,52(S1):1043A-1044A.
[3]KAMADA Y,KISO S,YOSHIDA Y,et al.Estrogen deficiency enhanced the progression of steatohepatitis with increased macrophage infiltration in mice fed with high fat and high cholesterol diet[J].Hepatology,2010,52(S1):1051A.
[4]BANZ V,CLARIDGE LC,KAVANAGH DP,et al.Kupffer cell dependent IL-17 secretion and Th17 cell recruitment drives murine steatohepatitis[J].Hepatology,2010,52(S1):1045A-1046A.
[5]THAPALIYA S,BERK MP,DIXON LJ,et al.Role of BAX activation in steatohepatitis development in vivo[J].Hepatology,2010,52(S1):1048A.
[6]DIXON LJ,BERK MP,THAPALIYA S,et al.Caspase 1-mediated regulation of fibrogenesis in diet-induced steatohepatitis[J].Hepatology,2010,52(S1):77A.
[7]RANGWALA F,GUY CD,JIUYI LU,et al.increased production of sonic hedgehog by ballooned hepatocytes:implications for fibrosis progression in NASH[J].Hepatology,2010,52(S1):78A.
[8]KUMAMOTO R,UTO H,TANOUE S,et al.Dietary fructose rather than dietary fat affects liver tumor incidence induced by diethylnitrosamine administration in rats[J].Hepatology,2010,52(S1):1042A.
[9]SYDOR S,GU Y,SOWA JP,et al.Western diet enhances expression of death receptors and fatty acid transporters in a mouse model of 70%hepatectomy and leads to increased cell proliferation in the liver[J].Hepatology,2010,52(S1):1056A.
[10]IKEJIMA K,YAMAGATA H,ARAI K,et al.Depletion of natural killer T cells increases the susceptibility to dietary-induced steatohepatitis in mice[J].Hepatology,2010,52(S1):1041A.
[11]SAWADA K,OHTAKE T,HASEBE T,et al.Disturbance of hepatic and intestinal Toll-like receptor signal pathway in high-fat diet induced NAFLD model mice[J].Hepatology,2010,52(S1):1061A-1062A.
[12]JIC,LAU MY,PETROVIC LM,et al.liver specific deletion of the key chaperone GRP78/BIP aggravates a spectrum of acute and chronic stress-induced liver injury[J].Hepatology,2010,52(S1):78A.
[13]SOON RK,YAN JS,GRENERT JP,et al.Stress signaling in the methionine-choline-deficient model of murine fatty liver disease[J].Hepatology,2010,52(S1):1043A.
[14]KON K,IKEJIMA K,SAITO H,et al.Trans-fatty acid induces apoptosis of hepatocytes by enhancement of oxidative stress in steatotic liver of KK-AY mice[J].Hepatology,2010,52(S1):1053A-1054A.
[15]BAFFY G,NEUSCHWANDER-TETRI BA.Genetics and environment in the progression of NAFLD[J].Hepatology,2010,52(S1):110A
[16]DASARATHY S,YANG Y,RUNKANA A,et al.Differential effects of diet and genetic background on hepatic microRNA expression in diet induced NAFLD[J].Hepatology,2010,52(S1):1058A-1059A.
[17]PASRICHA S,KENNEY-HUNT J,CHEVERUD J,et al.Quantitative trait loci(QTL)analysis of fatty liver disease[J].Hepatology,2010,52(S1):1054A.
[18]FRANCQUE S,VERLINDEN W,BROSIUS I,et al.Vascular hyporeactivity in steatosis-induced portal hypertension is mediated by a special cyclooxygenase 2-related mechanism[J].Hepatology,2010,52(S1):1040A-1041A.
[19]COULON SH,GEERTS AM,CASTELEYN C,et al.Presence of liver angiogenesis and upregulation of VEGF in a mice model of non-alcoholic steatohepatitis(NASH)[J].Hepatology,2010,52(S1):1062A-1063A.
[20]BUCK M,CHOJKIER M.TNF-α induced phosphorylation of C/EBPβserine-239 is critical for the development of obesity and fatty liver[J].Hepatology,2010,52(S1):77A.
[21]MOYLAN CA,ABDELMALEK MF,PANG H,et al.Signals from the fibrostic liver in patients with NAFLD may promote diabetes and obesity[J].Hepatology,2010,52(S1):1049A-1050A.
[22]LANTHIER N,MOLENDI-COSTE O,CANI PD,et al.Crosstalk between kupffer cells and adipose tissue in the pathogenesis of IR[J].Hepatology,2010,52(S1):1045A.
[23]STOLL JM,SHRESTHA S,SCAPA EF,et al.Resistance to diet induced diabetes due to reduced hepatic glucose production in mice lacking phosphatidylcholine transfer protein(PC-TP)[J].Hepatology,2010,52(S1):1053A.
[24]SONG M,SCHUSCHKE D,ZHOU Z,et al.High fructose feeding induces copper deficiency:a novel mechanism for obesity related fatty liver[J].Hepatology,2010,52(S1):1058A.
[25]SIDDIQUI MS,SIDDIQUIMB,GREEN RM.Metabolic syndrome resistant A/Jmice fed a high fat diet down regulate SREBP-1c activity and function[J].Hepatology,2010,52(S1):1063A.
[26]SYN WK,CHOI SS,LIASKOU E,et al.osteopontin promotes NAFLD progression[J].Hepatology,2010,52(S1):77A.
[27]SKOIEN R,POWELL EE,MELINO M,et al.Fatty acids induce hepatocyte senescene in vitro:implications for pathogenesis in NASH[J].Hepatology,2010,52(S1):1044A-1045A.
[28]KANURIG,SPRUSS A,WAGNERBERGER S,et al.Critical role of plasminogen activator inhibitor(PAI-1),microsomal triglyceride transfer protein(MTTP)and NKT cells in the onset of fructoseinduced steatosis in mice[J].Hepatology,2010,52(S1):1049A.
[29]ARIAZU E,LEUNG TM,PAGANOS S,et al.SPP1 contributer to NASH in mice fed a methionine-choline deficient diet[J].Hepatology,2010,52(S1):1053A.
[30]KANG HW,COHEN DE.Interactions between thioesterase superfamily member 2(THEM2)and phosphatidylcholine transfer protein(PC-TP)limit hepatic triglyceride secretion[J].Hepatology,2010,52(S1):1056A.
[31]SYDOR S,SOWA JP,TRECKMANN J,et al.Increased expression of FABP-1 and CFLIPL by free fatty acid treatment is associated with reduced death-receptor mediated apoptosis and ERK-activation in human primary hepatocytes[J].Hepatology,2010,52(S1):1056A-1057A.
[32]ZUfiIGA S,F(xiàn)IRRINCIELI D,LASNIER E,et al.Invalidation of the vitamin D nuclear receptor promotes liver steatosis[J].Hepatology,2010,52(S1):1021A-1119A.
[33]LOKMAN KA,PLEVRIS-PAPAIOANNOU A,BAREN JP,et al.The effect of free fatty acid and reactive oxygen species on CIDEB expression in in vitro model of steatosis[J].Hepatology,2010,52(S1):1059A-1060A.
[34]SOFTIC S,KIRBY M,SHROYER N,et al.Insulin signaling mediates hepatic steatosis through fatty acid transport proteins(FATPS)in a U-shaped dose dependent manner[J].Hepatology,2010,52(S1):1060A.
[35]IMAJO K,F(xiàn)UJITA K,NOZAKI Y,et al.Decrease in hepatic microsomal triglyceride transfer protein mRNA levels and pathological progression induced by lipopolysaccharide in a murine NASH model[J].Hepatology,2010,52(S1):1060A-1061A.
[36]VIKER K,KRISHNAN A,SANDERSON SO,et al.The fast food diet mouse-a novel small animal model of NASH with progressive fibrosis and high fidelity to the human condition[J].Hepatology,2010,52(S1):1046A-1047A.
[37]WU J,SCHIE IW,VEMURI M,et al.A new mouse model of NASH created by feeding diet containing conjugated linoleic acid[J].Hepatology,2010,52(S1):1057A.
[38]FOLLI F,CHAVEZ A,CASIRAGHI F,et al.The baboon as a model of NAFLD.Increased intra-hepatic fat content and impairment in the insulin signaling cascade in obese/IR non-human primates[J].Hepatology,2010,52(S1):1059A.
[39]GUPTA NA,KWUN J,KIRK AD,et al.Role of GLP-1R agonists in decreasing hepatic steatosis and apoptosis in ob/ob mice undergoing ischemia reperfusion injury[J].Hepatology,2010,52(S1):1041A-1042A.
[40]RECTOR RS,UPTERGROVE G,MORRIS M,et al.Attenuation of weight gain through daily exercise versus caloric restriction and prevention of NAFLD in hyperphagic OLETF rats[J].Hepatology,2010,52(S1):1042A.
[41]SOLFIS-MUFOOZ P,GARC A-RUIZ I,GMEZ-IZQUIERDO E,et al.Effects of melatonin on the mitochondrial respiratory chain(MRC)complexes and liver histology in ob/ob mice with NAFLD[J].Hepatology,2010,52(S1):1043A.
[42]UENO T,NAKAMURA A,NAKAMURA T,et al.Adiponectin suppresses endoplasmic reticulum (ER)stress in nonalcoholic steatohepatitis(NASH)[J].Hepatology,2010,52(S1):1044A.
[43]LIANG M,PECORA BS,WANG X,et al.Raltegravir prevents hepatic steatosis due to HIV protease inhibitors by enhancing autophagy[J].Hepatology,2010,52(S1):1046A.
[44]OKADA Y,NISHIKAWA T,JO M,et al.Rosuvastatin improves hepatic inflammation and fibrosis through the inhibition of oxidative stress in rats NASH model[J].Hepatology,2010,52(S1):1047A.
[45]ADAR T,LICHTENSTEIN Y,LALAZAR G,et al.Induction of CD4+CD25+FOXP3+regulatory T cells by oral administration of IgG-enhanced colostrum suppressed the chronic inflammatory state in ob/ob mice alleviating the insulin resistance and liver injury[J].Hepatology,2010,52(S1):1047A.
[46]MELLS JE,F(xiàn)U PP,HANDY JA,et al.Daily administration of liraglutide ameliorates the deleterious effects of high-fructose corn syrup and trans-fat feeding in C57BL6 mice-implications for NAFLD[J].Hepatology,2010,52(S1):1048A.
[47]SALAMONE F,VOLTI GL.Silybin improves liver injury and adipose tissue inflammation in mice with NAFLD[J].Hepatolo-gy,2010,52(S1):1049A.
[48]TREVASKIS JL,GRIFFIN P,WITTMER C,et al.Glucagon-like peptide-1(GLP-1)receptor agonism improves biochemical and histopathological indices of NASH in mice[J].Hepatology,2010,52(S1):1061A.
[49]LAVALLARD V,BONNAFOUS S,ROUSSEAU D,et al.Role of autophagy in hepatocyte death in NASH[J].Hepatology,2010,52(S1):1050A-1051A.
[50]MAZO DF,PEREIRA IV,LIMA VM,et al.S-nitroso-N-acetylcysteine(SNAC),a nitric oxide donor,modulated hepatic stellate cells(HSCS)activity and has antifibrogenic properties in experimental nonalcoholic steatohepatitis(NASH)[J].Hepatology,2010,52(S1):1052A.
[51]DERDAK Z,VILLEGAS KA,WANDS JR.The P53 inhibitor,pifithrin-alpha P-nitro attenuates NAFLD in mice[J].Hepatology,2010,52(S1):1052A.
[52]ADAR T,LALAZAR G,ZOLOTAROV L,et al.Increased AKT phosphorylation alleviates insulin resistance and its associated liver injury:a synergistic effect of oral insulin and beta glycolipid[J].Hepatology,2010,52(S1):1054A-1055A.
[53]KAJIKAWA S,IMADA K,TAKEUCHI T,et al.The therapeutic effect of eicosapentaenoic acid against hepatic fibrosis in a rat model of NASH[J].Hepatology,2010,52(S1):1055A.
[54]LEE JI,LEE JW,KIM YS,et al.Effect of sylimarin on methinnie-choline deficient diet induced NASH in IR rats[J].Hepatology,2010,52(S1):1055A.
[55]MALHI H,KROPP E,KAUFMAN RJ.C/EBP homologous protein(CHOP)protects mice from NASH[J].Hepatology,2010,52(S1):1057A.
[56]ADAR T,ZOLOTAROV L,LALAZAR G,et al.Steroid induced insulin resistance and its associated liver injury can be reversed by beta-glucosylceramide.A novel hepatoprotective coadjuvant treatment strategy for steatohepatitis[J].Hepatology,2010,52(S1):1057A-1058A.
[57]TREVASKIS JL,GRIFFIN P,TATARKIEWICZ K,et al.Exenatide exhibits significant antisteatotic actions in diabetic LEPOB/LEPOB mice compared to sitagliptin and pioglitazone[J].Hepatology,2010,52(S1):1050A.
[58]JUN DW,CHO WK,KWON HJ,et al.Prevention of free fatty acid induced hepatic lipotoxicity by carnitine through restoration ofmitochondrial dysfunction[J].Hepatology,2010,52(S1):1062A.
[59]SETSHEDI M,TONG M,F(xiàn)ENG D,et al.Ceramide inhibitors and PPAR agonists ameliorate alcohol-induced steatohepatitis in an ex-vivo liver slice culture model[J].Hepatology,2010,52(S1):1063A.
[60]HAN Y,JING Q,F(xiàn)RANCIS H,et al.Emerging roles of microRNAs in the control of apoptosis and transformation in hepatobiliary cells during alcoholic liver disease[J].Hepatology,2010,52(S1):379A.
[61]LIN CW,TSAI MH,CHEN X,et al.Enhanced autophagy alleviated ethanol-induced fatty liver in mouse[J].Hepatology,2010,52(S1):379A-380A.
[62]AMBADE A,CATALANO D,MANDREKAR P.Targeting HSP90,a molecular chaperone in alcoholic liver injury:inhibition of LPS-induced TNFα production[J].Hepatology,2010,52(S1):380A.
[63]LEVIN I,NATH B,KURT-JONES EA,et al.Activation of hypoxia inducible factor 1-alpha in hepatocytes requires toll like receptor 4 dependent pathways and results in steatosis in a mouse model of chronic ethanol challenge[J].Hepatology,2010,52(S1):380A-381A.
[64]DERDAK Z,VILLEGAS KA,WANDS JR.Fibrosis-related transcription factor early growth response-1 (EGR-1)promotes steatosis in the liver of ethanol-fed long-evans rats by activating sterol regulatory element binding protein-1 (SREBP1)[J].Hepatology,2010,52(S1):1112A.
[65]KIRPICH I,ZHANG JW,GOBEJISHVILI L,et al.Binge alcohol-induced microvesicular liver steatosis and injury are associated with down-regulation of hepatic HDACS 1,7,9,10,11 and up-regulation of HDAC 3[J].Hepatology,2010,52(S1):1113A.
[66]HOWARTH DL,SADLER KC.ATF-6 and the unfolded protein response play a key role in acute ethanol-induced steatosis in zebrafish[J].Hepatology,2010,52(S1):1113A.
[67]DEGRFI D,LEMMERS A,GUSTOT T,et al.Correlation between CCL2 (MCP-1),neutrophils recruitment and disease severity in alcoholic hepatitis:a potential IL-17 dependent pathway[J].Hepatology,2010,52(S1):1113A-1114A.
[68]KI SH,PARK O,ZHENG MQ,et al.Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic plus binge ethanol feeding:role of STAT3[J].Hepatology,2010,52(S1):1115A.
[69]TR?PO E,GUSTOT T,DEGRE D,et al.Common polymorphism in PNPLA3 gene in associated with stetosis and cirrhosis in alcoholic liver disease[J].Hepatology,2010,52(S1):381A.
[70]LOUVET A,ARTRU F,WARTEL F,et al.Long-term data in severe alcoholic hepatitis:alcohol relapse is the key factor of survival[J].Hepatology,2010,52(S1):381A.
[71]ALTAMIRANO J,BATALLER R,F(xiàn)AGUNDES C,et al.Acute kidney injury (AKI)negatively impacts short-term survival in patients with alcoholic hepatitis:implications for therapy[J].Hepatology,2010,52(S1):1108A.
[72]LOUVET A,ARTRU F,DIAZ E,et al.Prognostic scores are efficient in patients with severe alcoholic hepatitis treated with corticosteroids:comparison of available models[J].Hepatology,2010,52(S1):1108A-1109A.
[73]LOUVET A,ARTRU F,WARTEL F,et al.A response-guided therapy for a bettermanagement of patients severe alcoholic hepatitis treated with corticosteroids[J].Hepatology,2010,52(S1):1109A.
[74]HIRAMINE Y,IMAMURA Y,UTO H,et al.Alcohol drinking patients and the risk of fatty liver in Japanese men[J].Hepatology,2010,52(S1):1109A-1110A.
[75]AMATHIEU R,NAHON P,TRIBA MN,et al.Metabolomic approach by proton NMR spectroscopy of blood serum for the assessment of chronic liver failure in alcoholic cirrhosis patients[J].Hepatology,2010,52(S1):1110A.
[76]ELLEFSON WM,LAKNER AM,MCKILLOP LH,et al.Hormonal imprinting influences early alcohol-induced liver injury[J].Hepatology,2010,52(S1):1110A-1111A.
[77]LOUVET A,DELTENRE P,ARTRU F,et al.Hepatic venous pressure gradient in severe alcoholic hepatitis is not associated with survival:a prospective study[J].Hepatology,2010,52(S1):1119A.
[78]ASRANI SK,LARSON JJ,BENSON JT,et al.Survival of patients with alcoholic hepatitis:a population-based study[J].Hepatology,2010,52(S1):1111A.
[79]SINGAL AK,ANDERSON KE,KUO YF.Hepatitis C virus infection and increased severity of acute alcoholic hepatitis in a large national inpatient data sample[J].Hepatology,2010,52(S1):1112A.
[80]THULUVATH PJ,NGUYEN GC.Impact of HCV and hepatic encephalopathy on the outcome of patients admitted with alcoholic hepatitis[J].Hepatology,2010,52(S1):1114A.
[81]LIANGPUNSAKUL S.Clinical characteristics and mortality of hospitalized alcoholic hepatitis patients in the United States[J].Hepatology,2010,52(S1):1114A.