国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

細(xì)胞重編程:調(diào)節(jié)關(guān)鍵基因獲得需要細(xì)胞

2011-08-09 03:47:50龐希寧
關(guān)鍵詞:逆轉(zhuǎn)錄體細(xì)胞來(lái)源

龐希寧

中國(guó)醫(yī)科大學(xué)細(xì)胞生物學(xué)衛(wèi)生部重點(diǎn)實(shí)驗(yàn)室干細(xì)胞與再生醫(yī)學(xué)研究室,沈陽(yáng) 110001

細(xì)胞發(fā)育和分化的內(nèi)部編程是遵照細(xì)胞內(nèi)基因 表達(dá)規(guī)律進(jìn)行的。每個(gè)細(xì)胞都有全能的細(xì)胞核及相同的分化潛能。在胚胎發(fā)育不同階段,由于細(xì)胞所處微環(huán)境不同及細(xì)胞定向分化內(nèi)部編程不同,基因表達(dá)就存在差異,即開(kāi)放某些基因,關(guān)閉某些基因,以使細(xì)胞合成特異性的蛋白質(zhì),產(chǎn)生不同的結(jié)構(gòu)、功能及表型?;蚪MDNA在細(xì)胞分化過(guò)程中不是全部表達(dá),而是基因的差異表達(dá),即奢侈基因按一定程序有選擇地相繼活化表達(dá)。調(diào)控細(xì)胞分化的基因編程是由不同信號(hào)分子在特定時(shí)間和空間作用于細(xì)胞,產(chǎn)生基因表達(dá)的內(nèi)在規(guī)律。總之,如能改變基因的表達(dá)就能改變細(xì)胞的編程,從而改變細(xì)胞的分化方向。

細(xì)胞重編程是在一定條件下成體細(xì)胞的記憶被擦除,重新程序化產(chǎn)生新的表型和功能,導(dǎo)致細(xì)胞的命運(yùn)發(fā)生改變。細(xì)胞重編程主要發(fā)生在不涉及基因組DNA序列改變的基因表達(dá)水平。對(duì)于細(xì)胞重編程的深入研究有助于掌握機(jī)體細(xì)胞的發(fā)生發(fā)育機(jī)制,為解決再生醫(yī)學(xué)種子細(xì)胞來(lái)源問(wèn)題提供理論基礎(chǔ)[1]。

細(xì)胞重編程的種類

細(xì)胞重編程主要分為兩類:(1)分化的成體細(xì)胞在特定條件下被逆轉(zhuǎn)后恢復(fù)到全能性或多能性狀態(tài),形成新的多能性干細(xì)胞[2],如誘導(dǎo)多潛能干細(xì)胞 (induced pluripotent stem cells,iPSCs)。近年來(lái),iPSCs研究為基因調(diào)控去分化和轉(zhuǎn)分化提供了分子實(shí)驗(yàn)依據(jù),使有目的地調(diào)控細(xì)胞基因的表達(dá),改變細(xì)胞內(nèi)部編程來(lái)改變?cè)瓉?lái)分化方向成為現(xiàn)實(shí)。(2)一種胚層來(lái)源的細(xì)胞或多能性干細(xì)胞向同胚層或不同胚層來(lái)源的另一種成體細(xì)胞或多能性干細(xì)胞轉(zhuǎn)化,也稱轉(zhuǎn)分化 (transdifferentiation)[3]。

影響細(xì)胞重編程的因素

研究表明,基因表達(dá)不但受轉(zhuǎn)錄因子的調(diào)控,還與其DNA和組蛋白表觀遺傳學(xué)修飾有關(guān)[4],包括DNA甲基化、組蛋白乙?;?、印記基因表達(dá)、端粒長(zhǎng)度恢復(fù)、X染色體失活等[5]。在真核生物基因組的非蛋白質(zhì)編碼區(qū)存在大量非編碼RNA(non-coding RNA,ncRNA)基因,這些非編碼區(qū)域擔(dān)負(fù)著基因表達(dá)調(diào)控等重要功能,其編碼產(chǎn)物可在轉(zhuǎn)錄后水平調(diào)節(jié)靶基因的表達(dá),是調(diào)控細(xì)胞內(nèi)基因表達(dá)的基本機(jī)制之一。ncRNA不僅在干細(xì)胞的多能性維持過(guò)程中有重要作用,在成體細(xì)胞重編程中也發(fā)揮重要作用[6],還參與了干細(xì)胞分化的調(diào)節(jié)[7]。

細(xì)胞重編程主要針對(duì)定向分化的某些關(guān)鍵調(diào)節(jié)基因,特別是近年發(fā)現(xiàn)的某些因子能調(diào)控大量基因的表達(dá),對(duì)細(xì)胞編程起著重要作用。例如:神經(jīng)元限制性沉默因子 (RE1-silencing transcription factor/neuron restrictive silencer factor,REST/NRSF)通過(guò)與調(diào)控基因啟動(dòng)子的一段21nt的DNA保守序列—神經(jīng)元限制性沉默元件 (neuron restrictive silencer element/repressor element 1,NRSE/RE-1)結(jié)合,經(jīng)一系列反應(yīng)使組蛋白發(fā)生甲基化和去乙?;揎?使染色質(zhì)呈凝縮狀態(tài),啟動(dòng)子區(qū)域無(wú)法和轉(zhuǎn)錄因子及RNA聚合酶結(jié)合,而抑制其轉(zhuǎn)錄活性。這種表觀遺傳學(xué)修飾可批量抑制上千個(gè)與神經(jīng)細(xì)胞分化相關(guān)的基因,其抑制的解除是神經(jīng)細(xì)胞分化的必要條件[8]。最近研究表明,胰島 β細(xì)胞分化基因胰十二指腸同源框1(Pdx1)、胰島素和神經(jīng)原質(zhì)蛋白3(Ngn3)、神經(jīng)源性分化蛋白1(NeuroD1)和成對(duì)盒4(Pax4)均因具有NRSE序列而受REST/NRSF調(diào)節(jié)[9-11]。Pdx1主要在胰腺前體細(xì)胞中表達(dá),是促進(jìn)早期胰腺發(fā)育以及胰島 β細(xì)胞成熟的關(guān)鍵基因,是最受關(guān)注的具有正向調(diào)節(jié)作用的轉(zhuǎn)錄激活因子,能和眾多與胰島分化有關(guān)的靶基因啟動(dòng)子中的TAAT序列結(jié)合,從而在啟動(dòng)胰島內(nèi)分泌細(xì)胞分化過(guò)程中發(fā)揮重要的作用[12]。

隨著發(fā)育分子生物學(xué)研究的深入,許多組織細(xì)胞的發(fā)育機(jī)制研究不斷深入,提供了大量細(xì)胞分化的分子生物學(xué)信息,為未來(lái)改變細(xì)胞的內(nèi)部編程提供了理論依據(jù)。通過(guò)調(diào)控轉(zhuǎn)錄因子和DNA、組蛋白表觀遺傳學(xué)修飾和miRNA來(lái)抑制或促進(jìn)不同基因的表達(dá)已成為可能。miRNA可在轉(zhuǎn)錄后水平調(diào)節(jié)靶基因的表達(dá),即通過(guò)對(duì)mRNA特異序列的抑制,批量調(diào)節(jié)基因的活性而改變細(xì)胞的編程。

研究細(xì)胞重編程的方法

目前主要通過(guò)逆轉(zhuǎn)錄病毒 (主要是慢病毒)、腺病毒、質(zhì)粒和轉(zhuǎn)座子等介導(dǎo)的方式將轉(zhuǎn)錄因子對(duì)應(yīng)的基因或者小分子導(dǎo)入成體細(xì)胞,將其進(jìn)行重編程。

逆轉(zhuǎn)錄病毒轉(zhuǎn)導(dǎo) 逆轉(zhuǎn)錄病毒又名反轉(zhuǎn)錄病毒,是一組RNA病毒,其病毒科下包括慢病毒在內(nèi)共7屬病毒。病毒感染宿主細(xì)胞時(shí),在逆轉(zhuǎn)錄酶作用下,逆轉(zhuǎn)錄病毒首先將其RNA逆轉(zhuǎn)錄為DNA,然后將這段逆轉(zhuǎn)錄的基因插入細(xì)胞基因組中保持整合狀態(tài),并傳給宿主細(xì)胞后代。慢病毒作為目前應(yīng)用最廣泛的逆轉(zhuǎn)錄病毒,其優(yōu)點(diǎn)是轉(zhuǎn)入基因可以長(zhǎng)期穩(wěn)定表達(dá),并且對(duì)大部分哺乳動(dòng)物細(xì)胞,包括神經(jīng)元、干細(xì)胞等難轉(zhuǎn)染的細(xì)胞,特別是體外懸浮生長(zhǎng)的細(xì)胞,都有很好的轉(zhuǎn)染效率。缺點(diǎn)是逆轉(zhuǎn)錄病毒整合到宿主細(xì)胞基因組的位置是隨機(jī)的,這也就意味著有引起基因突變、激活癌基因的風(fēng)險(xiǎn)[1,13]。

腺病毒轉(zhuǎn)導(dǎo) 腺病毒從腺樣組織分離出來(lái),其遺傳物質(zhì)為線型雙股DNA,全長(zhǎng)約30000~42000 bp。腺病毒的優(yōu)點(diǎn)是幾乎在所有已知細(xì)胞中都不整合到染色體中,因此不會(huì)干擾其他宿主基因,并且人類感染野生型腺病毒后僅產(chǎn)生輕微的自限性癥狀。腺病毒具有嗜上皮細(xì)胞性,因此對(duì)大多數(shù)細(xì)胞特別是上皮細(xì)胞有幾乎100%的感染效率。腺病毒系統(tǒng)包裝的病毒顆粒滴度高,濃縮后可以達(dá)到1013VP/ml,這一特點(diǎn)使其非常適用于基因治療。腺病毒的缺點(diǎn)是由于其不能整合到宿主細(xì)胞基因組中,因此不能長(zhǎng)期穩(wěn)定表達(dá)[14-15]。

質(zhì)粒轉(zhuǎn)染轉(zhuǎn)導(dǎo) 采用脂質(zhì)體轉(zhuǎn)染的方法,將外源性質(zhì)粒轉(zhuǎn)導(dǎo)進(jìn)入目的細(xì)胞中表達(dá)。優(yōu)點(diǎn)是細(xì)胞中不再留存有任何外源的DNA,不易使基因癌化。缺點(diǎn)是瞬時(shí)表達(dá),轉(zhuǎn)染成功細(xì)胞的獲得率尚待提高[16]。

piggyBac轉(zhuǎn)座子轉(zhuǎn)導(dǎo) piggyBac轉(zhuǎn)座子是一個(gè)自主因子,遵循 “剪切—黏貼”機(jī)制,在生物體染色體中特征性的TTAA四核苷酸序列位點(diǎn)準(zhǔn)確地切入和轉(zhuǎn)座,并可以在作用一段時(shí)間后采用轉(zhuǎn)座酶切除外源性插入序列。piggyBac轉(zhuǎn)座子受生物體種類的限制較少,適用范圍較廣,轉(zhuǎn)座頻率較高。其作為非病毒體系提高了安全性,不易使基因癌化。缺點(diǎn)是需要多次使用轉(zhuǎn)座酶去除轉(zhuǎn)入序列,但仍然可能會(huì)留下一些痕跡[17-18]。

蛋白直接誘導(dǎo) 可以通過(guò)4個(gè)蛋白 (Oct4、Sox2、Klf4和c-Myc)誘導(dǎo)成體細(xì)胞重編程為iPSCs,優(yōu)點(diǎn)是誘導(dǎo)過(guò)程不存在外源基因,缺點(diǎn)是誘導(dǎo)效率沒(méi)有病毒載體誘導(dǎo)的效率高[19]。

RNA干擾 通過(guò)RNA干擾抑制某個(gè)或某幾個(gè)基因的方法來(lái)對(duì)細(xì)胞基因表達(dá)進(jìn)行重新編程,用十四烷基聚精氨酸肽鏈 [myristoylated polyarginine peptides,Myr-Ala-(Arg)7-Cys-CONH2,MPAP]將小干擾RNA導(dǎo)入細(xì)胞技術(shù)的出現(xiàn)[20],將有助于推動(dòng)RNA干擾方法對(duì)成體細(xì)胞的重編程。

重編程細(xì)胞的來(lái)源及其轉(zhuǎn)化方向的最新進(jìn)展

重編程細(xì)胞產(chǎn)生iPSCs 不同胚層發(fā)育來(lái)源的成體細(xì)胞甚至胚外組織均有很多重編程產(chǎn)生iPSCs的報(bào)道 (表1),說(shuō)明分化成熟的細(xì)胞都有可能通過(guò)重編程擦去原來(lái)的記憶去分化為胚胎干細(xì)胞。這些研究證實(shí)改變細(xì)胞基因表達(dá)程序 (時(shí)空和差異)就能改變細(xì)胞的分化方向。

表1 各不同種屬不同胚層發(fā)育來(lái)源的細(xì)胞誘導(dǎo)的誘導(dǎo)多潛能干細(xì)胞Table 1 Indceced pluripotent stem cells induced from cells of various species and germ layers

重編程后轉(zhuǎn)分化的細(xì)胞 不但同一器官中發(fā)育于同一內(nèi)胚層的胰腺外分泌腺泡細(xì)胞可以通過(guò)重編程向胰島內(nèi)分泌細(xì)胞 β細(xì)胞轉(zhuǎn)化[77],不同器官中內(nèi)胚層來(lái)源的肝細(xì)胞也可通過(guò)重編程向胰島 β細(xì)胞轉(zhuǎn)化[78]。而胰腺外分泌腺泡細(xì)胞還可通過(guò)重編程向肝細(xì)胞轉(zhuǎn)化[79]。此外,內(nèi)胚層來(lái)源的肝細(xì)胞可通過(guò)重編程向外胚層來(lái)源的神經(jīng)細(xì)胞轉(zhuǎn)化[80],中胚層來(lái)源的皮膚成纖維細(xì)胞可通過(guò)重編程向外胚層來(lái)源的神經(jīng)細(xì)胞[81]及內(nèi)胚層來(lái)源的肝樣細(xì)胞轉(zhuǎn)化[82],中胚層來(lái)源的骨髓間充質(zhì)干細(xì)胞重編程向內(nèi)胚層來(lái)源的胰島β細(xì)胞轉(zhuǎn)化,中胚層來(lái)源的成纖維細(xì)胞重編程向中胚層來(lái)源的心肌細(xì)胞轉(zhuǎn)化[83],外胚層來(lái)源的表皮黑色素細(xì)胞重編程為外胚層來(lái)源神經(jīng)嵴干細(xì)胞樣細(xì)胞[84](表2)。綜上,各不同胚層發(fā)育來(lái)源的成體細(xì)胞都有可能通過(guò)重編程擦去原來(lái)的記憶重新轉(zhuǎn)分化為同一胚層或其他胚層發(fā)育來(lái)源的成體細(xì)胞,這同樣證實(shí)改變細(xì)胞基因表達(dá)程序 (時(shí)空和差異)就能改變細(xì)胞的分化方向。

總之,目前正在進(jìn)入一個(gè)可以通過(guò)調(diào)節(jié)關(guān)鍵基因?qū)?xì)胞進(jìn)行重新編程的時(shí)代,人類未來(lái)將由此從許多分化的細(xì)胞獲得更多所需要的另一些分化細(xì)胞,這對(duì)疾病的細(xì)胞替代治療和細(xì)胞分化機(jī)制研究具有劃時(shí)代的意義。

表2 不同胚層發(fā)育來(lái)源體細(xì)胞的重編程轉(zhuǎn)分化Table 2 Reprogramming of adult cells from developmental original of various germ layers

[1]Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.

[2]Yamanaka S.Strategies and new developments in the generation of patient-specific pluripotent stem cells[J].Cell Stem Cell,2007,1(1):39-49.

[3]Eguchi G,Kodama R.Transdifferentiation[J].Curr Opin Cell Biol,1993,5(6):1023-1028.

[4]Wu Ct,Morris JR.Genes,genetics and epigenetics:a correspondence[J].Science,2001,293(5532):1103-1105.

[5]Armstrong L,Lako M,Dean W,et al.Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer[J].Stem Cells,2006,24(4):805-814.

[6]Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.

[7]Kanellopoulou C,Muljo SA,Kung AL,et al.Dicer deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing[J].Genes Dev,2005,19(4):489-501.

[8]Trzaska KA,Reddy BY,Munoz JL,et al.Loss of RE-1 silencing factor in mesenchymal stem cell-derived dopamine progenitors induces functional maturity[J].Mol Cell Neurosci,2008,39(2):285-290.

[9]Johnson DS,Mortazavi A,Myers RM,et al.Genome-wide mapping of in vivo protein-DNA interactions[J].Science,2007,316(5830):1497-1502.

[10]Mortazavi A,Leeper Thompson EC,Garcia ST,et al.Comparative genomics modeling of the NRSF/REST repressor network:from single conserved sites to genome-wide repertoire[J].Genome Res,2006,16(10):1208-1221.

[11]Kemp DM,Lin JC,Habener JF.Regulation of Pax4 paired homeodomain gene by neuron-restrictive silencer factor[J].J Biol Chem,2003,278(37):35057-35062.

[12]Schwitzgebel VM,Mamin A,Brun T,et al.Agenesis ofhu-man pancreas due to decreased half-life of insulin promoter factor 1[J].J Clin Endocrinol Metab,2003,88(9):4398-4406.

[13]Takahashi K,Tanabe K,Ohnuki M,et al.Induction ofpluripotent stem cells from adult human fibroblasts by defined factors[J].Cell,2007,131(5):861-872.

[14]Stadtfeld M,Nagaya M,Utikal J,etal.Induced pluripotent stem cells generated without viral integration[J].Science,2008,322(5903):945-949.

[15]Okita K,Nakagawa M,Hyenjong H,et al.Generation of mouse induced pluripotent stem cells without viral vectors[J].Science,2008,322(5903):949-953.

[16]Yu J,Hu K,Smuga-Otto K,etal.Human induced pluripotent stem cells free of vector and transgene sequences[J].Science,2009,324(5928):797-801.

[17]Kaji K,Norrby K,Paca A,et al.Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J].Nature,2009,458(7239):771-775.

[18]Woltjen K,Michael IP,Mohseni P,et al.piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J].Nature,2009,458(7239):766-770.

[19]Zhou H,Wu S,Joo JY,et al.Generation of induced pluripotent stem cells using recombinant proteins[J].Cell Stem Cell,2009,4(5):381-384.

[20]Medarova Z,Pham W,Farrar C,et al.In vivo imaging of siRNA delivery and silencing in tumors[J].Nat Med,2007,13(3):372-377.

[21]Shi Y,Do JT,Desponts C,et al.A combined chemical and genetic approach for the generation of induced pluripotent stem cells[J].Cell Stem Cell,2008,2(6):525-528.

[22]Kim JB,Zaehres H,Wu G,et al.Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors[J].Nature,2008,454(7204):646-650.

[23]Duinsbergen D,Eriksson M,'t Hoen PA,et al.Induced pluripotency with endogenous and inducible genes[J].Exp Cell Res,2008,314(17):3255-3263.

[24]Kim JB,Sebastiano V,Wu G,et al.Oct4-induced pluripotency in adult neural stem cells[J].Cell,2009,136(3):411-419.

[25]EminliS,Utikal J,Arnold K,etal.Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression[J].Stem Cells,2008,26(10):2467-2474.

[26]Tat PA,Sumer H,Jones KL,etal.The efficientgeneration of induced pluripotent stem (iPS)cells from adult mouse adipose tissue-derived and neural stem cells [J].Cell Transplant,2010,19(5):525-536.

[27]Kim JB,Greber B,Araúzo-Bravo MJ,et al.Direct reprogramming of human neural stem cells by OCT4[J].Nature,2009,461(7264):643-649.

[28]Chang MY,Kim D,Kim CH,et al.Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells[J].PLoS One,2010,5(3):e9838.

[29]Do JT,Joo JY,Han DW,et al.Generation of parthenogenetic induced pluripotent stem cells from parthenogenetic neural stem cells[J].Stem Cells,2009,27(12):2962-2968.

[30]Utikal J,Maherali N,Kulalert W,et al.Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells[J].J Cell Sci,2009,122(Pt19):3502-3510.

[31]Aasen T,Raya A,Barrero MJ,et al.Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J].Nat Biotechnol,2008,26(11):1276-1284.

[32]Maherali N,Ahfeldt T,Rigamonti A,et al.A high-efficiency system for the generation and study of human induced pluripotent stem cells[J].Cell Stem Cell,2008,3(3):340-345.

[33]Linta L,Stockmann M,Kleinhans KN,et al.Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells[J].Stem Cells Dev,[2011-08-05].http://www.liebertonline.com/doi/abs/10.1089/scd.2011.0026.

[34]Balasubramanian S,Babai N,Chaudhuri A,et al.Non cell-autonomous reprogramming of adult ocular progenitors:generation of pluripotent stem cells without exogenous transcription factors[J].Stem Cells,2009,27(12):3053-3062.

[35]Nakagawa M,Koyanagi M,Tanabe K,et al.Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J].Nat Biotechnol,2008,26(1):101-106.

[36]Wernig M,Meissner A,Cassady JP,et al.c-Myc is dispensable for direct reprogramming of mouse fibroblasts[J].Cell Stem Cell,2008,2(1):10-12.

[37]Wernig M,Lengner CJ,Hanna J,et al.A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types[J].Nat Biotechnol,2008,26(8):916-924.

[38]Wernig M,Meissner A,Foreman R,et al.In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J].Nature,2007,448(7151):318-324.

[39]Meissner A,Wernig M,Jaenisch R.Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells[J].Nat Biotechnol,2007,25(10):1177-1181.

[40]Okita K,Ichisaka T,Yamanaka S.Generation of germlinecompete induced pluripotent stem cells[J].Nature,2007,448(7151):313-317.

[41]Feng B,Jiang J,Kraus P,et al.Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb[J]Nat Cell Biol,2009,11(2):197-203.

[42]Heng JC,Feng B,Han J,et al.The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotentcells[J].Cell Stem Cell,2010,6(2):167-174.

[43]Yu J,Vodyanik MA,Smuga-Otto K,et al.Induced pluripotent stem cell lines derived from human somatic cells[J].Science,2007,318(5858):1917-1920.

[44]Park IH,Zhao R,West JA,et al.Reprogramming of human somatic cells to pluripotency with defined factors[J].Nature,2008,451(7175):141-146.

[45]Dimos JT,Rodolfa KT,Niakan KK,et al.Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J].Science,2008,321(5893):1218-1221.

[46]Hockemeyer D,Soldner F,Cook EG,et al.A drug-inducible system for direct reprogramming of human somatic cells to pluripotency[J].Cell Stem Cell,2008,3(3):346-353.

[47]MaheraliN,Ahfeldt T,Rigamonti A,et al.A high-efficiency system for the generation and study of human induced pluripotent stem cells[J].Cell Stem Cell,2008,3(3):340-345.

[48]Lowry WE,Richter L,Yachechko R,et al.Generation of human induced pluripotent stem cells from dermal fibroblasts[J].Proc Natl Acad Sci USA,2008,105(8):2883-2888.

[49]Liao J,Wu Z,Wang Y,et al.Enhanced efficiency of generating induced pluripotent stem(iPS)cells from human somatic cells by a combination of six transcription factors[J].Cell Res,2008,18(5):600-603.

[50]Mali P,Ye Z,Hommond HH,et al.Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts[J].Stem Cells,2008,26(8):1998-2005.

[51]Park IH,Arora N,Huo H,et al.Disease-specific induced pluripotent stem cells[J].Cell,2008,134(5):877-886.

[52]Eggenschwiler R,Loya K,Sgodda M,et al.Hepatic differentiation of murine disease-specific induced pluripotent stem cells allows disease modelling in vitro[J].Stem Cells Int,2011:924782[2011-09-29].http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184399/?tool=pubmed.

[53]Araki R,Jincho Y,Hoki Y,et al.Conversion of ancestral fibroblasts to induced pluripotent stem cells[J].Stem Cells,2010,28(2):213-220.

[54]Hanna J,Markoulaki S,Schorderet P,et al.Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J].Cell,2008,133(2):250-264.

[55]Eminli S,Foudi A,Stadtfeld M,et al.Differentiation stage determines potential ofhematopoietic cells for reprogramming into induced pluripotent stem cells[J].Nat Genet,2009,41(9):968-976.

[56]Loh YH,Agarwal S,Park IH,et al.Generation of induced pluripotent stem cells from human blood[J].Blood,2009,113(22):5476-5479.

[57]Haase A,Olmer R,Schwanke K,et al.Generation of induced pluripotent stem cells from human cord blood[J].Cell Stem Cell,2009,5(4):434-441.

[58]Giorgetti A,Montserrat N,Aasen T,et al.Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2[J].Cell Stem Cell,2009,5(4):353-357.

[59]Takenaka C,Nishishita N,Takada N,et al.Effective generation of iPS cells from CD34+cord blood cells by inhibition of p53[J].Exp Hematol,2010,38(2):154-162.

[60]Kunisato A,Wakatsuki M,Kodama Y,et al.Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells[J].Stem Cells Dev,2010,19(2):229-238.

[61]Sugii S,Kida Y,Kawamura T,et al.Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells[J].Proc Natl Acad Sci USA,2010,107(8):3558-3563.

[62]Aoki T,Ohnishi H,Oda Y,et al.Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC[J].Tissue Eng Part A,2010,16(7):2197-2206.

[63]Sun N,Panetta NJ,Gupta DM,et al.Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells[J].Proc Natl Acad Sci USA,2009,106(37):15720-15725.

[64]Kim MJ,Son MJ,Son MY,et al.Generation of human induced pluripotent stem cells from osteoarthritis patient-derived synovial cells[J].Arthritis Rheum,2011,63(10):3010-3021.

[65]Tsai SY,Clavel C,Kim S,et al.Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells[J].Stem Cells,2010,28(2):221-228.

[66]Qin D,Gan Y,Shao K,et al.Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors[J].J Biol Chem,2008,283(48):33730-33735.

[67]Yan X,Qin H,Qu C,et al.iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin[J].Stem Cells Dev,2010,19(4):469-480.

[68]Stadtfeld M,Brennand K,Hochedlinger K.Reprogramming of pancreatic beta cells into induced pluripotent stem cells[J].Curr Biol,2008,18(12):890-894.

[69]Aoi T,Yae K,Nakagawa M,et al.Generation of pluripotent stem cells from adult mouse liver and stomach cells[J].Science,2008,321(5889):699-702.

[70]Liu H,Ye Z,Kim Y,et al.Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes[J].Hepatology,2010,51(5):1810-1819.

[71]Song B,Niclis JC,Alikhan MA,et al.Generation of induced pluripotent stem cells from human kidney mesangial cells[J].J Am Soc Nephrol,2011,22(7):1213-1220.

[72]Lagarkova MA,Shutova MV,Bogomazova AN,et al.Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale[J].Cell Cycle,2010,9(5):937-946.

[73]Golestaneh N,Kokkinaki M,Pant D,et al.Pluripotent stem cells derived from adult human testes[J].Stem Cells Dev,2009,18(8):1115-1126.

[74]Conrad S,Renninger M,Hennenlotter J,et al.Generation of pluripotent stem cells from adult human testis[J].Nature,2008,456(7220):344-349.

[75]Li C,Zhou J,Shi G,et al.Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells[J].Hum Mol Genet,2009,18(22):4340-4349.

[76]Wu T,Wang H,He J,et al.Reprogramming of trophoblast stem cells into pluripotent stem cells by Oct4[J].Stem Cells,2011,29(5):755-763.

[77]Zhou Q,Brown J,Kanarek A,et al.In vivo reprogramming of adult pancreatic exocrine cells to beta-cells[J].Nature,2008,455(7213):627-632.

[78]Gefen-Halevi S,Rachmut IH,Molakandov K,et al.NKX6.1 promotes PDX-1-induced liver to pancreatic β-cells reprogramming[J].Cell Reprogram,2010,12(6):655-664.

[79]Al-Adsani A,Burke ZD,Eberhard D,et al.Dexamethasone treatment induces the reprogramming of pancreatic acinar cells to hepatocytes and ductal cells[J].PLoS One,2010,5(10):e13650.

[80]Marro S,Pang ZP,Yang N,etal.Direct lineage conversion of terminally differentiated hepatocytes to functional neurons[J].Cell Stem Cell,2011,9(4):374-382.

[81]Ambasudhan R,Talantova M,Coleman R,et al.Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions[J].Cell Stem Cell,2011,9(2):113-118.

[82]Sekiya S,Suzuki A.Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors[J].Nature,2011,475(7356):390-393.

[83]Yang L.From fibroblast cells to cardiomyocytes:direct lineage reprogramming[J].Stem Cell Res Ther,2011,2(1):1.

[84]Zabierowski SE,Baubet V,Himes B,et al.Direct reprogramming of melanocytes to neural crest stem-like cells by one defined factor[J].Stem Cells,2011,29(11):1752-1762.

猜你喜歡
逆轉(zhuǎn)錄體細(xì)胞來(lái)源
將來(lái)吃魚(yú)不用調(diào)刺啦
抗逆轉(zhuǎn)錄病毒治療對(duì)艾滋病患者腦灰質(zhì)體積的影響
浙江:誕生首批體細(xì)胞克隆豬
新型冠狀病毒入侵人體細(xì)胞之謎
科學(xué)(2020年4期)2020-11-26 08:27:10
病毒如何與人類共進(jìn)化——內(nèi)源性逆轉(zhuǎn)錄病毒的秘密
科學(xué)(2020年3期)2020-11-26 08:18:34
試論《說(shuō)文》“丵”字的來(lái)源
“赤”的來(lái)源與“紅”在服裝中的應(yīng)用
流行色(2018年11期)2018-03-23 02:21:22
鯉春病毒血癥病毒逆轉(zhuǎn)錄環(huán)介導(dǎo)等溫?cái)U(kuò)增(RT—LAMP)檢測(cè)方法的建立
內(nèi)皮前體細(xì)胞亞型與偏頭痛的相關(guān)性分析
非洲菊花托的體細(xì)胞胚發(fā)生及植株再生
安阳市| 江口县| 米泉市| 永昌县| 石狮市| 河北省| 醴陵市| 景东| 鹤岗市| 双江| 阿拉善右旗| 资源县| 乌鲁木齐县| 化州市| 深圳市| 平南县| 黔江区| 舟曲县| 宜城市| 连云港市| 葫芦岛市| 临漳县| 井研县| 茶陵县| 定襄县| 遵义县| 宁陵县| 娄烦县| 武冈市| 基隆市| 建阳市| 小金县| 苏尼特右旗| 丹棱县| 新营市| 崇礼县| 岳西县| 道孚县| 郴州市| 安庆市| 朝阳市|