徐崇斌
(溫州大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,浙江溫州 325035)
雙擴(kuò)張Schr?dinger-Virasoro代數(shù)的導(dǎo)子代數(shù)與自同構(gòu)群
徐崇斌
(溫州大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,浙江溫州 325035)
雙擴(kuò)張Schr?dinger-Virasoro代數(shù)是擴(kuò)張Schr?dinger-Virasoro代數(shù)的自然推廣.充分討論了雙擴(kuò)張Schr?dinger-Virasoro代數(shù)的導(dǎo)子代數(shù)與自同構(gòu)群,討論結(jié)果適用于任意有限秩情形.
雙擴(kuò)張Schr?dinger-Virasoro代數(shù);導(dǎo)子代數(shù);自同構(gòu)群
[1] Roger C, Unterberger J. The Schr?dinger-Virasoro Lie group ane algebra:from geometry to representation thery [J]. Ann Henri Poincare, 2006, 7: 1477-1529.
[2] Unterberger J. On vertex algebra representations of the Schr?dinger-Virasoro Lie algebra [J]. Nuclear Physics B, 2009, 823(3): 320-371.
[3] Gao S, Jiang C, Pei Y. Structure of the extended Schr?dinger-Virasoro Lie algebra [J]. Alg Colluq, 2009, 16(4): 549-566.
[4] Tan S, Zhang X. Automorphisms and Verma modules for generalized Schr?dinger-Virasoro algebras [J]. J Alg, 2009, 322: 1379-1394.
[5] Farnsteiner R. Derivations and extensions of fnitely generated graded Lie algebras [J]. J Alg, 1988, 118(1): 34-45.
[6] Dokovic D Z, Zhao K. Derivations, Isomorphisms and second cohomology of generalized Witt algebras [J]. Tran Amer Math Soc, 1998, 350: 643-664.
Study on Derivation Algebra and Automorphism Group of Double Extended Schr?dinger-Virasoro Algebra
XU Chongbin
(School of Mathematics and Information Science, Wenzhou University, Wenzhou, China 325035)
Double extended Schr?dinger-Virasoro algebra is a natural generalization of extended Schr?dinger-Virasoro algebra. In this paper, its derivation algebra and automorphism group were discussed. The achievement of the discussion is applicable to any finite rank.
Double Extended Schr?dinger-Virasoro Algebra; Derivation Algebra; Automorphism Group
(編輯:王一芳)
O152.5
A
1674-3563(2011)06-0001-08
10.3875/j.issn.1674-3563.2011.06.001 本文的PDF文件可以從xuebao.wzu.edu.cn獲得
2011-02-21
徐崇斌(1977- ),男,湖北黃梅人,講師,碩士,研究方向:代數(shù)