張文婕, 范 穎
(1.中國(guó)藥科大學(xué)新藥研究中心,江蘇南京210009;2.上海醫(yī)藥工業(yè)研究院上海呼吸系統(tǒng)藥物工程技術(shù)研究中心,上海200437)
多糖是具有特定結(jié)構(gòu)的一類天然生物材料,可作為藥物載體或組織工程支架用于遞送小分子化學(xué)藥物、多肽或蛋白藥物,提取和純化方法的發(fā)展加速了其作為藥物載體的應(yīng)用。
根據(jù)臨床要求不同,多糖可以膠束、微?;蚰z的形式遞送藥物。多糖-藥物綴合物已得到廣泛應(yīng)用,其膠束形式可提高載體靶向性及生物降解性。載藥多糖凝膠可形成連續(xù)網(wǎng)狀結(jié)構(gòu)的高度水化材料,模擬天然組織的機(jī)械和化學(xué)特性,用于藥物控釋或軟組織再生。
用于藥物傳遞系統(tǒng)的多糖來(lái)源于非哺乳動(dòng)物或哺乳動(dòng)物。來(lái)源于非哺乳動(dòng)物的多糖包括海藻酸鹽(alginate)、幾丁質(zhì)(chitin)、葡聚糖(dextran)等,其提取和純化方法相對(duì)簡(jiǎn)單,價(jià)格便宜,免疫原性低,在遞送藥物時(shí)可通過(guò)非共價(jià)交聯(lián)方式(靜電結(jié)合)或共價(jià)修飾方式與藥物結(jié)合或連接不同的功能基團(tuán)。來(lái)源于哺乳動(dòng)物的多糖包括透明質(zhì)酸(hyaluronan)、肝素(heparin)和硫酸軟骨素(chondroitin sulfate)等,同樣可通過(guò)共價(jià)或非共價(jià)方式與藥物連接,雖然其分離提純過(guò)程相對(duì)復(fù)雜,但由于可與體內(nèi)多種蛋白特異性結(jié)合,其用作藥物載體具獨(dú)特優(yōu)勢(shì)。
海藻酸鹽是從褐藻(如昆布)或土壤細(xì)菌(如褐色定氮菌)中提取的一種可生物降解的親水性多糖,由β-D-甘露醛酸和α-L-古羅糖醛酸線性聚合而成。根據(jù)來(lái)源和加工過(guò)程的不同,可得到不同相對(duì)分子質(zhì)量(104~106)的海藻酸鹽。
海藻酸鹽的一個(gè)重要特點(diǎn)就是可通過(guò)與二價(jià)陽(yáng)離子(如鈣離子、鋇離子和鍶離子等)連接使分子鏈中古羅糖醛酸間形成蛋殼結(jié)構(gòu),且根據(jù)陽(yáng)離子濃度的不同,致分子鏈間形成瞬時(shí)或永久的結(jié)合。早在20世紀(jì)40年代,海藻酸鈣微球就被用作藥物傳遞載體,且研究表明:陽(yáng)離子濃度及海藻酸鈣相對(duì)分子質(zhì)量、膠凝動(dòng)力學(xué)等因素會(huì)影響微球的孔徑、溶脹、穩(wěn)定性及機(jī)械強(qiáng)度等性質(zhì)。海藻酸鹽微球制備簡(jiǎn)單,但存在機(jī)械穩(wěn)定性差、突釋現(xiàn)象等問(wèn)題,為克服這些缺陷,研究者們通過(guò)將高分子修飾材料包覆于海藻酸鹽微球外層而制備出包衣型微球,或使高分子材料與海藻酸鹽相互滲透或交聯(lián)形成聚合物網(wǎng)絡(luò)而制備嵌入型凝膠(見(jiàn)表1)。
表1 用作藥物載體的包衣型海藻酸鹽微球和嵌入型海藻酸鹽凝膠的特性Table1 Characteristics of coated alginatemicrosphere and interpenetrated alginate gel as drug carriers
海藻酸鹽微球具有pH敏感性,在低pH條件下(如在胃中),可收縮形成不可溶性微球,阻滯藥物釋放;而在較高pH條件下(如在腸道中),則可轉(zhuǎn)化為可溶性微球,藥物可通過(guò)微球內(nèi)部孔徑為5~200 nm的微孔以及微球溶蝕作用而釋放。因此,海藻酸鹽微球尤為適宜用作蛋白藥物的口服制劑,既可避免蛋白藥物在胃中降解,又可保證藥物在腸道中釋放。但由于海藻酸鹽在腸道中易溶解,導(dǎo)致其微球中藥物突釋,使蛋白藥物失去保護(hù)而在蛋白水解酶作用下變性,故需改進(jìn)海藻酸鹽微球的理化性質(zhì),以實(shí)現(xiàn)對(duì)蛋白藥物的緩釋和控釋。Yu等[12]使用海藻酸鹽、殼聚糖和果膠制備復(fù)合微粒,其中殼聚糖在低pH條件下可溶,在高pH條件下不可溶,這正好與海藻酸鹽的性質(zhì)相反,從而使微粒中蛋白藥物在pH為1.2和5.0時(shí)達(dá)到緩釋,在pH為7.4和6.8時(shí)則迅速釋放,同時(shí)果膠又可抵御蛋白酶和淀粉酶的作用,避免蛋白藥物變性,因此,該復(fù)合微??蓪?shí)現(xiàn)口服蛋白藥物的結(jié)腸靶向遞送。
研究表明:帶有電荷的高分子材料可粘附于黏膜,增加其電荷密度可提高其黏膜黏附性。而海藻酸鹽是帶有羧基的陰離子高分子,為良好的黏膜黏附劑,其黏附性優(yōu)于聚苯乙烯、羧甲基纖維素、聚乳酸和殼聚糖等其他高分子材料(Ch'ng等,J Pharma Sci,1985年),且經(jīng)修飾后可提高生物黏附性。Alsberg等[13]將黏附性配體精氨酸-甘氨酸-天冬氨酸(RGD)肽通過(guò)共價(jià)鍵與海藻酸凝膠連接,以增強(qiáng)后者對(duì)前成骨細(xì)胞MC3T3-E1的黏附作用,從而促進(jìn)該細(xì)胞的增殖、分化,進(jìn)而實(shí)現(xiàn)骨修復(fù)。結(jié)果表明:當(dāng)每cm2凝膠表面含有配體量為1.5×10-15~15×10-15mol時(shí),可明顯提高凝膠對(duì)成骨細(xì)胞的黏附性。
幾丁質(zhì)是來(lái)源于節(jié)肢動(dòng)物和昆蟲(chóng)外殼的一種疏水性多糖,由β-N-乙酰-D-氨基葡萄糖線性聚合而成。幾丁質(zhì)的N-脫乙酰衍生物即殼聚糖,由N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖共聚而成。幾丁質(zhì)不溶于水,但殼聚糖可在酸性條件下溶解,且具有可供化學(xué)修飾的活性基團(tuán)。此外,殼聚糖可生物降解,生物相容性好,價(jià)格便宜,易獲得,可進(jìn)行結(jié)構(gòu)修飾,故在藥物傳遞系統(tǒng)中得到廣泛應(yīng)用(見(jiàn)表2)。
表2 幾丁質(zhì)衍生物載體類型Table2 Types of chitin derivative carriers
由于殼聚糖僅可溶于酸性溶液,故其應(yīng)用受到限制。由此,研究者們對(duì)其進(jìn)行結(jié)構(gòu)改造,以期能提高其水溶性或使其載體具有溫度敏感性、pH敏感性或離子敏感性等特性。例如,筆者所在課題組合成了兩親性N-烷基-N-三甲基殼聚糖[14]、兩親性N-辛基-O-磺?;鶜ぞ厶牵?5]、長(zhǎng)循環(huán)聚乙二醇-N-辛基-O-磺?;鶜ぞ厶牵?6]、溫度敏感型聚N-異丙基丙烯酰胺-殼聚糖[17]和pH敏感型N-辛基-N-(2-羧苯甲酰)-殼聚糖[18]等新型殼聚糖衍生物,拓展了殼聚糖在藥物傳遞系統(tǒng)中的應(yīng)用。此外,Kim等[19]以抗腫瘤活性物質(zhì)鞣花酸為模型藥物,將鞣花酸溶液與殼聚糖溶液于40℃混合2 h,調(diào)節(jié)混合溶液pH至 6.9~7.2,然后在4℃下與β-甘油磷酸酯溶液混合,并于37℃膠凝,此含藥凝膠具有緩釋作用,累積釋藥量與凝膠載藥量呈正相關(guān),且體外試驗(yàn)顯示:荷載1%鞣花酸的凝膠可明顯抑制人U87惡性膠質(zhì)瘤和鼠C6神經(jīng)膠質(zhì)瘤生長(zhǎng)。Ranjha等[20]通過(guò)自由基聚合反應(yīng)使殼聚糖與丙烯酸交聯(lián)形成干膠,該干膠在低pH介質(zhì)中幾乎不溶脹,而在高pH (pH為6.5或7.5)介質(zhì)中可快速溶脹,且體外藥物釋放實(shí)驗(yàn)表明:隨著介質(zhì)pH的升高,干膠可不斷攝取水分并溶脹,致使藥物釋放增加。
近年來(lái),隨著電紡技術(shù)(electrospinning)的發(fā)展,幾丁質(zhì)和殼聚糖納米纖維被廣泛應(yīng)用于組織工程支架、藥物傳遞系統(tǒng)、傷口敷料和傳感器中[21]。電紡技術(shù)可通過(guò)對(duì)高壓產(chǎn)生的帶電高分子液滴進(jìn)行干燥而獲得從十幾納米到幾微米不等的納米纖維(見(jiàn)表3)。幾丁質(zhì)溶解性差,只可溶于特定的溶劑中,如N,N-二甲乙酰胺(DMAC)-LiCl、六氟丙酮、1,1,1,3,3,3-六氟-2-正丙醇(HFIP)和飽和鈣溶液等,因此,在電紡前,可通過(guò)γ輻射解聚幾丁質(zhì)來(lái)增加其溶解性。殼聚糖在溶于酸性溶液時(shí)帶有正電荷,此高分子電解質(zhì)溶液不能經(jīng)電紡穩(wěn)定地形成納米纖維,而研究發(fā)現(xiàn),使用三氟乙酸或三氟乙酸/二氯甲烷,可提高殼聚糖電紡纖維的均一性。
表3 電紡幾丁質(zhì)和殼聚糖納米纖維類型Table3 Types of electrospun nanofibers of chitin and chitosan
電紡納米纖維具有表面積大、孔隙度高、生物相容性好的特點(diǎn),將其用于藥物傳遞系統(tǒng),可實(shí)現(xiàn)藥物尤其是促細(xì)胞再生性藥物的控釋。如Jeong等[22]將殼聚糖和海藻酸鹽溶液混合,并經(jīng)電紡,通過(guò)離子相互作用而獲得納米纖維,該納米纖維由于未使用交聯(lián)劑而降低了毒性,同時(shí)由于使用了殼聚糖而增加了對(duì)血清蛋白的黏附性,因而更適宜用作組織工程支架材料。
葡聚糖是從細(xì)菌(如白念珠菌)代謝產(chǎn)物中提取的一種水溶性多糖,由D-葡萄糖以1→6鍵連接,并在支鏈點(diǎn)1→2、1→3和1→4處連接配糖而組成。根據(jù)來(lái)源不同,可得到平均相對(duì)分子質(zhì)量不同的各種支鏈葡聚糖。最初,葡聚糖被用作血漿替代品,由于其具有生物可降解、非特異性細(xì)胞黏附、抵御蛋白吸附、價(jià)格便宜及易于結(jié)構(gòu)改造等特點(diǎn),成為藥物載體材料研究的熱點(diǎn)。
將不同的功能基團(tuán)連接在葡聚糖上,可得到原位凝膠或溫度敏感、pH敏感等不同類型的水凝膠(見(jiàn)表4)。迄今,研究者們已制備出以葡聚糖衍生物凝膠為載體的吲哚美辛、牛血清蛋白、免疫球蛋白G及溶菌酶等各類藥物的控釋制劑。
Sun等[23]利用二硫鍵將葡聚糖和聚己內(nèi)酯連接而制得粒徑約60 nm的對(duì)還原性環(huán)境敏感的載藥嵌段共聚物膠束。結(jié)果顯示:其在非還原性環(huán)境中于20 h內(nèi)僅釋藥20%,而在還原性環(huán)境中于10 h內(nèi)可持續(xù)并完全釋藥。葡聚糖還被廣泛用于前藥和納米給藥系統(tǒng)的制備。如Varshosaz等[24]將布地奈德通過(guò)戊二酸連接于不同相對(duì)分子質(zhì)量的葡聚糖上制成前藥,結(jié)果表明:使用相對(duì)分子質(zhì)量為10 000和70 000的葡聚糖制得的前藥不但可使布地奈德溶解度提高,還可用于結(jié)腸靶向釋藥,治療潰瘍性結(jié)腸炎。
透明質(zhì)酸是由(1→4)-β-D-葡醛酸和(1→3)-β-N-乙酰-D-葡糖胺組成的線性水溶性多糖,骨架中的羥基和羧基均可被化學(xué)修飾。透明質(zhì)酸最初在牛眼玻璃體中被發(fā)現(xiàn),隨后的研究表明其廣泛存在于生物體內(nèi),尤其是細(xì)胞外基質(zhì)和關(guān)節(jié)液中。雖然透明質(zhì)酸可從活體中提取,但為避免污染和病毒感染,人們主要從微生物發(fā)酵物中獲取該物質(zhì)。
透明質(zhì)酸具有生物可降解、生物相容、低毒、非免疫原性、無(wú)致炎性等特點(diǎn),因此被廣泛用于藥物傳遞系統(tǒng)。Homma等[25]通過(guò)肽段將甲氨蝶呤連接于透明質(zhì)酸而制成前藥,該前藥中肽段被酶降解后釋放出具有止痛作用的透明質(zhì)酸和具有抗炎作用的甲氨蝶呤,從而對(duì)骨關(guān)節(jié)炎發(fā)揮協(xié)同治療作用;試驗(yàn)表明:該前藥在體外可抑制人成纖維細(xì)胞樣滑膜細(xì)胞的增殖,在大鼠關(guān)節(jié)炎模型中可減輕關(guān)節(jié)腫脹。
此外,為了使透明質(zhì)酸制備的藥物傳遞系統(tǒng)更具靶向性和長(zhǎng)效作用,研究者們通過(guò)多種化學(xué)修飾方法制備透明質(zhì)酸衍生物,其羧基是常見(jiàn)的修飾部位(見(jiàn)表5)。但值得注意的是,透明質(zhì)酸的羧基是透明質(zhì)酸酶的識(shí)別位點(diǎn),因此,羧基部位的修飾可能改變透明質(zhì)酸衍生物的體內(nèi)降解行為。
透明質(zhì)酸的相對(duì)分子質(zhì)量從103到107不等,不同相對(duì)分子質(zhì)量的透明質(zhì)酸在體內(nèi)具有不同功能:高相對(duì)分子質(zhì)量的透明質(zhì)酸主要存在于疏松結(jié)締組織中,以維持細(xì)胞外基質(zhì)中的水分含量和細(xì)胞完整性;而低相對(duì)分子質(zhì)量的透明質(zhì)酸在受體介導(dǎo)的細(xì)胞信號(hào)通路中發(fā)揮作用。CD44(cluster determinant44)、RHAMM(receptor for hyaluronate-mediated motility)、HARE(hyaluronan receptor for endocytosis)、LYVE-1(lymphatic vessel endothelial hyaluronan receptor-1)等均是透明質(zhì)酸受體。Choi等[26]將5β-去羥基膽酸連接于透明質(zhì)酸而制成兩親性聚合物納米粒,共聚焦顯微圖像顯示,該納米粒對(duì)CD44受體具有明顯的靶向作用,當(dāng)游離透明質(zhì)酸與CD44受體的結(jié)合達(dá)飽和狀態(tài)后,納米粒便不能進(jìn)入細(xì)胞;而荷瘤小鼠活體成像實(shí)驗(yàn)也表明,該納米??捎行Ц患贑D44受體過(guò)度表達(dá)的腫瘤部位。Upadhyay等[27]研究發(fā)現(xiàn),荷載阿霉素的聚(γ-苯甲基谷氨酸)-透明質(zhì)酸嵌段共聚物給藥系統(tǒng)具有明顯的CD44受體靶向性。
表5 用于制備藥物傳遞系統(tǒng)的透明質(zhì)酸衍生物類型Table5 Different derivatives of hyaluronic acid used for preparing drug delivery system
通過(guò)物理或化學(xué)方法交聯(lián)的透明質(zhì)酸還可用于制備儲(chǔ)庫(kù)型給藥系統(tǒng),實(shí)現(xiàn)蛋白藥物的緩釋(見(jiàn)表6)。蛋白藥物粒徑一般為3~15 nm,故透明質(zhì)酸儲(chǔ)庫(kù)型給藥系統(tǒng)中的通道孔徑應(yīng)為5~25 nm。
表6 儲(chǔ)庫(kù)型透明質(zhì)酸給藥系統(tǒng)類型Table6 Depot-type drug delivery system with hyaluronic acid
肝素是由D-葡糖胺、L-艾杜糖醛酸及β-D-葡糖醛酸交替連接而成的黏多糖硫酸酯,相對(duì)分子質(zhì)量在1 200~40 000之間,廣泛存在于動(dòng)物體內(nèi),主要從牛肺和豬小腸黏膜中提取。
肝素中每個(gè)二糖單元中平均含有2.7個(gè)磺基,加之其含有羧基,使得肝素成為至今已知的天然產(chǎn)物中負(fù)電性最強(qiáng)的物質(zhì),故其可與許多蛋白藥物(如血管內(nèi)皮生長(zhǎng)因子和蛋白酶等)發(fā)生靜電相互作用,從而對(duì)蛋白起穩(wěn)定作用,防止其變性。近來(lái),有研究者將肝素與其他高分子材料聚合,生成機(jī)械和化學(xué)性能更優(yōu)的載體材料。Choi等[35]將肝素與普朗尼克聚合制備納米凝膠,該凝膠制備工藝簡(jiǎn)單,穩(wěn)定性好,其粒徑適用于細(xì)胞內(nèi)藥物傳遞;試驗(yàn)發(fā)現(xiàn),選用RNase A作為蛋白模型藥物時(shí),因其與肝素結(jié)合率高,故該凝膠載藥量大大提高(大于78%),可使藥物更多地進(jìn)入細(xì)胞漿和細(xì)胞核。
肝素在臨床上常用作抗凝劑,且具有抗病毒(如抑制HIV-1的復(fù)制)、抑制補(bǔ)體的級(jí)聯(lián)放大及促進(jìn)脂蛋白脂肪酶的釋放等作用。近年來(lái),有研究者將肝素與其他納米材料結(jié)合形成新型給藥系統(tǒng)(見(jiàn)表7)。
表7 肝素與其他納米材料組成的給藥系統(tǒng)類型Table7 Types of drug delivery system composed of heparin and other nanomaterials
此外,肝素還具抑制腫瘤生長(zhǎng)和抗血管新生作用。Park等[44]發(fā)現(xiàn),將疏水性抗腫瘤藥物維甲酸連接于肝素,可在提高維甲酸水溶性的同時(shí)發(fā)揮協(xié)同抗腫瘤作用;在肝素骨架上化學(xué)連接靶向配體葉酸而形成的兩親性聚合物HFR抗凝活性降低,但仍具有抗血管新生作用,且在水中可迅速形成納米粒,此納米??筛患谌~酸受體過(guò)度表達(dá)的腫瘤細(xì)胞,增強(qiáng)了抗腫瘤活性。
隨著對(duì)多糖及其衍生物的進(jìn)一步深入研究與了解以及更多功能性高分子的發(fā)現(xiàn),人們可根據(jù)需要,通過(guò)化學(xué)和生物合成方法更為精確地控制多糖的序列,并對(duì)其結(jié)構(gòu)進(jìn)行各種修飾,從而改善多糖的特性,如親水性、疏水性、溫度敏感性、pH敏感性、離子強(qiáng)度敏感性等,進(jìn)一步拓展了多糖及其衍生物在藥物傳遞系統(tǒng)中的應(yīng)用。
[1] CallewaertM,Millot JM,Lesage J,et al.Serum albuminalginate coated microspheres:role of the inner gel in binding and release of the KRFK peptide[J].Int J Pharm,2009,366(1/2):103-110.
[2] Oddo L,MasciG,DiMeo C.Novel thermosensitive calcium alginate microspheres:physico-chemical characterization and delivery properties[J].Acta Biomater,2001,6(9): 3657-3664.
[3] Basu SK,Rajendran A.Studies in the development of nateglinide loaded calcium alginate and chitosan coated calcium alginate beads[J].Chem Pharm Bull,2008,56 (8):1077-1084.
[4] Jayant R D,McShane M J,Srivastava R.Polyelectrolytecoated alginatemicrospheres as drug delivery carriers for dexamethasone release[J].Drug Deliv,2009,16(6): 331-340.
[5] Lim SY,Kim K O,Kim D M,et al.Silica-coated alginate beads for in vitro protein synthesis via transcription/translation machinery encapsulation[J].J Biotechnol,2009,143(3):183-189.
[6] Lee M,Li W,Siu R K,et al.Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers[J].Biomaterials,2009,30(30):6094-6101.
[7] KulkarniR,Sa B.Novel pH-sensitive interpenetrating network hydrogel beads of carboxymethylcellulose-(polyacrylamide-grafted-alginate)for controlled release of ketoprofen:preparation and characterization[J].Curr Drug Deliv,2008,5(4):256-264.
[8] De Moura M R,Ahmad A F,F(xiàn)avaro SL,et al.Release of BSA from porous matrices constituted of alginate-Ca2+and PNIPAAm-interpenetrated networks[J].Mater Sci Eng C,2009,29(8):2319-2325.
[9] Gao C,Liu M,Chen S,etal.Preparation ofoxidized sodium alginate-graft-poly((2-dimethylamino)ethyl methacrylate)gel beads and in vitro controlled release behavior of BSA[J].Int JPharm,2009,371(1/2):16-24.
[10]George M,Abraham T E.pH Sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs[J].Int JPharm,2007,335(1/2):123-129.
[11]Mohamadnia Z,Zohuriaan-Mehr M,Kabiri K,et al.Ionically cross-linked carrageenan-alginate hydrogel beads[J].J Biomater Sci Polym Ed,2008,19(1):47-59.
[12]Yu CY,Yin BC,ZhangW,etal.Compositemicroparticle drug delivery systems based on chitosan,alginate and pectin with improved pH-sensitive drug release property[J].Colloids Surf B Biointerf,2009,68(2):245-249.
[13]Alsberg E,Anderson KW,Albeiruti A,et al.Cell-interactive alginate hydrogels for bone tissue engineering[J].J Dent Res,2001,80(11):2025-2029.
[14]Zhang C,Ding Y,Yu L,et al.Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives[J].Colloids Surf B Biointerf,2007,55(2):192-199.
[15]Zhang C,Qu G,Sun Y,et al.Pharmacokinetics,biodistribution,efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel[J].Biomaterials,2008,29 (9):1233-1241.
[16]Qu G,Yao Z,Zhang C,et al.PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel:in vitro characterization and in vivo evaluation[J].Eur J Pharm Sci,2009,37(2):98-105.
[17]Cao Y,Zhang C,Shen W,et al.Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery[J].JControlled Release,2007,120(3):186-194.
[18]Li H,Liu J,Ding S,et al.Synthesis of novel pH-sensitive chitosan graft copolymers and micellar solubilization of paclitaxel[J].Int J Biol Macromol,2009,44(3): 249-256.
[19]Kim S,Nishimoto SK,Bumgardner JD,etal.A chitosan/ β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer[J].Biomaterials,2010,31(14):4157-4166.
[20]Ranjha N,Ayub G,Naseem S,et al.Preparation and characterization of hybrid pH-sensitive hydrogels of chitosanco-acrylic acid for controlled release of verapamil[J].J Mater Sci Mater Med,2010,21(10):2805-2816.
[21]Lee K Y,Jeong L,Kang Y O,etal.Electrospinning of polysaccharides for regenerative medicine[J].Adv Drug Del Rev,2009,61(12):1020-1032.
[22]Jeong S I,Krebs M D,Bonino C A,et al.Electrospun chitosan-alginate nanofiberswith in situ polyelectrolyte complexation for use as tissue engineering scaffolds[J].Tissue Eng Part A,2010,17(1/2):59-70.
[23]Sun H,Guo B,Li X,et al.Shell-sheddablemicelles based on dextran-SS-poly(ε-caprolactone)diblock copolymer for efficient intracellular release of doxorubicin[J].Biomacromolecules,2010,11(4):848-854.
[24]Varshosaz J,Emami J,Ahmadi F,et al.Preparation of budesonide-dextran conjugates using glutarate spacer as a colon-targeted drug delivery system:in vitro/in vivo evaluation in induced ulcerative colitis[J].J Drug Targeting,2011,19(2):140-153.
[25]Homma A,Sato H,Tamura T,et al.Synthesis and optimization of hyaluronic acid-methotrexate conjugates tomaximize benefit in the treatment of osteoarthritis[J].Bioorg Med Chem,2010,18(3):1062-1075.
[26]Choi K Y,Chung H,Min K H,et al.Self-assembled hyaluronic acid nanoparticles for active tumor targeting[J].Biomaterials,2010,31(1):106-114.
[27]Upadhyay K K,Bhatt,A N,Mishra A K,et al.The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl-L-glutamate)-b-hyaluronan polymersomes[J].Biomaterials,2010,31(10): 2882-2892.
[28]Kim SJ,Hahn SK,Kim M J,etal.Developmentofa novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles[J].JControlled Release,2005,104(2):323-335.
[29]Surendrakumar K,Martyn G P,Hodgers ECM,etal.Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs[J].JControlled Release,2003,91(3):385-394.
[30]Motokawa K,Hahn S K,Nakamura T,et al.Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation oferythropoietin[J].JBiomed Mater Res Part A,2006,78A(3):459-465.
[31]Hahn S K,Kim J S,Shimobouji T.Injectable hyaluronic acid microhydrogels for controlled release formulation of erythropoietin[J].JBiomed Mater Res Part A,2007,80A (4):916-924.
[32]Hirakura T,Yasugi K,Nemoto T,etal.Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function[J].J Controlled Release,2010,142 (3):483-489.
[33]Baumann M D,Kang C E,Stanwick JC,et al.An injec-table drug delivery platform for sustained combination therapy[J].J Controlled Release,2009,138(3): 205-213.
[34]Wang Y,Lapitsky Y,Kang C E,et al.Accelerated release of a sparingly soluble drug from an injectable hyaluronanmethylcellulose hydrogel[J].J Controlled Release,2009,140(3):218-223.
[35]Choi JH,Jang JY,Joung Y K,etal.Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A[J].J Controlled Release,2011,147(3):420-427.
[36]Jiao Y,Ubrich N,Marchand-Arvier M,et al.In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits[J].Circulation,2002,105(2): 230-235.
[37]Rai B,Grondahl L,Trau M.Combining chemistry and biology to create colloidally stable bionanohydroxyapatite particles:toward load-bearing bone applications[J].Langmuir,2008,24(15):7744-7749.
[38]Lee K,Lee H,Bae K H,et al.Heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells[J].Biomaterials,2010,31(25): 6530-6536.
[39]Min K A,Yu F,Yang V C,etal.Transcellular transportof heparin-coated magnetic iron oxide nanoparticles(hep-MION)under the influence of an applied magnetic field[J].Pharmaceutics,2010,2(2):119-135.
[40]Na K,Kim S,Park K,et al.Heparin/poly(L-lysine) nanoparticle-coated polymeric microspheres for stem-cell therapy[J].JAm Chem Soc,2007,129(18):5788-5789.
[41]Chung Y I,Kim JC,Kim Y H,et al.The effect of surface functionalization of PLGA nanoparticles by heparin-or chitosan-conjugated Pluronic on tumor targeting[J].J Controlled Release,2010,143(3):374-382.
[42]Park K,Lee G Y,Kim Y S,et al.Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity[J].JControlled Release,2006,114 (3):300-306.
[43]Passirani C,Barratt G,Devissaguet JP,et al.Long-circulating nanopartides bearing heparin or dextran covalently bound to poly(methyl methacrylate)[J].Pharm Res,1998,15(7):1046-1050.
[44]Park IK,Tran T H,Oh IH,et al.Ternary biomolecular nanoparticles for targeting of cancer cells and anti-angio-genesis[J].Eur J Pharm Sci,2010,41(1):148-155.