于道德,寧璇璇,鄭永允,官曙光,任貴如,王娟,高翔,劉夢(mèng)俠,李紹彬,關(guān)健,劉洪軍
(1. 山東省海水養(yǎng)殖研究所,山東 青島 266071;2. 國(guó)家海洋局煙臺(tái)海洋環(huán)境監(jiān)測(cè)中心站,山東 煙臺(tái) 264006;3. 濱州市海洋與漁業(yè)局,山東 濱州 256600)
微藻在海水魚(yú)類苗種培育過(guò)程中的作用
于道德1,寧璇璇2,鄭永允1,官曙光1,任貴如3,王娟1,高翔1,劉夢(mèng)俠1,李紹彬1,關(guān)健1,劉洪軍1
(1. 山東省海水養(yǎng)殖研究所,山東 青島 266071;2. 國(guó)家海洋局煙臺(tái)海洋環(huán)境監(jiān)測(cè)中心站,山東 煙臺(tái) 264006;3. 濱州市海洋與漁業(yè)局,山東 濱州 256600)
主要從營(yíng)養(yǎng)、促攝食以及益生作用三方面來(lái)綜述微藻在海水魚(yú)類苗種培養(yǎng)過(guò)程中的作用。在海水魚(yú)類苗種培育過(guò)程中,微藻(microalgae)已得到廣泛應(yīng)用。由于綠藻的應(yīng)用常使養(yǎng)殖水體呈現(xiàn)綠色,被形象地稱為綠水養(yǎng)殖(green water culture)模式。微藻的作用首先是作為營(yíng)養(yǎng)源直接供給仔魚(yú)營(yíng)養(yǎng),或通過(guò)輪蟲(chóng)(Brachionus plicatilis)等生物餌料的富集或載體作用間接為仔魚(yú)傳遞營(yíng)養(yǎng)物質(zhì);微藻還可以通過(guò)提供微量營(yíng)養(yǎng)元素在仔魚(yú)攝食行為的建立、調(diào)節(jié)以及消化生理的刺激等方面發(fā)揮作用。除營(yíng)養(yǎng)作用外,添加微藻還具有改善水質(zhì)、增加水體混濁度和光對(duì)比度的作用,從而提高食餌的背景反差,增加海水仔魚(yú)的攝食率。此外,微藻也可以調(diào)節(jié)養(yǎng)殖水體以及仔魚(yú)腸道的微生態(tài)系統(tǒng),維持水體及仔魚(yú)腸道的菌群平衡,通過(guò)發(fā)揮益生作用減少病原菌的暴發(fā)。
微藻;營(yíng)養(yǎng);攝食;益生作用;微生態(tài)系統(tǒng)
早在1970年,Jones就證實(shí)了小球藻 (Chlorella spp.) 能提高魚(yú)苗的存活率、生長(zhǎng)率和品質(zhì)[1],之后綠水養(yǎng)殖模式被廣泛地應(yīng)用于各種海水魚(yú)類的苗種培育過(guò)程[2]。但使用的微藻種類較少[3,4],主要包括小球藻[5]、扁藻 (Tetraselmis spp. )[6]、微綠球藻 (Nannochloropsis spp. )[7,8]、球等鞭金藻 (Isochrysis galbana)[9]等。在海水魚(yú)類苗種繁育過(guò)程中,也存在多種微藻混合使用的現(xiàn)象,如球等鞭金藻和扁藻在大菱鲆育苗過(guò)程中得到了廣泛應(yīng)用[10],而在銀鯧 (Pampus argenteus) 苗種培養(yǎng)過(guò)程中則經(jīng)常聯(lián)合使用小球藻、等鞭金藻和微綠球藻[11]。
微藻能夠通過(guò)調(diào)節(jié)水體中光線的吸收和散射方式,增大食餌的背景反差,從而對(duì)仔魚(yú)初次攝食行為的建立具有關(guān)鍵作用。另外,微藻本身所含的營(yíng)養(yǎng)成分或分泌的微量營(yíng)養(yǎng)元素,如游離氨基酸類、核酸類、糖類等,不僅可作為仔魚(yú)攝食的高效誘導(dǎo)物,而且能刺激特定消化酶的分泌及活性增強(qiáng)[12]。最近研究發(fā)現(xiàn),某些微藻分泌的活性物質(zhì)不僅能夠發(fā)揮抗菌活性[13,14]、調(diào)節(jié)有益菌群的生長(zhǎng)、抑制機(jī)會(huì)病原菌在養(yǎng)殖水體中的爆發(fā),而且在維持養(yǎng)殖水體和活餌料以及仔魚(yú)腸道的微生態(tài)系統(tǒng)平衡方面發(fā)揮著重要的益生作用[14]。本文從微藻在海水魚(yú)類苗種培育過(guò)程中的營(yíng)養(yǎng)、促攝食以及益生作用三個(gè)方面分別展開(kāi)論述。
微藻的營(yíng)養(yǎng)價(jià)值主要取決于其外觀形態(tài)(如形狀和大小,對(duì)于活餌料來(lái)說(shuō)影響其適口性)、自身營(yíng)養(yǎng)成分的種類、含量和比例以及胞外分泌物等特性[4]。總的來(lái)說(shuō),微藻的營(yíng)養(yǎng)組分主要包括糖類、蛋白質(zhì)、脂肪和維生素[15]等。雖然不同微藻的營(yíng)養(yǎng)組成差異較大,如綠藻類含糖量較高,而硅藻則具有較高的脂含量[3,16],但蛋白質(zhì)在不同微藻中的含量都較高,糖類也很少成為影響其營(yíng)養(yǎng)價(jià)值的成分。微藻的營(yíng)養(yǎng)價(jià)值主要取決于特定種類的脂類,如高度不飽和脂肪酸 (high unsaturated fatty acids, HUFAs),以及維生素等[3],其最易成為仔魚(yú)發(fā)育的營(yíng)養(yǎng)限制因子。另外,微藻的胞外分泌物(如促生長(zhǎng)物質(zhì))對(duì)于仔魚(yú)的生長(zhǎng)也具有重要作用[4]。
除遺傳因素和種類差別外,營(yíng)養(yǎng)因素、培養(yǎng)條件(充氣情況、溫度、鹽度、光照強(qiáng)度及周期等)以及收獲時(shí)期(指數(shù)生長(zhǎng)期或靜息期)等外界環(huán)境因子均可顯著影響藻類的營(yíng)養(yǎng)組成[3,17,18]。如假微型海鏈藻(Thalassiosira pseudonana) 在12L∶12D的條件下培養(yǎng),其EPA含量比連續(xù)光照條件下培養(yǎng)高出25%[19];在充氣培養(yǎng)的條件下,硅藻類含有更高含量的蛋白質(zhì)[3]。
微藻所含的脂類,尤其是HUFA,對(duì)于多數(shù)魚(yú)類的早期發(fā)育具有非常重要的作用[20,21],如DHA與魚(yú)類的視覺(jué)和中樞神經(jīng)系統(tǒng)的正常發(fā)育密切相關(guān)[22]。在魚(yú)類的早期發(fā)育過(guò)程中,由于消化功能尚不完善不可能從頭合成脂類,在內(nèi)源營(yíng)養(yǎng)(卵黃物質(zhì))耗盡后,仔魚(yú)的營(yíng)養(yǎng)供應(yīng)完全依賴于食物來(lái)源[23]。尤其是海水魚(yú)類,由于缺乏特定的酶類,即使在變態(tài)后對(duì)于HUFA的合成能力也很有限[24]。而微藻作為HUFA的主要來(lái)源,無(wú)論通過(guò)直接或間接的方式,在傳遞此類營(yíng)養(yǎng)素的過(guò)程中都起到非常關(guān)鍵的作用,尤其體現(xiàn)在活餌料的強(qiáng)化過(guò)程中[25]。
微藻的直接營(yíng)養(yǎng)作用:大量實(shí)驗(yàn)表明,魚(yú)類在仔魚(yú)階段能夠依靠鰓部主動(dòng)濾食微藻[26],并作為食物進(jìn)行消化吸收[5,27-31],例如,初孵化的大菱鲆仔魚(yú)就能夠?qū)η虻缺藿鹪?(Isochrysis galbana) 主動(dòng)吸收[9]。通過(guò)放射標(biāo)記研究發(fā)現(xiàn),大西洋庸鰈對(duì)扁藻 (Tetraselmis sp.) 的攝食存在規(guī)律性變化,尤其是在開(kāi)口前,即攝食浮游動(dòng)物(輪蟲(chóng)及鹵蟲(chóng))前達(dá)到峰值,可濾食占仔魚(yú)生物量1.3% ~ 4.7%的微藻,并同化1% ~ 5%的生物量[32]。雖然對(duì)微藻的攝食量及同化率遠(yuǎn)低于對(duì)浮游動(dòng)物等較大型餌料,而且不同魚(yú)類對(duì)于藻類的攝食量和同化率也存在差異,但魚(yú)類早期發(fā)育階段主動(dòng)濾食微藻的行為對(duì)于仔魚(yú)的生長(zhǎng)和發(fā)育,尤其是消化系統(tǒng)的完善,都具有非常重要的營(yíng)養(yǎng)作用。
微藻的間接營(yíng)養(yǎng)作用:就是通過(guò)活餌料(輪蟲(chóng)和鹵蟲(chóng)等)的載體作用,將營(yíng)養(yǎng)物質(zhì)傳遞給仔魚(yú),而且微藻本身也可作為載體生物來(lái)富集核黃素 (Riboflavin) 等營(yíng)養(yǎng)成分[33]。更為重要的是,微藻可維持水體內(nèi)活餌料營(yíng)養(yǎng)組分的穩(wěn)定,尤其是蛋白質(zhì)和脂類(DHA和 EPA)的含量及比例。例如,輪蟲(chóng)在食物限制或饑餓的條件下將迅速失去其營(yíng)養(yǎng)價(jià)值,但通過(guò)強(qiáng)化培養(yǎng)能夠迅速改變其自身的營(yíng)養(yǎng)組分[34]。從營(yíng)養(yǎng)學(xué)角度來(lái)看,食物營(yíng)養(yǎng)物質(zhì)的組成與攝食者對(duì)營(yíng)養(yǎng)含量的要求越接近,其營(yíng)養(yǎng)價(jià)值越高。采用酵母和微綠球藻共同強(qiáng)化的輪蟲(chóng)投喂仔魚(yú),其生長(zhǎng)和存活率要好于單獨(dú)使用微藻的效果,說(shuō)明微綠球藻所缺乏的某些必需營(yíng)養(yǎng)素可由酵母彌補(bǔ)[35]。輪蟲(chóng)攝食不同種類、品系的微藻,甚至是不同培養(yǎng)條件下的同一微藻,也明顯地影響著輪蟲(chóng)的生長(zhǎng)、繁殖及其營(yíng)養(yǎng)價(jià)值[36]。
因此,根據(jù)不同魚(yú)類早期階段對(duì)營(yíng)養(yǎng)組分的需求量及其比例(尤其是 HUFA),搭配以不同種類的藻類,無(wú)論是通過(guò)仔魚(yú)的直接攝食還是通過(guò)活餌料的載體作用,都將對(duì)仔魚(yú)的早期生長(zhǎng)、發(fā)育和品質(zhì)(包括色素沉積、體型等)等方面產(chǎn)生更好的效果。
在魚(yú)類早期發(fā)育階段,大部分器官和組織尚處于未分化或未成熟階段,因此,更重要的是保證其生長(zhǎng)發(fā)育過(guò)程的順利進(jìn)行,這除了需要合適的外界環(huán)境,自身的攝食能力起到了最為關(guān)鍵的作用。微藻對(duì)魚(yú)類仔稚魚(yú)攝食行為及攝食率的影響,不僅與微藻種類相關(guān),而且與苗種的差別及早期發(fā)育階段密切相關(guān)[37]。
由于大部分魚(yú)類在仔稚魚(yú)階段主要依賴于視覺(jué)進(jìn)行攝食,沒(méi)有光照就不能形成視覺(jué)反應(yīng)[38]。仔魚(yú)的攝食強(qiáng)度與光強(qiáng)度之間通常呈S型相關(guān):隨著光照從完全黑暗逐漸增強(qiáng),直到抵達(dá)攝食臨界光強(qiáng)度后,攝食強(qiáng)度才開(kāi)始增加,然后在達(dá)到一定光強(qiáng)后,攝食強(qiáng)度不再增加[39]。而微藻能夠影響育苗水體中光線的吸收和散射方式,調(diào)節(jié)水體透明度,增大食餌的背景反差,從而可提高仔魚(yú)攝食能力[2,40]。
除視覺(jué)刺激外,化學(xué)刺激對(duì)魚(yú)類的攝食也具有一定的促進(jìn)作用,尤其是對(duì)于仔魚(yú)初次攝食行為的建立至關(guān)重要[41],而且化學(xué)刺激與視覺(jué)刺激間存在協(xié)同效應(yīng)[42]?;瘜W(xué)刺激物的本質(zhì)就是餌料本身含有的促攝食成分[43],包括游離氨基酸類[44]、甜菜堿、核苷酸類[45]、糖類等。研究表明,微藻本身富含多種促攝食物質(zhì),這些物質(zhì)不僅可提高仔魚(yú)對(duì)活餌料的攝食率,而且對(duì)于仔魚(yú)食性轉(zhuǎn)換,尤其是對(duì)微囊飼料的攝食轉(zhuǎn)化都具有很好的促進(jìn)作用[46]。
微藻含有的其他活性成分,如聚酰胺、精胺和氨基酸等,也可通過(guò)不同的方式調(diào)節(jié)仔魚(yú)的消化生理,如促進(jìn)仔魚(yú)消化酶分泌量的增加[12,47],并可提高消化酶的活性[46]。其中,聚酰胺通過(guò)刺激縮膽素(cholecystokinin,CCK)的產(chǎn)生來(lái)調(diào)節(jié)胰腺消化酶的釋放,而精胺可提高腸上皮膜酶(氨基肽酶及堿性磷酸酶)的活性,進(jìn)而促進(jìn)仔魚(yú)腸道上皮的成熟[48]。
如上所述,微藻能夠從視覺(jué)、嗅覺(jué)以及消化生理等多方面來(lái)調(diào)節(jié)仔魚(yú)的攝食行為,從而有助于仔魚(yú)順利通過(guò)內(nèi)外營(yíng)養(yǎng)轉(zhuǎn)換、后期活餌料的轉(zhuǎn)換或配合餌料的轉(zhuǎn)換。
雖然抗生素的應(yīng)用在水產(chǎn)生物疾病控制方面發(fā)揮了重要作用,但是近年來(lái)耐藥性細(xì)菌的泛濫已給水產(chǎn)行業(yè)造成了巨大的經(jīng)濟(jì)損失。鑒于抗生素導(dǎo)致細(xì)菌產(chǎn)生耐藥性的威脅以及食品安全等問(wèn)題,尋求抗生素替代物已經(jīng)成為水產(chǎn)生物病害控制的當(dāng)務(wù)之急。其中,益生菌目前已成為替代抗生素的主要手段之一,在水產(chǎn)養(yǎng)殖上得到了廣泛的應(yīng)用[49-51]。
從作用機(jī)制上來(lái)看,微藻與益生菌都是通過(guò)調(diào)節(jié)水體的微生態(tài)平衡來(lái)發(fā)揮益生作用。因此,有學(xué)者也將微藻歸為益生菌的范疇[52]。研究發(fā)現(xiàn),仔魚(yú)腸道的致病菌以及來(lái)源于輪蟲(chóng)的有害菌群是導(dǎo)致魚(yú)類早期高死亡率的主要誘因[53]。微藻可通過(guò)調(diào)節(jié)水體、仔魚(yú)表皮及腸道的微生態(tài)群落而發(fā)揮益生作用[16,54,55],還可與益生菌協(xié)同發(fā)揮作用[56],從而提高仔魚(yú)的成活率。例如,微綠球藻 (Nannochloropsis sp.) 培養(yǎng)水體的細(xì)菌類群主要包括 α-變形菌 (Proteobacteria) 和嗜纖維菌屬-黃桿菌屬類群 (Cytophaga–Flavobacterium, CF)的細(xì)菌,這種多菌群平衡的生態(tài)系統(tǒng)對(duì)穩(wěn)定養(yǎng)殖水質(zhì)具有重要意義[57]。而在無(wú)微綠球藻的情況下,γ-變形菌則成為仔魚(yú)養(yǎng)殖水體中的優(yōu)勢(shì)菌群 (70%)[58],這其中包括溶藻弧菌 (Vibrio alginolyticus)[59]、美人魚(yú)弧菌 (Vibrio damsela)[60]等多種水產(chǎn)動(dòng)物致病菌。
與營(yíng)養(yǎng)作用類似,微藻的益生作用也包括直接和間接兩種方式。微藻不僅可以直接調(diào)節(jié)水體的菌群平衡和仔魚(yú)腸道的微生態(tài)群落,同時(shí)也可以調(diào)節(jié)輪蟲(chóng)和鹵蟲(chóng)等生物餌料腸道的微生態(tài)群落。例如,在輪蟲(chóng)培養(yǎng)過(guò)程中易產(chǎn)生的弧菌類病原菌[61],在沒(méi)有微藻的水體中會(huì)造成弧菌的大量繁殖,疾病暴發(fā);如果采用微藻與輪蟲(chóng)共培養(yǎng)(直接進(jìn)入養(yǎng)殖水體或短期強(qiáng)化),則可改變輪蟲(chóng)腸道菌群的結(jié)構(gòu)[62],從而可減少因生物餌料引入的病原菌。
從微藻中分離的活性物質(zhì)是其發(fā)揮抗菌或益生作用的根本所在。雖然大部分成分還沒(méi)有鑒定清楚,但至少包括脂肪酸、有機(jī)酸、酚類、萜類、多糖和多肽等[63]。與抗生素所不同的是,微藻所含的抗菌成分多為混合物質(zhì),如20世紀(jì)50年代,Pratt等從小球藻中分離得到的小球藻素 (chlorella),即為脂肪酸的混合物,能夠抑制幾種革蘭氏陽(yáng)性菌和革蘭氏陰性菌的活性[64]。類似的報(bào)道還有從中肋骨條藻 (Skeletonema costatum) 中獲得的活性物質(zhì),能夠抑制多種弧菌的增殖[14],從紫球藻 (Porphyridium cruentum) 分離的硫酸酯多糖具有抗病毒活性[65]等。此外,微藻自身合成和分泌的活性物質(zhì)還能夠促進(jìn)優(yōu)勢(shì)菌群生長(zhǎng),如硅藻分泌的多糖物質(zhì) (dimethyl sulphoniopropionate, DMSP) 能夠促進(jìn)CF類群[66]和α-變形菌[67]的生長(zhǎng)和繁殖,使其成為水體中的優(yōu)勢(shì)種類,從而抑制病原菌的繁殖。
綜上所述,微藻對(duì)魚(yú)類仔魚(yú)早期的生長(zhǎng)發(fā)育等多方面都具有非常重要的作用,而且這些作用具有相互協(xié)同性。目前已有幾百種商品化供應(yīng)的微藻,但在水產(chǎn)養(yǎng)殖業(yè)中應(yīng)用的種類尚不足 20種,在魚(yú)類中廣泛使用的則更少。因此,迫切需要開(kāi)發(fā)優(yōu)質(zhì)微藻并探討其在魚(yú)類早期發(fā)育中的確切作用,從而更好地服務(wù)于海水魚(yú)類養(yǎng)殖業(yè),促進(jìn)水產(chǎn)養(yǎng)殖的健康發(fā)展。
[1] Jones A C. Chlorella for rearing of marine fish larvae [J]. FAO Fish Culture Bulletin, 1970, 2 (4): 3.
[2] Naas K, Naess T, Harboe T. Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water [J]. Aquaculture, 1992, 105:143-156.
[3] Brown M R, Jeffrey S W, Volkman J K, et al. Nutritional properties of microalgae for mariculture [J]. Aquaculture, 1997, 151: 315-331.
[4] Brown M R. In Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola L. E. Cruz-Suárez, D.Ricque-Marie, M. Tapia-Salazar, M. G. Gaxiola-Cortés, N. Simoes, Eds. (Cancún, Quintana Roo, México, 2002).
[5] Moffatt N M. Survival and growth of Northern anchovy larvae on low zooplankton densities as affected by the presence of a Chlorella bloom [J].Rapports et Proces-Verbaux des Reunions (Conseil Permanent International pour l'Exploration de la Mer), 1981, 178: 475-480.
[6] Gulbrandsen J, Lein I, Holmefjord I. Effects of light administration and algae on first feeding of Atlantic halibut larvae, Hippoglossus hippoglossus (L.)[J]. Aquaculture Research, 1996, 27 (2): 101-106.
[7] Hernández-Cruz C M, Salhi M, Fernández-Palacios H, et al. Improvements in the culture of Sparus aurata L. larvae in relation to the use of antibiotics,phytoplankton and rearing system [J]. Aquaculture, 1994, 124 (1-4): 269-274.
[8] Lee C S. Marine finfish hatchery technology in the USA – status and future [J]. Hydrobiologia, 1997, 358 (1): 45-54.
[9] Tytler P, Ireland J, Murray L. A study of the assimilation of fluorescent pigments of microalgae Isochrysis galbana by the early larval stages of turbot and herring [J]. Journal of Fish Biology, 1997, 50 (5): 999-1009.
[10] Reitan K I, Rainuzzo J R, ?ie G, et al. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae [J]. Aquaculture,1993, 118 (3-4): 257-275.
[11] Al-Abdul-Elah K M, Almatar S, Abu-Rezq T, et al. Development of hatchery technology for the silver pomfret Pampus argenteus (Euphrasen): effect of microalgal species on larval survival [J]. Aquaculture Research, 2001, 32 (10): 849-860.
[12] Cahu C L, Zambonino Infante J L, Peres A, et al. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes [J].Aquaculture, 1998, 161 (1-4): 479-489.
[13] Austin B, Baudet E, Stobie M. Inhibition of bacterial fish pathogens by Tetraselmis suecica [J]. Journal of Fish Diseases, 1992, 15 (1): 55-61.
[14] Naviner M, Berge J P, Durand P, et al. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens [J]. Aquaculture,1999, 174 (1-2): 15-24.
[15] Brown M R, Mular M, Miller I, et al. The vitamin content of microalgae used in aquaculture [J]. Journal of Applied Phycology, 1999, 11: 247-255.
[16] Reitan K I, Rainuzzo J R, ?ie G, et al. A review of the nutritional effects of algae in marine fish larvae. [J] Aquaculture, 1997, 155 (1-4): 207-221.
[17] Renaud S M, Thinh L V, Parry D L. The gross composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture [J]. Aquaculture, 1999, 170: 147-159.
[18] Harrison P, Thompson P, Calderwood G. Effects of nutrient and light limitation on the biochemical composition of phytoplankton [J]. Journal of Applied Phycology, 1990, 2 (1): 45-56.
[19] Brown M R, Dunstan G A, Norwood S J, et al. Effects of harvest stage and light on the chemical composition of the diatom Thalassiosi pseudonana [J].Journal of Phycology, 1996, 32 (1): 64-73.
[20] Sargent J R, McEvoy L A, Bell J G. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds [J]. Aquaculture,1997, 155: 117-127.
[21] Sargent J R, Tocher D R, Bell J G. In Fish Nutrition, 3rd edition J. E. Halver, R. W. Hardy, Eds. (Academic Press, San Diego, 2002, 181-257.
[22] Bell M V. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.) [J]. Lipids, 1995,30: 443-449.
[23] Bell J G, McEvoy L A, Estevez A, et al. Optimising lipid nutrition in first-feeding flatfish larvae [J]. Aquaculture, 2003, 227 (1-4): 211-220.
[24] Sargent J R. Lipid nutrition of marine fish during early development: current status and future directions [J]. Aquaculture, 1999, 179: 217-229.
[25] Han K, Geurden I, Sorgeloos P. Enrichment strategies for Artemia using emulsions providing different levels of n-3 highly unsaturated fatty acids [J].Aquaculture, 2000, 183: 335-347.
[26] Reitan K I, Natvik C M, Vadstein O. Drinking rate, uptake of bacteria and microalgae in turbot larvae [J]. Journal of Fish Biology, 1998, 53 (6): 1 145-1 154.
[27] Last J M. The food of larval turbot Scophthalmus maximus L. from the west central North Sea [J]. ICES Journal of Marine Science, 1979, 38 (3):308-313.
[28] Stoecker D K, Govoni J J. Food selection by young larval gulf menhaden (Brevoortia patronus) [J]. Marine Biology, 1984, 80 (3): 299-306.
[29] Lein I, Holmefjord I. Age at first feeding of Atlantic halibut larvae [J]. Aquaculture, 1992, 105: 157-164.
[30] Van der Meeren T. Algae as first food for cod larvae, Gadus morhua L.: filter feeding or ingestion by accident [J]. Journal of Fish Biology, 1991, 39 (2):225-237.
[31] Vásquez-Yeomans L, Carrillo-Barrios-Gómez E, Sosa-Cordero E. The effect of the nanoflagellateTetraselmis suecica on the growth and survival of grunion,Leuresthes tenuis, larvae [J]. Environmental Biology of Fishes, 1990, 29 (3): 193-200.
[32] Reitan K I, Bolla S, Olsen Y. A study of the mechanism of algal uptake in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus) [J]. Journal of Fish Biology, 1994, 44 (2): 303-310.
[33] Souto M, Saavedra M, Pous?o-Ferreirab P, et al. Riboflavin enrichment throughout the food chain from the marine microalga Tetraselmis suecica to the rotifer Brachionus plicatilis and to White Sea Bream (Diplodus sargus) and Gilthead Sea bream (Sparus aurata) larvae [J]. Aquaculture, 2008, 283 (1-4):128-133.
[34] Makridis P, Olsen Y. Protein depletion of the rotifer Brachionus plicatilis during starvation [J]. Aquaculture, 1999, 174 (3-4): 343-353.
[35] Tamaru C S, Murashige R, Lee C-S, et al. Rotifers fed various diets of baker's yeast and/or Nannochloropsis oculata and their effect on the growth and survival of striped mullet (Mugil cephalus) and milkfish (Chanos chanos) larvae [J]. Aquaculture, 1993, 110 (3-4): 361-372.
[36] Sayegh F A Q, Radi N, Montagnes D J S. Do strain differences in microalgae alter their relative quality as a food for the rotifer Brachionus plicatilis [J].Aquaculture, 2007, 273 (4): 665-678.
[37] Rocha R J, Ribeiro L, Costa R, et al. Does the presence of microalgae influence fish larvae prey capture [J]. Aquaculture Research, 2008, 39 (4):362-369.
[38] Kawamura G, Ishida K. Changes in sense organ morphology and behavior with growth in flounder, Paralichthys olivaceus [J]. Bulletin of the Japanese Society of Scientific Fishery, 1985, 51: 155-165.
[39] Blaxter J H S. In Fish Physiology W. S. Hoar, D. J. Randall, Eds. (Academic, New York, 1988), vol. XI A, 44-47.
[40] Naas K, Huse I, Iglesias J. Illumination in first feeding tanks for marine fish larvae. [J] Aquacultural Engineering, 1996, 15: 291-300.
[41] Knutsen J A. Feeding behaviour of North Sea turbot (Scophthalmus maximus) and Dover sole (Solea solea) larvae elicited by chemical stimuli [J].Marine Biology, 1992, 113 (4): 543-548.
[42] Koven W, Kolkovski S, Hadas E, et al. Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review [J]. Aquaculture,2001, 194 (1-2): 107-121.
[43] Kasumyan A O, D?ving K B. Taste preferences in fishes [J]. Fish and Fisheries, 2003, 4 (4): 289-347.
[44] Mearns K J. Sensitivity of brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) fry to amino acids at the start of exogenous feeding [J].Aquaculture, 1986, 55 (3): 191-200.
[45] Li P, Gatlin Iii D M. Nucleotide nutrition in fish: Current knowledge and future applications [J]. Aquaculture, 2006, 251 (2-4): 141-152.
[46] Lazo J P, Dinis M T, Holt G J, et al. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus) [J]. Aquaculture, 2000, 188 (3-4): 339-351.
[47] Hjelmeland K, Pedersen B H, Nilssen E M. Trypsin content in intestines of herring larvae, Clupea harengus, ingesting inert polystyrene spheres or live crustacea prey [J]. Marine Biology, 1988, 98 (3): 331-335.
[48] Péres A, Cahu C L, Zambonino Infante J L. Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae [J].Fish Physiology and Biochemistry, 1997, 16 (6): 479-485.
[49] Kesarcodi-Watson A, Kaspar H, Lategan M J, et al. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes[J]. Aquaculture, 2008, 274 (1): 1-14.
[50] Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic Bacteria as Biological Control Agents in Aquaculture [J]. Microbiology and Molecular Biology Reviews, 2000, 64 (4): 655-671.
[51] Wang Y-B, Li J-R, Lin J. Probiotics in aquaculture: Challenges and outlook [J]. Aquaculture, 2008, 281 (1-4): 1-4.
[52] Das S, Ward L, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture [J]. Applied Microbiology and Biotechnology, 2008, 81(3): 419-429.
[53] Planas M, Cunha I. Larviculture of marine fish: problems and perspectives [J]. Aquaculture, 1999, 177: 171-190.
[54] Nicolas J L, Robic E, Ansquer D. Bacterial flora associated with a trophic chain consisting of microalgae, rotifers and turbot larvae: Influence of bacteria on larval survival [J]. Aquaculture, 1989, 83 (3-4): 237-248.
[55] Skjermo J, Vadstein O, paper presented at the Proceedings of the First International Conference on Fish Farming Technology, Trondheim, Norway 1993.
[56] Skjermo J, Salvesen I, ?ie G, et al. Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae [J]. Aquaculture International, 1997, 5 (1): 13-28.
[57] Nakase G, Eguchi M. Analysis of bacterial communities in Nannochloropsis sp. cultures used for larval fish production [J]. Fisheries Science, 2007, 73(3): 543-549.
[58] Nakase G. Association between bacterial community structures and mortality of fish larvae in intensive rearing systems [J]. Fisheries Science, 2007, 73(4): 784-791.
[59] Balebona M C. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.) [J]. Applied Microbiology and Biotechnology,1998, 64 (11): 4269-4275.
[60] Pedersen K, Dalsgaard I, Larsen J L. Vibrio damsela associated with diseased fish in Denmark [J]. Applied Microbiology and Biotechnology, 1997, 63(9): 3711-3715.
[61] Verdonck L. Vibrios associated with routine productions of Brachionus plicatilis [J]. Aquaculture, 1997, 149: 203-214.
[62] Olsen A I. Effects of short term feeding of microalgae on the bacterial flora associated with juvenile Artemia franciscana [J]. Aquaculture, 2000, 190(1-2): 11-25.
[63] Borowitzka M A. Microalgae as sources of pharmaceuticals and other biologically active compounds [J]. Journal of Applied Phycology, 1995, 7 (1):3-15.
[64] Pratt R. Studies on Chlorella Vulgaris: XI. Relation between surface tension and accumulation of Chlorellin [J]. American Journal of Botany, 1948, 35:634-637.
[65] Minkova K, Michailov Y, Toncheva-Panova T, et al. Antiviral activity of Porphyridium cruentum polysaccharide [J]. Pharmazie, 1996, 51 (3): 194.
[66] Nicolas J L, Corre S, Cochard J C. Bacterial population association with phytoplankton cultured in a bivalve hatchery [J]. Microbial Ecology, 2004, 48(3): 400-413.
[67] Zubkov M V. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea [J]. Environmental Microbiology, 2001, 3: 304-311.
The functions of microalgae in marine fish larviculture
YU Dao-de1, NING Xuan-xuan2, ZHEN Yong-yun1, GUAN Shu-guang1, REN Gui-ru3, WANG Juan1,GAO Xiang1, LIU Meng-xia1, LI Shao-bin1, GUAN Jian1, LIU Hong-jun1
(1. Mariculture Institute of Shandong Province, Shangdong Qingdao 266071, China;2. Yantai Oceanic Environmental Monitoring Central Station of State Oceanic Administration, Yantai 264006, China;3. Marine and Fishery Bureau of Binzhou, Binzhou 256600, China)
Microalgae has been widely used in marine fish larvicluture for many years. Generally, the cultural water is green color for the predominant usage of chlorophytes, as a result, the technique is called green water culture.Microalgae is believed to improve the nutritional conditions of the fish larval, either directly by active feeding or indirectly through improving the trophic value of live feed, such as rotifers and Artemia spp. Besides its nutritional value, microalgae seem to be beneficial in the feeding behavior and modulating the digestive physiology of fish larvae through: 1. increase of turbidity, light scattering and attenuation, and visual contrast enhancement; 2. chemical and digestive stimulants resulting in more digestive enzymes and activity. More recently, with the emergence of the concept of “probiotics”, microalgae acted as “probiotics-alga” during the finfish larval culture: including its antibacterial properties, and a modulating function in the bacterial flora balance of culture water as well as the skin and gut of the larval fish and live feed.
microalgae; nutrition; feeding; probiotics; microecology system
S962; S963.21+3
A
1001-6932(2010)02-0235-06
2009-04-02;
2009-07-20
海洋公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(200805069);山東省良種工程(工廠化適養(yǎng)品種選育-優(yōu)質(zhì)抗病速生魚(yú)類良種選育)
于道德(1978-),男,山東青島人,博士,主要從事海洋生物學(xué)研究。電子郵箱:wensentte@163.com
劉洪軍,研究員,理學(xué)博士,電子郵箱:Hongjunl@126.com