祝慧娜,袁興中?,曾光明,梁 婕,江洪煒,樊夢(mèng)佳,向求來(lái)
(1.湖南大學(xué)環(huán)境科學(xué)與工程學(xué)院,湖南長(zhǎng)沙 410082;2.環(huán)境生物與控制教育部重點(diǎn)實(shí)驗(yàn)室(湖南大學(xué)),湖南長(zhǎng)沙 410082)
健康風(fēng)險(xiǎn)評(píng)價(jià)是以風(fēng)險(xiǎn)度作為評(píng)價(jià)指標(biāo),把環(huán)境污染與人體健康聯(lián)系起來(lái),定量描述污染物對(duì)人體產(chǎn)生危害的風(fēng)險(xiǎn)[1].健康風(fēng)險(xiǎn)評(píng)價(jià)作為環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)的一個(gè)重要分支,一般包括危害識(shí)別、暴露評(píng)價(jià)、毒性評(píng)價(jià)和風(fēng)險(xiǎn)表征[2].不確定性貫穿于環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)的整個(gè)過(guò)程,不確定性在健康風(fēng)險(xiǎn)評(píng)價(jià)過(guò)程中主要表現(xiàn)在3個(gè)方面:事件背景的不確定性、參數(shù)選擇的不確定性以及模型本身的不確定性[3].其中最重要的是參數(shù)的不確定性,近年來(lái)有關(guān)參數(shù)的不確定性已由許多專家進(jìn)行了研究.張應(yīng)華等[4]利用可傳遞參數(shù)差異的蒙特卡羅技術(shù)方法來(lái)解決評(píng)價(jià)過(guò)程中各輸入?yún)?shù)的不確定性;李如忠等[5]運(yùn)用模糊集理論將風(fēng)險(xiǎn)評(píng)價(jià)模型的參數(shù)定義為三角模糊數(shù),構(gòu)建了水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)模糊模型,在一定程度上解決了參數(shù)的不確定性;吳義鋒等[6]運(yùn)用未確知數(shù)學(xué)理論來(lái)處理評(píng)價(jià)參數(shù)的不確定性,建立了基于未確知性水質(zhì)風(fēng)險(xiǎn)評(píng)價(jià)模式.本文采用綜合評(píng)判對(duì)濃度參數(shù)進(jìn)行處理從而減少評(píng)價(jià)過(guò)程中由于濃度參數(shù)而產(chǎn)生的不確定性.梁婕[7]等同時(shí)考慮參數(shù)的隨機(jī)性和模糊性,提出了基于隨機(jī)-模糊模型的地下水污染風(fēng)險(xiǎn)評(píng)價(jià)方法.蘇小康[8]等考慮不確定性,進(jìn)行了湘江水質(zhì)隨機(jī)模擬與風(fēng)險(xiǎn)的分析.除了參數(shù)的不確定性對(duì)評(píng)價(jià)結(jié)果有影響之外,在水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)過(guò)程中評(píng)價(jià)標(biāo)準(zhǔn)也直接影響評(píng)價(jià)結(jié)果.目前采用較多的評(píng)價(jià)標(biāo)準(zhǔn)主要有美國(guó)環(huán)保局的健康風(fēng)險(xiǎn)可接受水平,國(guó)際防輻射委員會(huì)推薦的最大可接受限值,以及瑞典環(huán)保局、荷蘭建設(shè)和環(huán)境部推薦的危害風(fēng)險(xiǎn)度最大可接受限值.由于各種評(píng)價(jià)標(biāo)準(zhǔn)差別較大,使用不同的評(píng)價(jià)標(biāo)準(zhǔn)評(píng)價(jià)結(jié)果將會(huì)有較大的差別.而評(píng)價(jià)結(jié)果是水環(huán)境管理的重要依據(jù),如何解決這一問(wèn)題,是環(huán)境管理的重要難題.Li Jian-bin[9]曾根據(jù)各種調(diào)查將風(fēng)險(xiǎn)評(píng)價(jià)分為不同的等級(jí),筆者[10]也曾建立了模糊綜合評(píng)價(jià)標(biāo)準(zhǔn).而本文將從另一個(gè)角度來(lái)對(duì)水環(huán)境管理進(jìn)行研究,一方面運(yùn)用濃度的綜合評(píng)判在一定程度上解決了濃度參數(shù)的不確定性,另一方面采用動(dòng)態(tài)聚類分析將各斷面的評(píng)價(jià)結(jié)果進(jìn)行分類,將水環(huán)境健康風(fēng)險(xiǎn)分為不同的級(jí)別,得出水環(huán)境污染的優(yōu)先控制級(jí)別,為風(fēng)險(xiǎn)管理確定優(yōu)先控制對(duì)象提供理論依據(jù).
水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)一般采用美國(guó)環(huán)保局推薦的評(píng)價(jià)模型[1],模型中存在很多具有不確定性因素的參數(shù).在各種參數(shù)中,污染物濃度的不確定性是較為突出也較為明顯的.濃度的不確定性表現(xiàn)在多個(gè)方面,筆者曾運(yùn)用區(qū)間數(shù)對(duì)濃度的不確定性進(jìn)行處理[10],本文用綜合評(píng)判處理污染物濃度參數(shù)的不確定性.
常規(guī)評(píng)價(jià)中以年均或者平均濃度作為評(píng)價(jià)參數(shù),但由于平均數(shù)作為一個(gè)概括性的度量指標(biāo)存在一定的缺陷,它掩蓋了被觀察個(gè)體的差異.因此本文采用河流枯水期、平水期以及豐水期的濃度進(jìn)行綜合評(píng)判,最終得到等量的河流污染物濃度,在一定程度上解決了濃度參數(shù)的不確定性.
綜合評(píng)判[11]是綜合決策的數(shù)學(xué)工具,根據(jù)綜合評(píng)判定義,得到濃度參數(shù)的綜合評(píng)判模型.綜合濃度的計(jì)算公式為:
其中:A為各水期權(quán)重因素,A1,A2和A3分別為枯水期、平水期以及豐水期在年內(nèi)所占有的權(quán)重;B為各水期濃度因素,B1,B2和B3分別為河流枯水期、平水期以及豐水期污染物的濃度;?代表內(nèi)積.
目前水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)過(guò)程中一般僅考慮化學(xué)致癌物和軀體毒物質(zhì)[1,12].
1.2.1 基于化學(xué)致癌物健康危害風(fēng)險(xiǎn)模型
1.2.2基于軀體毒物質(zhì)的健康危害風(fēng)險(xiǎn)模型
1.2.3 水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)總體模型
我們假定每種化合物的作用是獨(dú)立的,即各有毒物質(zhì)對(duì)人體健康危害產(chǎn)生的累積效應(yīng)呈相加關(guān)系,而不是協(xié)同關(guān)系或是拮抗關(guān)系.則水環(huán)境總的健康危害的風(fēng)險(xiǎn)可表示為:
目前國(guó)際上采用的各種水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)標(biāo)準(zhǔn)之間差別較大,且其分類過(guò)于獨(dú)斷,僅僅以單個(gè)數(shù)值作為分界點(diǎn),忽視了很多重要的信息.本文采用動(dòng)態(tài)聚類分析[13-14]將所有斷面的風(fēng)險(xiǎn)值進(jìn)行分類,為風(fēng)險(xiǎn)管理的優(yōu)先控制順序提供一定的理論依據(jù).從而避免了由于評(píng)價(jià)標(biāo)準(zhǔn)不同而產(chǎn)生的尷尬.
動(dòng)態(tài)聚類分析[15]是聚類分析中的一種,它也稱為逐步聚類分析法,保證樣方組內(nèi)具有較高的同質(zhì)性,是依樣方組內(nèi)的離差平方和達(dá)最小為判據(jù),通過(guò)反復(fù)調(diào)整迭代來(lái)實(shí)現(xiàn)的[16].動(dòng)態(tài)聚類分析的重要步驟為:
1)初始分類
根據(jù)各個(gè)風(fēng)險(xiǎn)值的具體分布情況,相近的聚集點(diǎn)為一類,得到初始幾類結(jié)果.G1,G2,G3,G4…GK.
2)計(jì)算中心
將每一類所有值的算術(shù)平均數(shù)作為每類的計(jì)算中心.
3)計(jì)算距離,調(diào)整分類
根據(jù)dik計(jì)算結(jié)果,按=dil式進(jìn)行新的分類.于是得到第1次分類結(jié)果:
4)進(jìn)行調(diào)整
判別第1次分類結(jié)果是否需進(jìn)一步調(diào)整,其方法是比較Πo(U)和Π1(U)是否相等,若相等則分類結(jié)束,否則應(yīng)繼續(xù)進(jìn)行調(diào)整.
利用水環(huán)境健康風(fēng)險(xiǎn)模糊綜合評(píng)判模型對(duì)2007年湖南省湘江干流地區(qū)綠埠頭等18個(gè)斷面進(jìn)行水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià).
根據(jù)湘江水環(huán)境中污染物質(zhì)種類,以及國(guó)際癌癥研究機(jī)構(gòu)(IARC)通過(guò)對(duì)水體中化學(xué)有毒污染物的分類,選擇為氨氮、揮發(fā)酚、砷、鉛、汞、鎘、六價(jià)鉻、氰化物、錳9個(gè)評(píng)價(jià)參數(shù).其中砷、鎘、六價(jià)鉻為化學(xué)致癌物,其致癌強(qiáng)度系數(shù)見(jiàn)表1;氨氮、揮發(fā)酚、鉛、汞、氰化物、錳為軀體毒物質(zhì),其參考劑量見(jiàn)表2.
表1 化學(xué)致癌物的致癌強(qiáng)度系數(shù)(飲水途徑)Tab.1 Strenth coefficients for carcinogens by drinking approach
表2 非致癌物參考劑量(飲水途徑)Tab.2 Reference doses for non-carcinogens by drinking approach
在本研究中,根據(jù)常年監(jiān)測(cè)資料,湘江枯水期、平水期和豐水期分別為3個(gè)月、6個(gè)月和3個(gè)月.因此各水期的權(quán)重為A={A1,A2,A3}={0.25,0.5,0.25};各斷面枯水期、平水期、豐水期各評(píng)價(jià)因子的監(jiān)測(cè)數(shù)據(jù)見(jiàn)表3(因篇幅限值,僅列出兩個(gè)監(jiān)測(cè)斷面的水質(zhì)監(jiān)測(cè)數(shù)據(jù)).綜合濃度為=A?B,計(jì)算可得各斷面的綜合濃度,見(jiàn)表4.
2.3.1 各地區(qū)的綜合風(fēng)險(xiǎn)評(píng)價(jià)
根據(jù)式(3)~式(8)求出各斷面污染物的風(fēng)險(xiǎn)值,結(jié)果見(jiàn)表5.
表3 湘江水質(zhì)監(jiān)測(cè)數(shù)據(jù)Tab.3 Water quality data of Xiangjiang River(mg?L-1)
表4 各斷面污染物的綜合濃度Tab.4 The integrated concentrations of the contamination in 18 sections(mg?L-1)
表5 各種有毒污染物所致健康危害(個(gè)人年風(fēng)險(xiǎn))Tab.5 The health risk from every carcinogen and non-carcinogena-1
從表5中可以看出9種污染物在各個(gè)斷面中砷、六價(jià)鉻以及鎘危害較大,尤其是砷的危害最大,在松柏?cái)嗝孢_(dá)到了2.95×10-4,已超過(guò)美國(guó)環(huán)保局健康風(fēng)險(xiǎn)的可接受水平10-4;其他污染物的危害較小,風(fēng)險(xiǎn)水平大多在10-10~10-12之間.根據(jù)式(9)可得出各斷面水環(huán)境健康危害的總風(fēng)險(xiǎn)值,見(jiàn)表6.
表6 有毒污染物所致健康危害的總風(fēng)險(xiǎn)Tab.6 Total health risk fromall carcinogens and non-carcinogensa-1a-1
從表6中可以看出18個(gè)斷面的健康危害總風(fēng)險(xiǎn)值差距較大,松柏下和黃茶嶺斷面的風(fēng)險(xiǎn)值最高,分別達(dá)到了3.79×10-4和2.45×10-4,超過(guò)了美國(guó)環(huán)保局健康風(fēng)險(xiǎn)的可接受水平.其他多數(shù)斷面健康風(fēng)險(xiǎn)值也較大,均在10-5級(jí)別以上,超過(guò)了國(guó)際防輻射委員會(huì)推薦的最大可接受限值10-5,在一定程度上威脅了居民的飲水健康,因此應(yīng)加強(qiáng)水質(zhì)污染控制.
2.3.2 各地區(qū)風(fēng)險(xiǎn)等級(jí)的分類
采用1.3節(jié)中風(fēng)險(xiǎn)值的動(dòng)態(tài)聚類分析方法,對(duì)各個(gè)地區(qū)的總風(fēng)險(xiǎn)值進(jìn)行分類,具體步驟為:
1)初始分類
將各斷面的總風(fēng)險(xiǎn)值繪制初始分類圖(見(jiàn)圖1),并根據(jù)初始分類圖將各監(jiān)測(cè)點(diǎn)濃度分類,根據(jù)風(fēng)險(xiǎn)值的密集程度,分為如下4類(用序號(hào)代表地名):
圖1 初始分類圖Fig.1 The figure of initial classification
從圖中看出松柏下風(fēng)險(xiǎn)值最高,可單獨(dú)列為一類,為高風(fēng)險(xiǎn)級(jí)別;黃茶嶺風(fēng)險(xiǎn)值也較高,為次高風(fēng)險(xiǎn)級(jí)別;其余的斷面分為兩類風(fēng)險(xiǎn)級(jí)別,分別為中風(fēng)險(xiǎn)級(jí)別和低風(fēng)險(xiǎn)級(jí)別.
2)計(jì)算中心
根據(jù)各類別所有值算術(shù)平均值作為計(jì)算中心,可得各類的計(jì)算中心,見(jiàn)表7.
表7 各類別的計(jì)算中心Tab.7 The calculating center of every category
3)計(jì)算距離,調(diào)整分類
根據(jù)最短距離法計(jì)算各風(fēng)險(xiǎn)值至各中心值的距離,進(jìn)行重新分類,得出2次分類結(jié)果,結(jié)果見(jiàn)表8.
表8 第2次分類結(jié)果Tab.8 The result of the second classification
4)再次進(jìn)行距離計(jì)算,得到最優(yōu)分類,
根據(jù)動(dòng)態(tài)聚類分析結(jié)果,得出2007年湘江18個(gè)斷面的風(fēng)險(xiǎn)等級(jí)的最終分類結(jié)果,見(jiàn)表9.
表9 動(dòng)態(tài)聚類分析結(jié)果Tab.9 The result of dynamic cluster analysis
由動(dòng)態(tài)聚類分析,可得出湘江18個(gè)斷面的優(yōu)先控制級(jí)別,共分為4個(gè)控制級(jí)別,其中松柏下斷面水環(huán)境健康風(fēng)險(xiǎn)較高,達(dá)到3.79×10-4,為一級(jí)優(yōu)先控制斷面,需加強(qiáng)水質(zhì)改善;黃茶嶺為2級(jí)優(yōu)先控制斷面,應(yīng)加強(qiáng)水質(zhì)風(fēng)險(xiǎn)管理;歸陽(yáng)鎮(zhèn)、熬洲、朱亭鎮(zhèn)、楓溪、白石、霞灣、馬家河、五星、易家灣、樟樹港斷面水環(huán)境風(fēng)險(xiǎn)中等,應(yīng)注意對(duì)水質(zhì)的保護(hù)改善;綠埠頭、港子口、猴子石、喬口、昭山、三汊磯水環(huán)境健康風(fēng)險(xiǎn)較小,應(yīng)注意水質(zhì)的保護(hù)工作.由動(dòng)態(tài)聚類分析得出優(yōu)先控制次序,為污染控制工作的優(yōu)化提供了理論基礎(chǔ).
1)采用濃度參數(shù)的綜合評(píng)判模型,在一定程度上減小了河流水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)過(guò)程中濃度參數(shù)的不確定性.
2)利用動(dòng)態(tài)聚類分析法將健康危害分為4類控制級(jí)別,分別為高風(fēng)險(xiǎn)、高-中風(fēng)險(xiǎn)、中風(fēng)險(xiǎn)及低風(fēng)險(xiǎn),為水環(huán)境污染優(yōu)先控制對(duì)象的選擇提供了理論依據(jù).
3)根據(jù)評(píng)價(jià)結(jié)果,松柏下斷面的健康危害最大,達(dá)到3.79×10-4,為1級(jí)優(yōu)先控制斷面,需加強(qiáng)水環(huán)境污染治理.
4)從河流水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)結(jié)果中,可以看出2007年湘江18個(gè)斷面中砷、六價(jià)鉻以及鎘危害較大,其中砷的健康危害最大.
5)在評(píng)價(jià)的18個(gè)斷面中,所有斷面水環(huán)境健康風(fēng)險(xiǎn)較高,均超過(guò)了10-5級(jí)別,在一定程度上威脅了居民的飲水健康,水環(huán)境質(zhì)量亟待改善,需加強(qiáng)水質(zhì)管理工作力度.
[1] 曾光明,卓利,鐘政林,等.水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)模式[J].水科學(xué)進(jìn)展,1998,9(3):212-217.ZENG Guang-ming,ZHUO Li,ZHONG Zheng-lin,et al.Assessment models for water environmental health risk analysis[J].Advances in Water Science,1998,9(3):212-217.(In Chinese)
[2] 何星海,馬世豪,李安定,等.再生水利用健康風(fēng)險(xiǎn)暴露評(píng)價(jià)[J],環(huán)境科學(xué),2006,27(9):1912-1915.HE Xing-hai,M A Shi-hao,LI An-ding,et al.Exposure assessment of various reclaimed water uses[J].Environmental science,2006,27(9):912-1915.(In Chinese)
[3] 胡雨前.杭州市飲用水中三鹵甲烷的健康風(fēng)險(xiǎn)評(píng)價(jià)研究[D].杭州:浙江大學(xué)環(huán)境與資源學(xué)院,2005:1-60.HU Yu-qian.Health risk assessment of the water resources in hangzhou[D].Hangzhou:Zhejiang University,College of Enrironmental and Resoure Sciences,2005:1-60.(In Chinese)
[4] 張應(yīng)華,劉志全,李廣賀,等.基于不確定分析的健康環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境科學(xué),2007,28(7):1409-1415.ZHANG Ying-hua,LIU Zhi-quan,LI Guang-he,et al.Uncertainty analy sis of health risk assessment caused by benzene contamination in a contaminated site[J].Environmental Science,2007,28(7):1409-1415.(In Chinese)
[5] 李如忠.基于不確定信息的城市水源水環(huán)境健康風(fēng)險(xiǎn)評(píng)價(jià)[J].水利學(xué)報(bào),2007,38(8):895-900.LI Ru-zhong.Assessment for environmental health of urban water supply source based on uncertain information[J].Journal of Hydraulic Engineering,2007,38(8):895-900.(In Chinese)
[6] 吳義鋒,薛聯(lián)青,呂錫武.基于未確知數(shù)學(xué)理論的水質(zhì)風(fēng)險(xiǎn)評(píng)價(jià)模式[J].環(huán)境科學(xué)學(xué)報(bào),2006,26(6):1047-1052.WU Yi-feng,XUE Lian-qing,LV Xi-wu.Assessment model of water quality risk based on unascertained mathematics theory[J].Acta Science Circumstantiae,2006,26(6):1047-1052.(In Chinese)
[7] 梁婕,謝更新,曾光明,等.基于隨機(jī)-模糊模型的地下水污染風(fēng)險(xiǎn)評(píng)價(jià)[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2009,36(6):54-58.LIANG Jie,XIE Geng-xin,ZENG Guang-ming,et al.An integrated stochastic-fuzzy modeling approach for the risk assessment of groundwater pollution[J].Journal of Hunan University:Natural Sciences,2009,36(6):54-58.(In Chinese)
[8] 蘇小康,曾光明,秦肖生,等.湘江水質(zhì)隨機(jī)模擬與風(fēng)險(xiǎn)分析[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2006,33(2):106-109.SU Xiao-kang,ZENG Guang-ming,QIN Xiao-sheng,et al.Stochastic simulation and risk analysis of the Xiangjiang river water quality[J].Journal of Hunan University:Natural Sciences,2006,33(2):106-109.(In Chinese)
[9] LI Jian-bing,HUANG Guo-he,ZENG Guang-ming,et al.An integrated fuzzy stochastic modeling approach fo r risk assessment of groundwater contamination[J].Journal of Environmental Management,2007.82:173-188.
[10]?;勰?袁興中,曾光明,等.基于區(qū)間數(shù)的河流水環(huán)境健康風(fēng)險(xiǎn)模糊綜合評(píng)價(jià)模型[J].環(huán)境科學(xué)學(xué)報(bào),2009,29(7):1527-1533.ZHU Hui-na,YUAN Xing-zhong,ZENG Guang-ming,et al.An integrated fuzzy model based on interval numbers for assessment of environmental health risks of water sources[J].Acta Science Circumstantiae:2009,29(7):1527-1533.(In Chinese)
[11]劉普寅,吳孟達(dá),模糊理論及其應(yīng)用[M].長(zhǎng)沙:國(guó)防科技大學(xué)出版社,1998:194-200.LIU Pu-yin,WU Meng-da.Fuzzy theory and its application[M].Changsha:National University of Defense Technology Press,1998:194-200.(In Chinese)
[12]錢家忠,李如忠,汪家權(quán),等.城市供水水源地水質(zhì)健康風(fēng)險(xiǎn)評(píng)價(jià)[J].水利學(xué)報(bào),2004,8:90-93.QIAN Jia-zhong,LI Ru-zhong,WANG Jia-quan,et al.Environmental health risk assessment for urban water supply source[J].Journal of Hydraulic Engineering,2004,8:90-93.(In chinese)
[13]SUN W,HUANG G H,ZENG G M,et al.A stepwise-cluster microbial biomass inference model in food waste composting[J].Waste Management,2009,29(12):2956-2968.
[14]LIU W T,HUANG Y F,GONG T L,Stepwise cluster analy sis methodology study for urban nonpoint source pollution in Los Angeles[J].Environmental Informatics Archives,2007,5:422-430.
[15]張國(guó)志,鮑曼.動(dòng)態(tài)聚類在大氣顆粒污染評(píng)估中的應(yīng)用[J].哈爾濱電工學(xué)院學(xué)報(bào),1996,19(3):353-357.ZHANG Guo-zhi,BAO M an.Application of classification for estimationof airborne particles pollution[J].HIET Journal,1996,19(3):353-357.(In chinese)
[16]張峰,上官鐵梁.逐步聚類法及其應(yīng)用[J].植物生態(tài)學(xué)報(bào),1996,20(6):561-567.ZHANG Feng,SHANGGUAN Tie-liangj.Stepwise cluster and its application to wegetation classification[J].Chinese journal of plant ecology,1996,20(6):561-567.(In chinese)