【摘 要】 近年來,骨關(guān)節(jié)炎的發(fā)病率逐年增高,但目前現(xiàn)有的醫(yī)療技術(shù)治療骨關(guān)節(jié)炎仍然十分局限。?;切苋パ跄懰崾且环N天然存在的親水性膽汁酸,具有兩親性、生物利用率高、高效低毒的優(yōu)勢(shì)?,F(xiàn)有研究數(shù)據(jù)表明,牛磺熊去氧膽酸具有緩解內(nèi)質(zhì)網(wǎng)應(yīng)激、促進(jìn)軟骨細(xì)胞增殖、抗炎、抗凋亡、降低細(xì)胞內(nèi)膽固醇、增加膜流動(dòng)性等作用,能改善軟骨退化,延緩骨關(guān)節(jié)炎的發(fā)展。?;切苋パ跄懰嵊型麑砜梢宰鳛橐环N有效或聯(lián)合治療的潛力藥物,但其治療骨關(guān)節(jié)炎的具體作用機(jī)制仍需進(jìn)一步探討。
【關(guān)鍵詞】 骨關(guān)節(jié)炎;牛磺熊去氧膽酸;軟骨細(xì)胞;作用機(jī)制
骨關(guān)節(jié)炎(osteoarthritis,OA)是一種復(fù)雜的全關(guān)節(jié)破壞性、退行性、進(jìn)展性疾病,屬中醫(yī)學(xué)“骨痹”范疇,以關(guān)節(jié)畸形腫脹、疼痛、晨僵等為臨床特征,使患者活動(dòng)受限,生活質(zhì)量嚴(yán)重下降,也導(dǎo)致社會(huì)經(jīng)濟(jì)負(fù)擔(dān)日漸加重[1-2]。OA發(fā)病機(jī)制復(fù)雜,主要有過度內(nèi)質(zhì)網(wǎng)應(yīng)激導(dǎo)致氧化應(yīng)激反應(yīng)、軟骨細(xì)胞凋亡、異常炎癥反應(yīng)等[3]。此外,在OA病程中,脂質(zhì)代謝失衡也起到不可替代的作用,在軟骨的滑液和軟骨細(xì)胞中積聚過量的脂肪和膽固醇,可減少膜的流動(dòng)性和局灶性粘連,從而促進(jìn)OA的發(fā)病進(jìn)展[4]。
?;切苋パ跄懰幔═UDCA)是傳統(tǒng)中藥熊膽汁的天然產(chǎn)物和基本成分,目前臨床上通常用于治療某些慢性膽汁淤積綜合征[5]。同時(shí),TUDCA是公認(rèn)的內(nèi)質(zhì)網(wǎng)應(yīng)激緩解劑,可抑制體內(nèi)和體外的內(nèi)質(zhì)網(wǎng)應(yīng)激,調(diào)節(jié)內(nèi)質(zhì)網(wǎng)功能,從而減少細(xì)胞凋
亡[6],治療非肝膽性疾病的療效也被證實(shí),可廣泛運(yùn)用于內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)疾?。ㄈ绶逝?、糖尿病及神經(jīng)退行性疾病等),具有良好的療效[7]。此外,TUDCA還具有促進(jìn)細(xì)胞增殖、保護(hù)細(xì)胞免受凋亡、抗炎、降低軟骨細(xì)胞內(nèi)膽固醇水平、增加軟骨細(xì)胞的膜流動(dòng)性等作用[4,8]。因此,本文通過總結(jié)TUDCA治療OA的研究數(shù)據(jù),為后續(xù)進(jìn)一步探究TUDCA通過改善OA軟骨細(xì)胞生存環(huán)境,發(fā)揮軟骨保護(hù)作用提供科學(xué)依據(jù)。
1 TUDCA的合成及藥理研究
TUDCA是膽汁酸家族中的一員,是一種由熊去氧膽酸(UDCA)的羧基與?;撬岬陌被g縮水結(jié)合而成的膽汁酸,因其兩親性(疏水結(jié)構(gòu)及親水結(jié)構(gòu))、生物利用率更高、高效低毒,且可通過血腦屏障等特點(diǎn),成為治療肝膽疾病的新代表藥物[9]。TUDCA已被證實(shí)具有保肝利膽、降低內(nèi)質(zhì)網(wǎng)應(yīng)激、抑制細(xì)胞凋亡、抗炎癥反應(yīng)、調(diào)節(jié)膽固醇代謝等多種藥理活性,具有“化學(xué)伴侶”的作用,臨床上廣泛應(yīng)用于肝膽疾病及其他多種非肝膽疾病的治療[10-12]。
2 TUDCA對(duì)OA的作用機(jī)制研究
2.1 抑制內(nèi)質(zhì)網(wǎng)應(yīng)激 內(nèi)質(zhì)網(wǎng)是細(xì)胞中重要的細(xì)胞器,是合成脂類和功能蛋白的基地[13]。OA軟骨細(xì)胞中過度的內(nèi)質(zhì)網(wǎng)應(yīng)激可破壞內(nèi)質(zhì)網(wǎng)腔內(nèi)的平衡,導(dǎo)致細(xì)胞外基質(zhì)蛋白合成功能紊亂,激活基質(zhì)降解,上調(diào)軟骨細(xì)胞凋亡相關(guān)蛋白的表達(dá),調(diào)控軟骨細(xì)胞的凋亡率,抑制軟骨細(xì)胞增殖[14]。KUSACZUK等[10]研究顯示,TUDCA作為一種對(duì)內(nèi)質(zhì)網(wǎng)應(yīng)激有益作用的“化學(xué)伴侶”藥物,可有效減輕TNC介導(dǎo)的軟骨細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激,保護(hù)內(nèi)質(zhì)網(wǎng)的功能,降低凋亡基因CHOP的表達(dá),降低炎癥反應(yīng);同時(shí),促進(jìn)Ⅱ型膠原蛋白合成,維持軟骨細(xì)胞外基質(zhì)穩(wěn)態(tài)從而延緩OA進(jìn)展[10]。付長龍等[15]研究證實(shí),TUDCA可抑制軟骨細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激,延緩OA軟骨退變程度。吳浩等[14]研究顯示,TUDCA能夠抑制衣霉素介導(dǎo)人軟骨細(xì)胞中的內(nèi)質(zhì)網(wǎng)應(yīng)激,抑制CHOP基因合成,發(fā)揮軟骨細(xì)胞保護(hù)作用,從而改善OA的發(fā)展。
2.2 促進(jìn)軟骨細(xì)胞增殖,減少軟骨細(xì)胞凋亡 關(guān)節(jié)軟骨由軟骨細(xì)胞及其合成的細(xì)胞外基質(zhì)組成,軟骨細(xì)胞是關(guān)節(jié)軟骨中唯一存在的細(xì)胞,軟骨細(xì)胞穩(wěn)態(tài)參與調(diào)節(jié)OA軟骨退化病程[16]。軟骨細(xì)胞增殖可增加軟骨細(xì)胞數(shù)量及密度,維持關(guān)節(jié)軟骨穩(wěn)態(tài),從而調(diào)節(jié)軟骨功能,改善OA進(jìn)展[17]。軟骨細(xì)胞凋亡是OA軟骨退變的主要特征之一,可導(dǎo)致細(xì)胞外基質(zhì)合成代謝紊亂,成分和結(jié)構(gòu)發(fā)生改變,關(guān)節(jié)軟骨內(nèi)環(huán)境失衡,加速軟骨退變,從而促進(jìn)OA不可逆發(fā)展[18]。TUDCA已被證明能夠增強(qiáng)骨髓間充質(zhì)干細(xì)胞軟骨分化,促進(jìn)軟骨細(xì)胞增殖,誘導(dǎo)人軟骨組織再生[19],且具有防止線粒體腫脹和去極化的作用,是一種細(xì)胞凋亡抑制劑,可顯著防止細(xì)胞死亡和線粒體損傷[20],并且可聯(lián)合UDCA干擾E2F-1/Mdm-2/p53凋亡通路,抑制促凋亡基因Bax、細(xì)胞色素C轉(zhuǎn)移至線粒體中,防止線粒體凋亡,參與細(xì)胞周期控制,發(fā)揮細(xì)胞保護(hù)作用,減少細(xì)胞凋亡[7]。PIKE等[21]研究證實(shí),TUDCA可顯著降低凋亡基因Caspase-3/7活性,抑制艱難梭菌毒素誘導(dǎo)的細(xì)胞凋亡。LIU等[6]
通過TUDCA處理TNC誘導(dǎo)的軟骨細(xì)胞,證明TUDCA能促進(jìn)軟骨細(xì)胞增殖,減少約18%的軟骨細(xì)胞凋亡,延緩OA關(guān)節(jié)軟骨退變。ARAI等[4]發(fā)現(xiàn),通過TUDCA處理人軟骨細(xì)胞14 d,可調(diào)節(jié)細(xì)胞周期和Cyclin D1的表達(dá),顯著上調(diào)軟骨形成標(biāo)志物(SOX9、ACAN和COL2)、細(xì)胞外基質(zhì)成分硫酸軟骨素的表達(dá),從而促進(jìn)軟骨細(xì)胞的增殖。KIM等[22]研究顯示,TUDCA能促進(jìn)骨髓間充質(zhì)干細(xì)胞的軟骨分化,軟骨細(xì)胞增殖,支持軟骨組織再生,減緩OA發(fā)生、發(fā)展。盡管已有研究證明,TUDCA能夠調(diào)節(jié)軟骨細(xì)胞增殖及凋亡,可作為OA的潛在治療藥物,但仍缺乏大量的研究數(shù)據(jù)支持,需要進(jìn)一步研究。
2.3 減少炎癥反應(yīng) OA軟骨細(xì)胞基質(zhì)降解,基質(zhì)成分蛋白多糖和膠原蛋白分解轉(zhuǎn)移到滑膜腔中,誘導(dǎo)炎癥反應(yīng),軟骨細(xì)胞代謝功能紊亂,促進(jìn)軟骨退變,從而導(dǎo)致OA進(jìn)一步發(fā)展[23]。多種促炎介質(zhì)參與OA的進(jìn)程,主要包括環(huán)氧化酶(COX)、白細(xì)胞介素-1β(IL-1β)、前列腺素E2(PGE2)及腫瘤壞死因子-α(TNF-α)等[24-26]。ASLAN等[27]
研究顯示,TUDCA可顯著降低衣霉素介導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激大鼠中的促炎介質(zhì)COX和PGE2的表達(dá)。XU等[28]證明,TUDCA通過IRE1α/TRAF2/NF-κB途徑抑制促炎因子IL-1β、IL-6和TNF-α的表達(dá),顯著降低炎癥反應(yīng)。CHO等[29]研究證明,通過TUDCA處理棕櫚酸鹽誘導(dǎo)的炎癥反應(yīng),可減少促炎細(xì)胞因子TNF-α的表達(dá)。由此可推測(cè),TUDCA能夠降低炎癥介質(zhì)的表達(dá),減少OA的炎癥反應(yīng)。KUSACZUK等[10]也證明,在常壓條件下,TUDCA處理IL-1β誘導(dǎo)的軟骨細(xì)胞,下調(diào)促炎因子IL-1β、IL-6、IL-8和COX-2表達(dá),從而減輕炎癥反應(yīng),改善OA進(jìn)展。
2.4 改善軟骨細(xì)胞膽固醇代謝 膽固醇是一種重要的細(xì)胞膜成分,可調(diào)節(jié)膜的許多生物物理特性,包括膜流動(dòng)性、滲透性等[4]。膽固醇水平穩(wěn)態(tài)的異常改變導(dǎo)致軟骨細(xì)胞中過度的脂質(zhì)積累,可減少膜的流動(dòng)性和局灶性粘連,促進(jìn)軟骨降解、骨贅生成、軟骨下骨結(jié)構(gòu)改變,從而促進(jìn)OA的發(fā)病進(jìn)程[30-31]。TUDCA因其特殊的兩親性,能夠?qū)⒛懝檀嫁D(zhuǎn)移至細(xì)胞膜外,增加脂質(zhì)的消化,調(diào)節(jié)細(xì)胞內(nèi)膽固醇水平,提高膜的流動(dòng)性,促進(jìn)OA軟骨細(xì)胞的成軟骨特性,改善OA進(jìn)展[4,32]。WANG等[33]研究證明,TUDCA干預(yù)可顯著降低軟骨細(xì)胞內(nèi)膽固醇水平,改善軟骨細(xì)胞中合成和分解代謝平衡。ARAI等[4]通過TUDCA處理退化的人軟骨細(xì)胞,證明TUDCA可以調(diào)節(jié)細(xì)胞膜釋放膽固醇,維持膽固醇穩(wěn)態(tài),增強(qiáng)局灶黏附蛋白介導(dǎo)的信號(hào)通路,改變膜流動(dòng)性,提高跨膜運(yùn)輸,促進(jìn)軟骨細(xì)胞增殖,緩解OA進(jìn)展。
3 小結(jié)與展望
TUDCA具有抑制內(nèi)質(zhì)網(wǎng)應(yīng)激、促進(jìn)軟骨細(xì)胞增殖,減少軟骨細(xì)胞免受凋亡、抗炎癥反應(yīng)、調(diào)節(jié)軟骨細(xì)胞膽固醇水平和局灶黏附蛋白的表達(dá),增加膜的流動(dòng)性等作用,能改善軟骨退化,延緩OA的發(fā)生、發(fā)展。其中,TUDCA通過調(diào)節(jié)脂質(zhì)代謝的膽固醇水平治療OA是近年來一個(gè)新興研究領(lǐng)域,但其確切分子作用機(jī)制尚不清晰,缺乏科學(xué)的臨床試驗(yàn);且TUDCA是否還通過其他細(xì)胞因子、基質(zhì)金屬蛋白酶類、信號(hào)通路、基因等途徑干預(yù)OA病程,在科學(xué)研究上尚有空缺;此外,TUDCA具有兩親性、生物利用率更高、高效低毒等優(yōu)勢(shì),已有研究證明,TUDCA/UDCA、TUDCA/HA聯(lián)合治療有助于緩解OA發(fā)病進(jìn)程[7,10],有望在將來可以作為一種有效或聯(lián)合治療的潛力藥物,廣泛應(yīng)用于臨床。但仍需進(jìn)一步探究以提供大量試驗(yàn)研究數(shù)據(jù)來證實(shí)其可發(fā)展性。
參考文獻(xiàn)
[1] 中國中西醫(yī)結(jié)合學(xué)會(huì)風(fēng)濕類疾病專業(yè)委員會(huì).骨關(guān)節(jié)炎中西醫(yī)結(jié)合診療指南[J].風(fēng)濕病與關(guān)節(jié)炎,2023,12(6):70-80.
[2] 夏干清,周龐虎.氧化應(yīng)激反應(yīng)與骨關(guān)節(jié)炎相關(guān)性及抗氧化應(yīng)激藥物應(yīng)用的研究進(jìn)展[J].疑難病雜志,2021,20(1):94-98.
[3] TONG L,YU H,HUANG X,et al.Current understanding of osteoarthritis pathogenesis and relevant new approaches[J].Bone Res,2022,10(1):60-76.
[4] ARAI Y,CHOI B,KIM BJ,et al.Tauroursodeoxycholic acid(TUDCA)counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes[J].Biomater Sci,2019,7(8):3178-3189.
[5] FERNANDO G,PRESTON N.Refractory pruritus from malignant cholestasis:management[J].BMJ Support Palliat Care,2020,13(e1):e78-e80.
[6] LIU C,CAO Y,YANG X,et al.Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis[J].Int J Mol Med,2015,36(4):1081-1087.
[7] KUSACZUK M.Tauroursodeoxycholate-bile acid with chaperoning activity:molecular and cellular effects and therapeutic perspectives[J].Cells,2019,8(12):1471-1496.
[8] ROMA MG,TOLEDO FD,BOAGLIO AC,et al.Ursodeoxycholic acid in cholestasis:linking action mechanisms to therapeutic applications[J].Clin Sci (Lond),2011,121(12):523-544.
[9] 李慧博,劉爽,秦又發(fā),等.牛磺熊去氧膽酸治療膽石癥有效性、安全性和經(jīng)濟(jì)性的衛(wèi)生技術(shù)評(píng)估[J].中國新藥雜志,2021,30(1):80-86.
[10] KUSACZUK M,NAUMOWICZ M,KRETOWSKI R,et al.Molecular and cellular effects of chemical chaperone-tudca on er-stressed nhac-kn human articular chondrocytes cultured in normoxic and hypoxic condi-
tions[J].Molecules,2021,26(4):878-901.
[11] GAO F,GUAN D,WANG G,et al.Effects of oral tauroursodeoxycholic acid and/or intestinal probiotics on serum biochemical indexes and bile composition in patients with cholecystolithiasis[J].Front Pharmacol,2022,24(13):882764-882773.
[12] 蘇艾榮,許金金,蔣秀琴.TUDCA通過抑制內(nèi)質(zhì)網(wǎng)應(yīng)激及氧化應(yīng)激減輕CCl4所致小鼠急性肝損
傷[J].東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2020,39(6):800-805.
[13] HOSSEINZADEH A,KAMRAVA SK,JOGHATAEI MT,et al.Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin[J].J Pineal Res,2016,61(4):411-425.
[14] 吳浩,孟志超,曹永平,等.內(nèi)質(zhì)網(wǎng)應(yīng)激對(duì)膝骨關(guān)節(jié)炎大鼠關(guān)節(jié)軟骨細(xì)胞的影響[J].中國組織工程研究,2017,21(16):2502-2508.
[15] 付長龍,梅陽陽,謝新宇,等.從lncRNA NEAT1和IRE1α/XBP1信號(hào)通路探討透骨消痛膠囊改善膝骨關(guān)節(jié)炎內(nèi)質(zhì)網(wǎng)應(yīng)激研究[J].福建中醫(yī)藥,2023,54(6):37-39,58.
[16] FUJII Y,LIU L,YAGASAKI L,et al.Cartilage homeostasis and osteoarthritis[J].Int J Mol Sci,2022,23(11):6316-6332.
[17] PENG Z,SUN H,BUNPETCH V,et al.The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration[J].Biomaterials,2021,268(1):120555-120562.
[18] YANG J,HU S,BIAN Y,et al.Targeting cell death:pyroptosis,ferroptosis,apoptosis and necroptosis in osteoarthritis[J].Front Cell Dev Biol,2021,18(9):789948-789965.
[19] CHA BH,JUNG MJ,MOON BK,et al.Administration of tauroursodeoxycholic acid enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration[J].Bone,2016,83(1):73-81.
[20] FONSECA I,GORDINO G,MOREIRA S,et al.Tauroursodeoxycholic acid protects against mitochondrial dysfunction and cell death via mitophagy in human neuroblastoma cells[J].Mol Neurobiol,2017,54(8):6107-6119.
[21] PIKE CM,TAM J,MELNYK RA,et al.Tauroursodeoxycholic acid inhibits clostridioides difficile toxin-induced apoptosis[J].Infect Immun,2022,90(8):e15322-e15325.
[22] KIM BJ,ARAI Y,PARK EM,et al.Osteogenic potential of tauroursodeoxycholic acid as an alternative to rhBMP-2 in a mouse spinal fusion model[J].Tissue Eng Part A,2018,24(5/6):407-417.
[23] FERNANDES JC,MARTEL-PELLETIER J,PELLETIER JP.The role of cytokines in osteoarthritis pathophysiology[J].Biorheology,2002,39(1/2):237-246.
[24] JIANG W,JIN Y,ZHANG S,et al.PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarth-
ritis[J].Bone Res,2022,10(1):27-42.
[25] CHIEN SY,TSAI CH,LIU SC,et al.Noggin inhibits IL-1beta and BMP-2 expression,and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritis[J].Cells,2020,9(4):927-947.
[26] QU R,CHEN X,WANG W,et al.Ghrelin protects against osteoarthritis through interplay with AKT and NF-kappaB signaling pathways[J].FASEB J,2018,32(2):1044-1058.
[27] ASLAN M,KIRA? E,YILMAZ ?,et al.Effect of tauroursodeoxycholic acid on PUFA levels and inflammation in an animal and cell model of hepatic endoplasmic reticulum stress[J].Hum Exp Toxicol,2018,37(8):803-816.
[28] XU X,WANG M,LI JZ,et al.Tauroursodeoxycholic acid alleviates hepatic ischemia reperfusion injury by suppressing the function of Kupffer cells in mice[J].Biomed Pharmacother,2018(106):1271-1281.
[29] CHO EJ,YOON JH,KWAK MS,et al.Tauroursodeoxycholic acid attenuates progression of steatohepatitis in mice fed a methionine-choline-deficient diet[J].Dig Dis Sci,2014,59(7):1461-1474.
[30] FARNAGHI S,PRASADAM I,CAI G,et al.Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis[J].FASEB J,2017,31(1):356-367.
[31] PAPATHANASIOU I,ANASTASOPOULOU L,
TSEZOU A.Cholesterol metabolism related genes in osteoarthritis[J].Bone,2021,152(1):116076-116084.
[32] MOHAPATRA M,MISHRA AK.1-Naphthol as a sensitive fluorescent molecular probe for monitoring the interaction of submicellar concentration of bile salt with a bilayer membrane of DPPC,a lung surfactant[J].
J Phys Chem B,2010,114(46):14934-14940.
[33] WANG Q,HUANG J,LI S,et al.Fermentation supernatant of staphylococcus aureus drives catabolism in chondrocytes via NF-kappaB signaling mediated increase of cholesterol metabolism[J].Exp Cell Res,2022,410(1):112952-112963.
收稿日期:2024-03-06;修回日期:2024-04-27