摘要:【目的】優(yōu)化葡萄染色體制片技術(shù)并分析14個(gè)葡萄品種rDNA分布特征,為葡萄染色體鑒定、變異分析及葡萄品種間的細(xì)胞遺傳學(xué)背景差異解析研究提供參考依據(jù)?!痉椒ā恳?4個(gè)葡萄品種當(dāng)年生半木質(zhì)化枝條水培長出的根尖為試驗(yàn)材料,以冰水混合物處理根尖24 h后1 MPa笑氣(N2O)處理30 min為對(duì)照,設(shè)0.2μmol/L的甲基氨草磷溶液(APM)浸泡根尖2 h后1 MPa N2O不同時(shí)長(0、30和60 min)處理,篩選染色體制片條件并計(jì)算各處理下形態(tài)良好的中期分裂相占比;比較酶解滴片法及火焰干燥法的染色體制片效果。以45S rDNA和5S rDNA為探針采用雙色熒光原位雜交(FISH)技術(shù)分析rDNA在14個(gè)葡萄品種染色體上的分布特征?!窘Y(jié)果】對(duì)照中葡萄根尖材料形態(tài)良好的中期分裂相占比僅為32.22%,F(xiàn)ISH后易產(chǎn)生背景信號(hào)且信號(hào)模糊,采用APM處理2 h后1 MPa N2O處理30 min得到的染色體制片形態(tài)良好的中期分裂相占比最高,達(dá)80.00%,且染色體濃縮適當(dāng),F(xiàn)ISH信號(hào)質(zhì)量良好。采用火焰干燥法獲得的制片細(xì)胞分散程度適中,中期分裂相多。45S rDNA和5S rDNA在葡萄染色體上始終呈連鎖狀態(tài);5S rDNA信號(hào)與染色體組數(shù)目相關(guān),在二、三、四倍體中的數(shù)量分別為2、3和4個(gè)。45S rDNA信號(hào)在二、三、四倍體中的數(shù)量分別為4、6和7個(gè),在紅香蕉葡萄中只有3個(gè);5S rDNA信號(hào)位于17號(hào)染色體上,45S rDNA位于17和15號(hào)染色體。意大利和碧香無核葡萄例外,意大利葡萄2個(gè)未與5S rDNA連鎖的45S rDNA位于15和16號(hào)染色體,碧香無核葡萄1個(gè)與55 rDNA連鎖的45 rDNA位于15號(hào)染色體,1個(gè)未與55 rDNA連鎖的45S rDNA位于17號(hào)染色體上?!窘Y(jié)論】制作葡萄根尖中期染色體制片較優(yōu)方法是APM預(yù)處理2 h后1 MPa N2O處理30 min,使用火焰干燥法制片。45S rDNA和5S rDNA在葡萄染色體上呈連鎖排列,在二、三、四倍體中數(shù)量不同。14個(gè)葡萄品種的45S rDNA和5S rDNA在染色體上呈L形排列,5S rDNA位點(diǎn)數(shù)量比45S rDNA位點(diǎn)數(shù)量更穩(wěn)定。
關(guān)鍵詞:葡萄;染色體制片;5S rDNA;45S rDNA;熒光原位雜交
中圖分類號(hào):S663.1文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)08-2351-09
Optimization of grape chromosome preparation and rDNA distribution characteristics in 14 grape varieties
YU Xue,PEI Dan,F(xiàn)ANG Jing-gui*
(College of Horticulture,Nanjing Agricultural University,Nanjing,Jiangsu 210095,China)
Abstract:【Objective】This study aimed to optimize grape chromosome preparation technique and analyze the rDNA distribution characteristics in 14 grape varieties,providing reference for grape chromosome identification,variation analysis,and analysis of cytogenetic background differentiation among grape varieties.【Method】The root tips of 14 grape varieties from hydroponically grown semi-lignified shoots were used as experimental materials.A control group treating root tips with an ice-water mixture for 24 h,followed by 1 MPa nitrous oxide(N2O)treatment for 30 min was set.The root tips were soaked in 0.2μmol/L amiprophos-methyl solution(APM)for 2 h,and treated with 1 MPa N2O for different durations(0,30,and 60 min).Chromosome preparation conditions were screened,and the proportion of meta-phase splitting phases in good shape under each treatment was calculated.The chromosome preparation effects of enzy-matic digestion and dropping method and the flame-drying method were compared.The distribution characteristics ofrDNA on chromosomes of 14 grape varieties were analyzed using dual-color fluorescence in situ hybridization(FISH)technique with 45S rDNA and 5S rDNA as probes.【Result】The proportion of metaphase splitting phases in good shape in grape root tip materials was only 32.22%in the control group.After FISH,background signals were easily generated and the signals were blurred.The highest proportion of metaphase splitting phases in good shape(80.00%)in chromosome slides was obtained by treating root tips with APM for 2 h and with 1 MPa N2O for 30 min.The chromosome concentra-tion was appropriate,and the quality of FISH signals was good.The flame-drying method resulted in moderate cell disper-sion and a high number of metaphase splitting phases.45S rDNA and 5S rDNA signals were consistently linked on grape chromosomes.The number of 5S rDNA signals was correlated with the ploidy level,with 3 and 4 signals observed in diploid,triploid and tetraploid grapes respectively.The number of 45S rDNA signals was 4,6 and 7 in diploid,triploid and tetraploid grapes respectively,except for Hongxiangjiao grape,which had only 3 signals.The 5S rDNA signals were located on chromosome 17,while the 45S rDNA signals were located on chromosomes 17 and 15.Exceptions were ob-served in Italy grape and Bixiang seedless grape with two 45S rDNA signals unlinked to 5S rDNA signals located on chro-mosomes 15 and 16 in Italy grape,and one 45S rDNA signal linked to 5S rDNA on chromosome 15 and one 45S rDNA signal unlinked to 5S rDNA on chromosome 17 in Bixiang seedless grape.【Conclusion】The optimal method for preparing metaphase chromosomes of grape root tips is pretreatment with APM for 2 h,and 1 MPa N2O for 30 min,using the flame-drying method for slide preparation.The 45S rDNA and 5S rDNA are linked on grape chromosomes,with varying num-bers in diploid,triploid,and tetraploid grapes.The 45S rDNA and 5S rDNA of 14 grape varieties exhibited an L-shape arrangement on the chromosomes,and the number of 5S rDNA loci is more stable than that of45S rDNA loci.
Key words:grape;chromosome preparation;5S rDNA;45S rDNA;fluorescence in situ hybridization(FISH)
Foundation items:National Natural Science Foundation of China(32272647);Shandong Key Research and Deve-lopment(Agricultural Breeding Engineering)Project(2022LZGCQY1018)
0引言
【研究意義】葡萄(Vitis vinifera)是營養(yǎng)價(jià)值和經(jīng)濟(jì)效益較高的果樹,在世界各地均有種植(馬龍等,2023)。葡萄染色體組有19個(gè),基因組為500 Mb,是染色體最小的植株之一,因此難以識(shí)別體細(xì)胞中單個(gè)染色體。熒光原位雜交(Fluorescence in situ hybridization,F(xiàn)ISH)技術(shù)能實(shí)現(xiàn)DNA序列在染色體上的物理定位,在植物分子細(xì)胞遺傳學(xué)研究領(lǐng)域已得到廣泛應(yīng)用。45S rDNA和5S rDNA等重復(fù)DNA序列在植物基因組中含量較高,是FISH探針的重要來源(Mehrotra and Goyal,2014;Jiang,2019)。與葡萄相關(guān)的研究中,利用FISH技術(shù)進(jìn)行細(xì)胞分子遺傳學(xué)的研究較少。因此,優(yōu)化葡萄染色體制片技術(shù)并分析其rDNA分布特征,對(duì)葡萄染色體鑒定、變異分析及葡萄品種間的細(xì)胞遺傳學(xué)背景差異解析研究具有重要意義?!厩叭搜芯窟M(jìn)展】FISH染色體制片過程分為染色體聚集、固定和制片。染色體聚集在根尖預(yù)處理階段完成,不同植物的聚集方法有所差別,玉米及其親緣物種經(jīng)甲基氨草磷溶液(APM)浸泡和0.8~1.2 MPa笑氣(N2O)處理0.5~1.5 h更容易獲得分裂相較多且形態(tài)較好的染色體(姚樂沙,2021);纖毛鵝觀草用APM處理2.0~2.5 h,0.8~1.0 MPa N2O處理1.5~2.0 h后效果較好,可進(jìn)一步完善染色體鑒定體系(程夢豪等,2022);蘋果則是使用冰水混合物和卡諾固定液后的染色體制片效果最佳(韓亞慧等,2024)。制片方法主要分為酶解滴片法、火焰干燥法、冰凍壓片法和酶解去壁低滲壓片法。FISH對(duì)制片的要求包括染色體分裂相多、形態(tài)好、分散和暴露等。Lou等(2014)研究發(fā)現(xiàn)采用冰凍壓片法染色體易變性,采用酶解滴片法和火焰干燥法更利于染色體保持原始形態(tài),且酶解可去除細(xì)胞壁,有利于染色體暴露。杜培(2017)以小麥為試驗(yàn)材料,使用火焰干燥法壓片后進(jìn)行FISH試驗(yàn),開發(fā)并應(yīng)用了新的寡核苷酸套。Liu等(2024)利用酶解滴片法制片,從基因組學(xué)和細(xì)胞遺傳學(xué)角度研究了5份秋葵(Abel-moschusesculentus)種質(zhì)中的衛(wèi)星重復(fù)特征。染色體制片后需與探針雜交后才能進(jìn)行FISH分析。FISH技術(shù)在植物基因組分析和改良、染色體組成和結(jié)構(gòu)、雜種和種屬鑒定等研究中被廣泛應(yīng)用,rDNA序列探針作為FISH探針的重要來源同樣應(yīng)用廣泛。Ding等(2016)在對(duì)薔薇的研究中采用45S rDNA探針進(jìn)行FISH試驗(yàn),觀察rDNA位點(diǎn)數(shù)量的差異,結(jié)果發(fā)現(xiàn)rDNA位點(diǎn)在雜交事件后表現(xiàn)出不穩(wěn)定性,推測導(dǎo)致rDNA變異的主要因素為染色體配對(duì)異常。He等(2021)利用rDNA序列設(shè)計(jì)寡核苷酸探針,開展8份菊花種質(zhì)FISH試驗(yàn),探究了菊花的進(jìn)化歷史和系統(tǒng)發(fā)育進(jìn)化關(guān)系。Lin等(2022)研究發(fā)現(xiàn)甘蔗基因組復(fù)雜,傳統(tǒng)育種方法很難在遺傳水平上進(jìn)行品種改良,而利用rDNA序列進(jìn)行FISH能在甘蔗育種中快速確定野生甘蔗關(guān)系并進(jìn)行倍性的有效標(biāo)記。Mitrenina等(2023)開發(fā)并測試了45S rDNA和5S rDNA探針,對(duì)4個(gè)毛茛科品種進(jìn)行了比較核型分析。Tomlekova等(2024)在菜豆研究中分析rDNA序列在染色體上的大小和位置,結(jié)果發(fā)現(xiàn)其核基因組大小發(fā)生變化,包括1個(gè)突變系基因組的增加。在有關(guān)葡萄的研究中,學(xué)者使用重復(fù)序列45SrDNA和5SrDNA探針進(jìn)行FISH,結(jié)果發(fā)現(xiàn)二倍體葡萄品種中存在4個(gè)45S rDNA和2個(gè)5S rDNA位點(diǎn)(Pereira et al.,2005;Falistocco et al.,2007;Houel et al.,2010;Pereira et al.,2014)?!颈狙芯壳腥朦c(diǎn)】FISH技術(shù)在果樹研究領(lǐng)域的應(yīng)用尚未完善,有關(guān)優(yōu)化葡萄染色體制片技術(shù)及葡萄品種rDNA分布特征分析的研究也鮮有報(bào)道。【擬解決的關(guān)鍵問題】以葡萄屬二、三和四倍性種質(zhì)為試驗(yàn)材料,優(yōu)化葡萄染色體制片技術(shù),并通過FISH技術(shù)分析45S rDNA和5S rDNA在葡萄屬植物染色體上的分布情況,為葡萄染色體鑒定、變異分析及葡萄品種間的細(xì)胞遺傳學(xué)背景差異解析研究提供參考依據(jù)。
1材料與方法
1.1試驗(yàn)材料
供試葡萄品種及來源信息見表 其中13個(gè)品種引自中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所,1個(gè)品種引自沈陽農(nóng)業(yè)大學(xué)。以14個(gè)葡萄品種當(dāng)年生半木質(zhì)化枝條水培長出的根尖為試驗(yàn)材料。
1.2試驗(yàn)方法
1.2.1探針設(shè)計(jì)與標(biāo)記根據(jù)PN40024基因組數(shù)據(jù)設(shè)計(jì)并合成了4組共91280個(gè)寡核苷酸,包含位于葡萄基因組的40個(gè)特定染色體區(qū)域的單拷貝序列。寡核苷酸大量平行合成并標(biāo)記為FISH探針,可用于識(shí)別葡萄全部19對(duì)染色體,本研究利用的是可識(shí)別9~19號(hào)染色體的寡核苷酸探針套(圖1)。寡核苷酸文庫由Arbor Biosciences(Ann Arbor,MI)合成。每個(gè)合成的文庫含有200 ng DNA。將文庫稀釋至1 ng/μL后作為儲(chǔ)備庫于-80℃永久保存,再次稀釋至0.07 ng/μL作為工作液,可短期存放于-20℃冰箱。工作液制備探針步驟為去泡沫PCR、產(chǎn)物純化、離體轉(zhuǎn)錄、RNA純化、反轉(zhuǎn)錄—探針標(biāo)記和酶解法去除RNA酶。
在Rfam(http://rfam.xfam.org/)平臺(tái)下載不同物種的45S rDNA(5.8S:FN597020.1;18S:FN597032.1;28S:FN597017.1)和5S rDNA(FN597042.1)序列;使用DNAMAN 9.0完成14個(gè)葡萄的同源多序列比對(duì),參數(shù)選擇Quick alignment;使用Oligo 7(Rychlik,2007)生成具有較高重復(fù)序列數(shù)的單元為探針,參數(shù)選擇為Hybridization Probes;Search Stringency:High;Length:30~59 nt。探針由通用生物(安徽)股份有限公司修飾合成。
1.2.2預(yù)處理?xiàng)l件篩選及染色體制片與雜交葡萄根尖細(xì)胞中期染色體制片參照Pei等(2024)的方法并稍作改動(dòng)。挑選長勢旺盛的14個(gè)葡萄品種新根,剪掉其前端1.5~2.0 cm。一部分根系放入冰水混合物中處理24 h,在保持根系濕潤的同時(shí)用1 MPa N2O處理30 min為對(duì)照。另一部分根系放入0.2μmol/L的APM(溶劑為丙酮)置于25℃培養(yǎng)箱浸泡2 h,之后將材料放入1.5 mL離心管中,在保持根系濕潤的同時(shí)用1 MPa N2O處理0、30和60min。
火焰干燥法制片流程:葡萄新根于45%乙酸溶液中解離10min,用刀片切取根尖分生區(qū)組織,加入1滴45%乙酸溶液,蓋上蓋玻片后用鑷子輕敲幾下蓋玻片使細(xì)胞分散開,利用酒精燈外焰烘烤制片,待載玻片上霧氣散開后壓片。相差顯微鏡(上海光學(xué)儀器廠)觀察染色體制片,選取染色體形態(tài)好、分散均勻、數(shù)目完整的制片放入-80℃冰箱冷凍保存。制片冷凍過夜后揭去蓋玻片,置于無水乙醇中脫水30~40 min,氣干后即可用于原位雜交試驗(yàn)。
酶解滴片法制片流程:將預(yù)處理后的根在培養(yǎng)皿中使用ddH2O清洗1 min,取出并吸去多余水分,切取根尖分生區(qū)放入裝有纖維素酶和果膠酶的酶解液離心管中,將離心管放入37℃保溫箱中37 min,分別加入2次純水和2次無水乙醇清洗干凈殘留酶,若期間根尖破碎,可再次離心,清洗后倒置晾干。最后向離心管中加入適量冰乙酸,用針將根尖打碎,滴加到保濕盒中事先標(biāo)記好的玻片上,蓋上保濕盒蓋子,室溫靜置30min后進(jìn)行后續(xù)試驗(yàn)。
雜交程序參照杜培(2017)的方法并稍作改動(dòng)。制片雜交液配置:dFA 7.5μL、20×SSC 1.5μL、Salmon sperm DNA 1.0μL、Oligo Probes 1.0μL、50%Dex-tran Sulfate 2.0μL、Library 3&4探針各3.0μL。配置完成后,振蕩混勻并離心2次,105℃金屬浴加熱13 min,加熱結(jié)束后立即放入-20℃無水乙醇中靜置10 min。載玻片上滴加70%dFA 50μL(配置方法:dFA 700μL+ddH2O 300μL),蓋上蓋玻片,于75℃的拷片機(jī)上變性70 s,隨后在-20℃的70%、95%和100%的酒精中梯度脫水5min,吹干載玻片后將雜交液滴加在載玻片細(xì)胞區(qū)域,蓋上蓋玻片,置于濕盒中,37℃培養(yǎng)箱孵育,單拷貝探針雜交孵育至少24h,重復(fù)序列探針雜交孵育至少6h。
1.2.3洗片與鏡檢先進(jìn)行單拷貝寡核苷酸探針庫構(gòu)建,觀察照相完畢后將制片浸泡于1×磷酸鹽緩沖液(PBS)中輕輕搖晃去除蓋玻片,控干水分后在LED燈光下照射12h,放入100%無水乙醇中30~40 min。然后用45S rDNA和5S rDNA寡核苷酸探針進(jìn)行第二次雜交。其他步驟參照裴丹(2023)的方法。應(yīng)注意重復(fù)序列探針與寡核苷酸探針洗片流程不同,重復(fù)序列探針的洗片流程:揭掉蓋玻片,在42℃水浴鍋中使用2×SSC清洗2次,每次5 min,之后在ddH2O中清洗1 min,氣干后滴加7μL封片膠[含4',6-二脒基-2-苯基吲哚(DAPI)],最后加蓋玻片,輕輕按壓后在Olympus BX60熒光顯微鏡下鏡檢,用SPOT CCD攝取圖像。每材料至少觀察5個(gè)細(xì)胞。染色體分散程度適中、濃縮適當(dāng)即為形態(tài)良好。
1.3統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2016進(jìn)行計(jì)算分析,使用Adobe Photoshop 6.0進(jìn)行圖片處理。
2結(jié)果與分析
2.1不同預(yù)處理對(duì)葡萄根尖細(xì)胞染色體制片效果的影響
在葡萄根尖預(yù)處理試驗(yàn)中,每處理制備10張染色體制片,選擇其中染色體數(shù)量多、分散程度好的3張制片進(jìn)行統(tǒng)計(jì)分析。由表2可知,APM預(yù)處理2 h組(1 MPa N2O處理30、60 min)形態(tài)良好的中期分裂相占比高于冰水混合物預(yù)處理24 h;冰水混合物預(yù)處理24 h形態(tài)良好的中期分裂相占比僅32.22%。1 MPa N2O不同時(shí)間預(yù)處理組中,處理30 min形態(tài)良好的中期分裂相占比最高,達(dá)到80.00%。由圖2可知,冰水混合物與APM預(yù)處理后的染色體形態(tài)相似,但冰水混合物處理的FISH后易產(chǎn)生背景信號(hào)且信號(hào)模糊。在APM預(yù)處理下,1 MPa N2O預(yù)處理0 h組,染色體較長且濃縮不充分,F(xiàn)ISH信號(hào)質(zhì)量差;1 MPa N2O預(yù)處理30 min組,染色體濃縮適當(dāng),F(xiàn)ISH信號(hào)質(zhì)量良好;1 MPaN2O預(yù)處理60min組,染色體濃縮適當(dāng),但FISH信號(hào)質(zhì)量差。因此,綜合考慮染色體分散程度、染色體形態(tài)及FISH信號(hào)質(zhì)量,選擇APM處理2 h后1 MPa N2O處理30 min為葡萄根尖預(yù)處理最適條件。
2.2 2種染色體制片方法效果比較結(jié)果
選用APM處理2h后1 MPa N2O處理30 min的根尖,染色體制片形態(tài)良好的中期分裂相占比高,且染色體濃縮適當(dāng)開展后續(xù)試驗(yàn)。分別使用火焰干燥法和酶解滴片法制片,結(jié)果如圖3可知,火焰干燥法獲得的制片,細(xì)胞分散程度適中,中期分裂相多(圖3-A);酶解滴片法獲得的制片,細(xì)胞過于分散且中期分裂相少(圖3-B)。
2.3 45S rDNA和5S rDNA在14個(gè)葡萄品種中的分布結(jié)果
由圖4可知,采用優(yōu)化后的制片技術(shù)進(jìn)行FISH,45S rDNA和5S rDNA探針在二、三和四倍體葡萄染色體上均產(chǎn)生信號(hào)。雜交結(jié)果顯示,45S rDNA與5S rDNA始終呈連鎖狀態(tài),屬于L形排列,分布在相同的染色體上,但二者在染色體上的數(shù)目與位置并不固定。3個(gè)四倍體品種均有4個(gè)5S rDNA信號(hào),位于17號(hào)染色體;7個(gè)45S rDNA信號(hào),位于17和15號(hào)染色體。2個(gè)三倍體品種均有3個(gè)5S rDNA信號(hào),位于17號(hào)染色體;6個(gè)45S rDNA信號(hào),位于17和15號(hào)染色體。二倍體品種中,北紅、貴妃玫瑰、葡萄園皇后、沈陽玫瑰、鄭州早玉、左山一號(hào)葡萄均有2個(gè)5S rDNA信號(hào),位于17號(hào)染色體;4個(gè)45S rDNA信號(hào),位于17和15號(hào)染色體。而二倍體品種紅香蕉有2個(gè)5S rDNA信號(hào),位于17號(hào)染色體;3個(gè)45S rDNA信號(hào),位于17和15號(hào)染色體。以上葡萄品種與5S rDNA連鎖的45S rDNA均位于17號(hào)染色體,未與5S rDNA連鎖的45S rDNA位于15號(hào)染色體。意大利和碧香無核rDNA數(shù)量與其他二倍體相同,分布位置不同。意大利2個(gè)未與5S rDNA連鎖的45S rDNA位于15和16號(hào)染色體,碧香無核1個(gè)與5S rDNA連鎖的45S rDNA位于15號(hào)染色體,1個(gè)未與5S rDNA連鎖的45S rDNA位于17號(hào)染色體。
3討論
分子細(xì)胞遺傳學(xué)研究的基礎(chǔ)是獲得高質(zhì)量的染色體制片,制片要求染色體分散性好、形態(tài)良好、濃縮適當(dāng)、分裂相無細(xì)胞質(zhì)背景等,以便進(jìn)行FISH試驗(yàn)(郭瑞紅等,2021)。根尖預(yù)處理及制片方法是影響染色體制片的主要因素(杜培,2017)。冰水處理是一種將根尖細(xì)胞停滯在中期的處理方法,盡管冰水處理在中期積累同步細(xì)胞的有效性低,但其流程簡單易操作,且在某些品種中積累效果顯著。蘋果、朱槿和蜀葵根尖染色體制片預(yù)處理第一步在冰水混合物中預(yù)處理效果顯著(肖蘇芯等,2021;Rachma et al.,2023;韓亞慧等,2024)。本研究中,冰水混合物預(yù)處理24 h,采用1 MPa笑氣(N2O)處理30 min中形態(tài)良好的中期分裂相占比僅32.22%,F(xiàn)ISH后易產(chǎn)生背景信號(hào)且信號(hào)模糊,與上述前人研究結(jié)果不符。本研究采用APM預(yù)處理2 h后1 MPa N2O處理30 min得到的染色體制片形態(tài)良好的中期分裂相占比最高,達(dá)到80%,且染色體濃縮適當(dāng)、FISH信號(hào)質(zhì)量良好,可用于進(jìn)一步的染色體分析。與孔令娜等(2020)研究發(fā)現(xiàn)使用APM預(yù)處理2 h后進(jìn)行后續(xù)FISH試驗(yàn)效果較好;郭瑞紅等(2021)在繡球根尖染色體制片預(yù)處理第二步中發(fā)現(xiàn)繡球根尖預(yù)處理的最適條件為1 MPa N2O處理1 h的研究結(jié)果相一致。預(yù)處理后的葫蘆科、茶樹和小麥?zhǔn)褂妹附獾纹ㄟM(jìn)行染色體制片效果最佳(Evtushenko etal.,2019;劉昱希等,2020;喻雪蓮等,2024),但葡萄染色體小,酶解滴片法容易丟失染色體,本研究發(fā)現(xiàn)使用火焰干燥法細(xì)胞分散程度適中,中期分裂相多,可以獲得質(zhì)量更高的染色體制片。
W6IibpsFOvExjunvR2eSFw==真核生物中存在兩種類型的rDNA,即45SrDNA和5S rDNA,二者位置分為連鎖(L形)和分離(S形),L形分布在同一條染色體上,S形則相反。在大多數(shù)動(dòng)植物中,45S rDNA與5S rDNA呈S形排列,少數(shù)呈L形排列,如黃瓜(Zhang et al.,2016;Gar‐cia et al.,2017)呈L形排列。徐川梅等(2022)在比較12個(gè)竹種的45S rDNA和5S rDNA分布特性時(shí)發(fā)現(xiàn),部分竹種45S rDNA和5S rDNA呈L形排列。本研究中所有葡萄品種的5S rDNA與45S rDNA均屬于L形排列,分布于相同的染色體上。
5S rDNA位點(diǎn)的數(shù)量比45S rDNA位點(diǎn)的數(shù)量更穩(wěn)定,后者有時(shí)變化很大,rDNA位點(diǎn)個(gè)體間的變異有可能被用作群體遺傳學(xué)標(biāo)記(Olanjet al.,2015)。在廣泛的分類范圍內(nèi),5S rRNA基因編碼的序列高度保守,其DNA位點(diǎn)的數(shù)量與分布多與染色體的倍性聯(lián)系在一起(Olanjet al.,2015)。本研究中二、三、四倍體中5S rDNA位點(diǎn)數(shù)量分別為2、3和4個(gè),表明在部分葡萄品種中,可以將5S rDNA位點(diǎn)與染色體的倍性聯(lián)系在一起。另外,5S rDNA位點(diǎn)數(shù)量穩(wěn)定,隨著染色體組數(shù)量的增加而增加,反映了整個(gè)基因組的加倍。在菜豆中分析rDNA序列在染色體上的大小及位置,發(fā)現(xiàn)其核基因組大小發(fā)生變化,包括1個(gè)突變系基因組的增加(TomLekova et al.,2024)。本研究中,二、三、四倍體葡萄上45S rDNA位點(diǎn)數(shù)分別為4(紅香蕉為3個(gè))、6和7個(gè),與5S rDNA位點(diǎn)分布相比,45S rDNA分布模式彼此間存在較大差異。大量試驗(yàn)證實(shí)45S rDNA為脆性位點(diǎn),脆性位點(diǎn)表現(xiàn)為在前中期和中期染色體上的染色質(zhì)纖維上的非隨機(jī)不完全斷裂或缺口,目前為止,由易損位點(diǎn)引起的染色體損傷在人類中最為常見,植物染色體斷裂明顯較少,且?guī)缀跬耆拗圃?5S rDNA位點(diǎn)上(Lan et al.,2016;黃敏等,2017)。紅香蕉葡萄品種中缺失1個(gè)45S rDNA位點(diǎn),意大利和碧香無核葡萄的1個(gè)45S rDNA位點(diǎn)分布在其他染色體上,推測是由染色體結(jié)構(gòu)變異導(dǎo)致。植物基因組中,rDNA區(qū)域是遺傳重組的熱點(diǎn)區(qū)域,同源染色體間的重組或不等交換往往導(dǎo)致rDNA拷貝數(shù)產(chǎn)生差異(Tsang and Carr,2008)。此外,rDNA重復(fù)序列內(nèi)部及鄰近區(qū)域轉(zhuǎn)座子的插入或刪除進(jìn)一步促進(jìn)了rDNA位點(diǎn)的進(jìn)化,使物種的核型不斷變化(Pedrosa-Harand et al.,2006;Raskina et al.,2008)。
4結(jié)論
制作葡萄根尖中期染色體制片較優(yōu)方法是APM預(yù)處理2h后1 MPa N2O處理30min,使用火焰干燥法制片。45S rDNA和5S rDNA在葡萄染色體上連鎖排列,在二、三、四倍體中數(shù)量不同。14個(gè)葡萄品種的45S rDNA和5S rDNA在染色體上呈L形排列,5S rDNA位點(diǎn)數(shù)量比45S rDNA位點(diǎn)數(shù)量更穩(wěn)定。
參考文獻(xiàn)(References):
程夢豪,Miroslava Karafiátová,孫昊杰,Kate?ina Holu?ová,Jaroslav Dole?el,宋新穎,王海燕,王秀娥.2022.基于纖毛鵝觀草特異的衛(wèi)星重復(fù)序列開發(fā)寡核苷酸探針[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),45(3):442-452.[Cheng MH,KarafiátováM,Sun H J,Holu?ováK,Dole?el J,Song X Y,Wang H Y,Wang X E.2022.Development of oligonucleotide probes specific to Roegneria ciliaris chromosomes based on satellite repeats[J].Journal of Nanjing Agricultural Uni-versity,45(3):442-452.]doi:10.7685/jnau.202107035.
杜培.2017.小麥、百薩偃麥草和花生染色體熒光原位雜交寡核苷酸探針(套)開發(fā)與應(yīng)用[D].南京:南京農(nóng)業(yè)大學(xué).[Du P.2017.Development and application of Wheat,Thi-nopyrumBessarabicum and Peanut oligonucleotide and multiplex probes for fluorescence in Situ hybridization[D].Nanjing:Nanjing Agricultural University.]doi:10.27244/d.cnki.gnjnu.2017.000137.
郭瑞紅,邱帥,劉光欣,高凱,魏建芬,席夢麗.2021.繡球染色體制片技術(shù)優(yōu)化及rDNA物理定位[J].林業(yè)科學(xué),57(11):59-67.[Guo R H,Qiu S,Liu G X,Gao K,Wei J F,Xi M L.2021.Optimization of chromosome preparation and rDNA physical localization of Hydrangea macrophylla[J].Scientia SilvaeSinicae,57(11):59-67.]doi:10.11707/j.1001-7488.20211106.
韓亞慧,賀宇,張春芬,鄧舒,肖蓉,曹秋芬.2024.嘎啦蘋果花藥培養(yǎng)再生植株根尖染色體制片體系的建立[J/OL].分子植物育種.https://kns.cnki.net/kcms2/detail/46.1068.S.20230710.1911.005.htm.[Han Y H,He Y,Zhang C F,Deng S,Xiao R,Cao Q F.2024.Establishment of chromo‐some production system for root tip of regenerated anther culture plantlets of Gala apple[J/OL].Molecular Plant Breeding.https://kns.cnki.net/kcms2/detail/46.1068.S.202 30710.1911.005.htm.]
黃敏,周玲,黃婧,徐安莉,王平.2017.45S rDNA基因的不穩(wěn)定性及其與轉(zhuǎn)錄的相關(guān)性[J].激光生物學(xué)報(bào),26(2):151-155.[Huang M,Zhou L,Huang J,Xu A L,Wang P.2017.Instability of 45S rDNA gene and its correlation with transcription[J].Acta Laser Biology Sinica,26(2):151-155.]doi:10.3969/j.issn.1007-7146.2017.02.010.
孔令娜,馮祎高,孫冰曉,張慧,劉曉雪,陳穎,張瑞奇.2020.基于改進(jìn)的多色熒光原位雜交技術(shù)的染色體分析[J].中國農(nóng)學(xué)通報(bào),36(12):97-103.[Kong L N,F(xiàn)eng Y G,Sun B X,Zhang H,Liu X X,Chen Y,Zhang R Q.2020.Chro‐mosome analysis based on an improved multiplex fluores‐cence in situ hybridization(M-FISH)[J].Chinese Agricul‐tural Science Bulletin,36(12):97-103.]
劉昱希,韓蘭英,李夢雪,趙勤政,陳勁楓,婁群峰.2020.葫蘆科植物幼嫩子房壁制片技術(shù)的優(yōu)化及其染色體倍性鑒定[J].西北植物學(xué)報(bào),40(5):882-887.[Liu Y X,Han L Y,Li M X,Zhao Q Z,Chen J F,Lou Q F.2020.Optimiza‐tion of chromosome preparation method using young ovary wall of Cucurbitaceae plants and pioidyidentifica‐tion[J].Acta Botanica Boreali-Occidentalia Sinica,40(5):882-887.]doi:10.7606/j.issn.1000-4025.2020.05.0882.
馬龍,徐美隆,范培格,喬改霞,劉玉娟,王榮,謝軍,馬東海.2023.干旱脅迫下砧木‘110R’對(duì)黑比諾'葡萄抗旱性的影響[J].中外葡萄與葡萄酒,(6):18-25.[Ma L,Xu M L,F(xiàn)an P G,Qiao G X,Liu Y J,Wang R,Xie J,Ma D H.2023.Effects of rootstock‘110R’on drought resistance of'PinotNoir'grapevine under drought stress[J].Sino-Overseas Grapevine&Wine,(6):18-25.]doi:10.13414/j.cnki.zwpp.2023.06.003.
裴丹.2023.葡萄染色體熒光原位雜交寡核苷酸探針開發(fā)與利用[D].南京:南京農(nóng)業(yè)大學(xué).[Pei D.2023.Develop‐ment and application of oligonucleotide probes for fluore-sence in situ hybridization in Vitis chromosomes[D].Nan‐jing:Nanjing Agricultural University.]
肖蘇芯,黃依然,高麗,賈桂霞,高雪.2021.蜀葵根尖染色體制片技術(shù)優(yōu)化和核型分析[J].分子植物育種,19(17):5800-5807.[Xiao S X,Huang Y R,Gao L,Jia G X,Gao X.2021.Optimization of chromosome tableting techno-logy and karyotype analysis of Althaea rosea root tips[J].Molecular Plant Breeding,19(17):5800-5807.]doi:10.13271/j.mpb.019.005800.
徐川梅,王子晗,謝峰,金旭胤,吳心妍,陳榮,黃堅(jiān)欽.2022.12個(gè)竹種的45S rDNA和5S rDNA分布特性比較[J].林業(yè)科學(xué),58(7):93-102.[Xu C M,Wang Z H,Xie F,Jin X Y,Wu X Y,Chen R,Huang J Q.2022.Comparison of 45SrDNA and 5S rDNA distribution characteristics of 12 bam‐boo species[J].Scientia SilvaeSinicae,58(7):93-102.]doi:10.11707/j.1001-7488.20220710.
姚樂沙.2021.玉米及親緣物種寡核苷酸探針開發(fā)與應(yīng)用[D].南京:南京農(nóng)業(yè)大學(xué).[Yao L S.2021.Development and application of oligonucleotide probes for maize andrelated species[D].Nanjing:Nanjing Agricultural Univer‐sity.]doi:10.27244/d.cnki.gnjnu.2021.001356.
喻雪蓮,李興鋒,張麗霞.2024.茶樹染色體制片技術(shù)優(yōu)化[J/OL].分子植物育種.https://link.cnki.net/urlid/46.1068.s.20231218.1911.024.[Yu X L,Li X F,Zhang L X.2024.Technical optimization of chromosome preparation in Camellia sinensis[J/OL].Molecular Plant Breeding.https://link.cnki.net/urlid/46.1068.s.20231218.1911.024.]
Ding X L,Xu T L,Wang J,Luo L,Yu C,Dong G M,Pan H T,Zhang Q X.2016.Distribution of 45S rDNA in modernrose cultivars(Rosa hybrida),Rosa rugosa,and theirinterspecific hybrids revealed by fluorescence in situ hybridization[J].Cytogenetic and Genome Research,149(3):226-235.doi:10.1159/000448063.
Evtushenko E V,Lipikhina YA,Stepochkin P I,Vershinin AV.2019.Cytogenetic and molecular characteristics of rye genome in octoploid triticale(×TriticosecaleWittmack)[J].Comp Cytogenet,13(4):423-434.doi:10.3897/Comp-Cytogen.v 13i4.39576.eCollection 2019.
Falistocco E,Passeri V,Marconi G.2007.Investigations of 5S rDNA of Vitis vinifera L.:Sequence analysis and physical mapping[J].Genome,50(10):927-938.doi:10.1139/g07-070.
Garcia S,Kova?íkA,Leitch A R,Garnatje T.2017.Cytogenetic features of rRNA genes across land plants:Analysis of the plant rDNA database[J].The Plant Journal,89(5):1020-1030.doi:10.1111/tpj.13442.
He J,Lin S S,Yu Z Y,SongAP,Guan Z Y,F(xiàn)ang W M,Chen S M,Zhang F,Jiang J,Chen F D,Wang H B.2021.Identifi‐cation of 5S and 45S rDNA sites in Chrysanthemum spe‐cies by using oligonucleotide fluorescence in situ hybridi-zation(Oligo-FISH)[J].Molecular Biology Reports,48(1):21-31.doi:10.1007/s 11033-020-06102-1.
Houel C,Bounon R,Cha?b J,Guichard C,Peros J P,Bacilieri R,Dereeper A,Canaguier A,Lacombe T,N'Diaye A,Le Paslier M C,Vernerey M S,Coriton O,Brunel D,This P,Torregrosa L,Adam-Blondon A F.2010.Patterns of sequence polymorphism in the fleshless berry locus in cul‐tivated and wild Vitis vinifera accessions[J].BMC Plant Biology,10:284.doi:10.1186/1471-2229-10-284.
Jiang J J.2019.Fluorescence in situ hybridization in plants:Recent developments and future applications[J].Chromo‐some Reseach,27(3):153-165.doi:10.1007/s 10577-019-09607-z.
Lan H,Chen C L,Miao Y,Yu C X,Guo W W,Xu Q,Deng X X.2016.Fragile sites of‘Valencia’sweet orange(Citrus sinensis)chromosomes are related with active 45s rDNA[J].PLoS One,11(3):e0151512.doi:10.1371/journal.pone.0151512.
Lin P,Hu X,Xue L,Li X,Wang P,Zhao X,Zhang M,Deng Z,Yu F.2022.Identification of sugarcane S.spontaneum(Poaceae)germplasm:Evidence from rDNA-ITS andrDNA locus analyses[J].Agronomy,12(12):3167.doi:10.3390/agronomy 12123167.
Liu J R,Lin X Y,Wang X J,F(xiàn)eng L Q,Zhu S X,Tian R M,F(xiàn)ang J P,Tao A F,F(xiàn)ang P P,Qi J M,Zhang LW,Huang Y J,Xu J T.2024.Genomic and cytogenetic analyses reveal satellite repeat signature in allotetraploid okra(Abelmos-chusesculentus)[J].BMC Plant Biology,24(1):71.doi:10.1186/s 12870-024-04739-9.
Lou Q F,Zhang Y X,He Y H,Li J,Jia L,Cheng C Y,Guan W,Yang S Q,Chen J F.2014.Single-copy gene-based chro-mosome painting in cucumber and its application for chro-mosome rearrangement analysis in Cucumis[J]w7IFczOegYqxWee3aARxlw==.The Plant Journal,78(1):169-79.doi:10.1111/tpj.12453.
Mehrotra S,Goyal V.2014.Repetitive sequences in plant nuclear DNA:Types,distribution,evolution and function[J].Genomics Proteomics Bioinformatics,12(4):164-171.doi:10.1016/j.gpb.2014.07.003.
Mitrenina E Y,Alekseeva S S,Badaeva E D,Peruzzi L,Arte-mov G N,Krivenko D A,Pinzani L,Ayta?Z,?e?en?,Baasanmunkh S,Choi H J,Mesterházy A,Tashev A N,BanchevaS,Lian L,Xiang K L,Wang W,Erst A S.2023.Karyotypes and physical mapping of ribosomal DNA with oligo-probes in Eranthissect.Eranthis(Ranunculaceae)[J].Plants,13(1):47.doi:10.3390/plants 13010047.
Olanj N,Garnatje T,Sonboli A,Vallès J,Garcia S.2015.The striking and unexpected cytogenetic diversity of genus Tanacetum L.(Asteraceae):A cytometric and fluorescent in situ hybridisation study of Iranian taxa[J].BMC Plant Biology,15:174.doi:10.1186/s 12870-015-0564-8.
Pedrosa-Harand A,de Almeida C C S,Mosiolek M,Blair M W,Schweizer D,Guerra M.2006.Extensive ribosomal DNA amplification during Andean common bean(Phaseolus vul-garis L.)evolution[J].Theoretical and Applied Genetics,112(5):924-933.doi:10.1007/s00122-005-0196-8.
Pei D,Yu X,F(xiàn)u W H,Ma X H,F(xiàn)ang J G.2024.The evolution and formation of centromeric repeats analysis in Vitis vinifera[J].Planta,259(5):99.doi:10.1007/s00425-024-04374-6.
Pereira H S,Bar?o A,Delgado M,Morais-Cecílio L,Viegas W.2005.Genomic analysis of Grapevine Retrotransposon 1(Gret 1)in Vitis vinifera[J].Theoretical and Applied Gene-tics,111(5):871-878.doi:10.1007/s00122-005-0009-0.
Pereira H S,Delgado M,AvóA P,Bar?o A,Serrano I,Viegas W.2014.Pollen grain development is highly sensitive to temperature stress in Vitis vinifera[J].Australian Jouranl of Grape and Wine Research,20:474-484.doi:10.1111/ajgw.12105.
Rachma I,Dwiranti A,Salamah A.2023.Optimization of Hi-biscus rosa-sinensis L.chromosome pretreatment[C].AIP Conference Proceedings,0RQv1jl2laqgCppBzp4LukQ==20149.doi:10.1063/1.5064146.
Raskina O,Barber J C,Nevo E,Belyayev A.2008.Repetitive DNA and chromosomal rearraraskina:Speciation-related events in plant genomes[J].Cytogenetic and Genome Re-search,120(3-4):351-357.doi:10.1159/000121084.
Tomlekova N,Idziak-Helmcke D,F(xiàn)ranke P,Rojek-Jelonek M,Kwasniewska J.2024.Phaseolus vulgaris mutants reveal variation in the nuclear genome[J].Front in Plant Science,14:1308830.doi:10.3389/fpls.2023.1308830.
Tsang E,Carr A M.2008.Replication fork arrest,recombina-tion and the maintenance of ribosomal DNA stability[J].DNA Repair,7(10):1613-1623.doi:10.1016/j.dnarep.2008.06.010.
Zhang Z T,Yang S Q,Li Z A,Zhang Y X,Wang Y Z,Cheng C Y,Li J,Chen J F,Lou Q F.2016.Comparative chromo-somal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis[J].Genome,59(7):449-457.doi:10.1139/gen-2015-0207.
(責(zé)任編輯李洪艷)