国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

投喂不同餌料對斑鱖生長及消化性能的影響

2024-11-05 00:00:00賴銘勇
南方農業(yè)學報 2024年8期

摘要:【目的】探明斑鱖(Siniperca scherzeri)攝食配合飼料后其生長與消化性能的變化規(guī)律,為開展以配合飼料替代傳統(tǒng)餌料魚的斑鱖規(guī)模養(yǎng)殖提供參考依據(jù)?!痉椒ā窟x取馴化和未馴化斑鱖苗種各180尾,分別投喂配合飼料和活餌魚,飼養(yǎng)20周后饑餓24 h,測定分析其生長性能、消化酶活性、腸道組織結構及腸道微生物群落結構?!窘Y果】至飼養(yǎng)20周后,飼料組斑鱖的存活率、臟體比與活餌組斑鱖相比無顯著差異(P>0.05,下同),但終末體質量、增重率及飼料系數(shù)顯著低于活餌組斑鱖(P<0.05,下同);飼料組斑鱖腸道α-淀粉酶活性顯著高于活餌組斑鱖,胰蛋白酶活性顯著低于活餌組斑鱖,而胃蛋白酶和脂肪酶活性無顯著差異。此外,飼料組斑鱖腸道的肌層厚度和黏膜褶皺高度均顯著低于活餌組斑鱖,但二者間的腸黏膜褶皺數(shù)無顯著差異。在腸道微生物群落方面,飼料組斑鱖腸道微生物群落的ACE指數(shù)和Chao1指數(shù)顯著低于活餌組斑鱖,但Shannon指數(shù)和Simpson指數(shù)無顯著差異;2種餌料投喂模式下斑鱖腸道微生物群落結構均以變形菌門、厚壁菌門、軟壁菌門和放線菌門為絕對優(yōu)勢菌門,其相對豐度之和在98.00%以上;在屬分類水平上,飼料組斑鱖腸道內的伯克霍爾德菌屬相對豐度顯著高于活餌組斑鱖,而鞘氨醇盒菌屬和支原體屬相對豐度顯著低于活餌組斑鱖?!窘Y論】以配合飼料替代活餌投喂斑鱖,其生長速度顯著降低,腸道組織結構、消化酶活性及腸道微生物群落結構出現(xiàn)適應性變化,尤其是配合飼料的投喂有助于維持腸道微生物穩(wěn)定性??梢?,以配合飼料替代活餌養(yǎng)殖斑鱖具有可行性,但還需進一步優(yōu)化飼料營養(yǎng)組分及投喂策略,提高配合飼料養(yǎng)殖下斑鱖的生長速率。

關鍵詞:斑鱖;配合飼料;活餌;生長性能;消化酶活性;腸道組織;腸道微生物

中圖分類號:S965.127文獻標志碼:A文章編號:2095-1191(2024)08-2523-12

Effects of feeding different diets on growth and digestive perfor?mance of spotted mandarin fish(Siniperca scherzeri)

LAI Ming-yong

(Fujian Freshwater Fisheries Research Institute,F(xiàn)uzhou,F(xiàn)ujian 35000 China)

Abstract:【Objective】To study the changes of growth and digestive performance of spotted mandarin fish(Siniperca scherzeri)after feeding on the compound feed,which provided reference for the large-scale culture of S.Scherzeri by using the compound feed instead of the traditional forage fish.【Method】A total of 180 domesticated individuals and 180 undomesticated individuals were fed with compound feed and live forage fish respectively,and starved for 24 h after feeding 20 weeks.The growth performance,digestive enzyme activity,intestinal structure and intestinal microbiota struc-ture of S.scherzeris were determined and analyzed.【Result】After 20 weeks of feeding,the survival rate,viscero-body ratio of S.scherzeri in compound feed group had no significant differences compared with those in live bait group(P>0.05,the same below),but the final body weight,weight gain rate and feed coefficient were significantly lower than those in live bait group(P<0.05,the same below).The intestinalα-amylase activity of compound feed group was signifi-cantly higher than that of the live bait group,and the trypsinactivity was significantly lower,but there was no significant difference in pepsin and lipase activities between the two groups.In addition,the thickness of muscle layer and the height of mucosal folds of S.scherzeri in compound feed group were significantly lower than those in live bait group,but there was no significant difference in the number of intestinal folds between the two groups.In terms of intestinal microbiota,the ACE index and Chao1 index of intestinal microbiota of S.scherzeri in compound feed group were significantly lower than those in live bait group,but there was no significant difference in Shannon index and Simpson index between the twogroups.Under the two feeding patterns,Proteobacteria,F(xiàn)irmicutes,Tenericutes and Actinobacteria were the dominant microbiota,and the sum of their relative abundance was more than 98.00%.At the genus classification level,the relative abundance of Burkholderia-Caballeronia-Paraburkholderia in the intestine of S.scherzeri in compound feed group was significantly higher than that in live bait group,while the relative abundance of Sphingopyxis and Mycoplasma ofS.scher-zeri in compound feed group was significantly lower than that in live bait group.【Conclusion】The growth rate of S.scher-zeri decreases significantly when fed with compound feed instead of live bait,and the intestinal structure,digestive en-zyme activity and intestinal microbiota structure show adaptive changes.Especially,the feeding of compound feed helps maintain the stability of intestinal microorganisms.In conclusion,it is feasible to breed S.scherzeri with compound feed instead of live bait,but it is necessary to further optimize feed nutrient composition and feeding strategies to improve the growth rate of S.Scherzeri underfeeding with compound feed.

Key words:Sinipercascherzeri;compound feed;live bait;growth performance;digestive enzyme activity;intes-tine tissue;intestinal microorganisms

Foundation items:China Agriculture Research System(CARS-46);Basic Research Project of Fujian Public Wel-fare Research Institute(Mincaizhi〔2023〕600);Fujian Seed Industry Innovation and Industrialization Project(Minnong-zong〔2021〕5]

0引言

【研究意義】斑鱖(Siniperca scherzeri)俗稱黑鱖、巖鱖、老虎鱖等,隸屬于鱸形目(Perciformes)鱖屬(Siniperca),為東亞特有種類,廣泛分布在我國內陸水域,是一種典型的肉食性魚類(Liu et al.,2017;田田,2023)。斑鱖肉質細嫩、味道鮮美,不含肌間刺,營養(yǎng)與藥用價值高,深受廣大消費者青睞(Yang et al.,2012),是目前我國養(yǎng)殖的三大鱖類之一。當前,斑鱖養(yǎng)殖仍以傳統(tǒng)的鮮活餌料魚為主,生產上存在諸多不利因素(李松林等,2021):(1)餌料魚的養(yǎng)殖與運輸條件要求較高,直接增加了養(yǎng)殖成本;(2)餌料魚可能攜帶病原微生物,增加了養(yǎng)殖過程中的疾病傳播風險;(3)餌料魚養(yǎng)殖還會造成漁業(yè)資源浪費,影響?zhàn)B殖業(yè)的綠色轉型(Wang et al.,2023)。因此,探索配合飼料替代餌料魚對斑鱖生長性能、腸道功能結構和微生物群落的影響,對開展斑鱖規(guī)?;?、標準化養(yǎng)殖及促進斑鱖養(yǎng)殖業(yè)可持續(xù)發(fā)展具有重要意義?!厩叭搜芯窟M展】相對于翹嘴鱖(S.chuatsi)而言,斑鱖更易馴化,但生長速度及養(yǎng)殖規(guī)模遠不及翹嘴鱖(李傳陽等,2016;李松林等,2021)。至今,國內外有關斑鱖馴化與養(yǎng)殖的研究報道較少,研究者更多關注鱖馴食技術、營養(yǎng)需求及飼料開發(fā)等。王貴英等(2005)研究指出,鱖配合飼料的最適蛋白含量為44.27%~48.41%;Li等(2017)研究發(fā)現(xiàn),使用人工飼料投喂雜交鱖(S.chuatsi♀×S.scherzeri♂)的生長性能及消化道蛋白酶活性均顯著低于餌料魚;班賽男等(2020)、馬林等(2023)研究表明,攝食配合飼料不會影響翹嘴鱖的生長性能,且其消化酶活性與餌料魚組無顯著差異;任萍等(2020)研究證實,鱖攝入糖后可促進糖原和脂肪的合成,轉化為糖原和甘油三酯,但幼9cd2ae23c87df7e5f53b9ab4cb9f4b12鱖對葡萄糖的利用效率低于糊精。腸道是魚類重要的消化吸收器官,其形態(tài)結構與食性、食物關系緊密,且相互適應(周景祥等,2001;高紅云等,2021)。消化酶活性是衡量肉食性魚類消化能力的重要指標之一(Fernández et al.,2001),其活性與飼料吸收、生理狀態(tài)、腸道環(huán)境及其他因素有關(Buddington etal.,1997)。魚類腸道微生物與宿主的種類、營養(yǎng)狀況及生長環(huán)境等因素密切相關(Sullam etal.,2012;Miyake et al.,2015;Huanget al.,2020),在促進營養(yǎng)物質消化吸收、抵御疾病、促進生長等方面發(fā)揮重要作用(Dawood et al.,2016;陳儉等,2022;何琴等,2023),其中攝食的餌料組成是影響魚類腸道菌群結構的主要因素之一(Sullam etal.,2012)。因此,開展魚類腸道組織結構、消化酶活性及腸道菌群結構分析不僅有助于揭示魚類食物變化與腸道組織結構、消化酶活性及微生物群落適應性之間的關系,還能綜合評價養(yǎng)殖魚類的健康水平。辛晴晴等(2022)以鯽的腸道組織結構、抗氧化性能和腸道菌群結構為指標,探究了鯽對飼料添加不同劑量檸檬黃色素的生理響應;魏孟申等(2024)以腸道組織結構、消化酶活性和微生物群落結構為指標,探究了大口黑鱸對慢性氨氮脅迫的適應性,并確立了大口黑鱸高密度養(yǎng)殖的氨氮安全閾值。在鱖養(yǎng)殖方面,曾萌冬等(2021)研究發(fā)現(xiàn)鱖對配合飼料的攝食量和利用率均低于餌料魚,消化道組織結構及其消化酶活性也發(fā)生適應性變化;陳劍斌等(2023)研究證實攝食配合飼料的鱖在生長、飼料效率、胃腸功能、肌肉品質、抗氧化和非特異性免疫能力等方面更具優(yōu)勢,但加重了肝臟和腎臟的代謝負擔?!颈狙芯壳腥朦c】至今,有關斑鱖的研究主要集中在系統(tǒng)分類學、遺傳學、繁殖生物學及營養(yǎng)評價等方面(蒲德永等,2013;田田等,2023;Wang et al.,2023),針對其飼料營養(yǎng)、消化組織結構、消化酶活性及腸道微生物結構特征等的研究較少?!緮M解決的關鍵問題】比較分析配合飼料與餌料魚對斑鱖生長、腸道功能結構及其微生物群落結構的影響,探明斑鱖攝食配合飼料后其生長與消化性能的變化規(guī)律,為開展以配合飼料替代傳統(tǒng)餌料魚的斑鱖規(guī)模養(yǎng)殖提供參考依據(jù)。

1材料與方法

1.1試驗魚養(yǎng)殖

試驗用斑鱖親本取自福建省閩江水系的野生群體,經人工繁育,獲得斑鱖苗種(體質量10.8±0.5 g)。斑鱖苗種在直徑2.0 m、高0.8 m的圓形移動養(yǎng)殖桶內養(yǎng)殖,養(yǎng)殖用水來源于周邊的溪水,每3 d更換1/3養(yǎng)殖水體。試驗過程采用納米微孔曝氣管曝氣增氧,溶解氧含量保持在6.0 mg/L以上;養(yǎng)殖水體pH為6.5~7.6,水溫控制在20.0~28.0℃。試驗前,初孵稚魚統(tǒng)一以團頭魴(Megalobramaamblycephala)水花苗種為活餌,養(yǎng)殖4周后,活餌組斑鱖魚苗改用鮮活的鯪(Cirrhinusmolitorella)喂養(yǎng)直至試驗結束;同時部分斑鱖采用饑餓→少量活餌魚→活餌魚+冰鮮餌料魚→冰鮮餌料魚→冰鮮餌料魚+飼料→飼料的方式逐步馴化攝食人工配合飼料(表1),3周內完全轉換到人工配合飼料。同步養(yǎng)殖3個月后,分別選取攝食活餌魚和配合飼料的斑鱖魚苗各180尾進行試驗,每組設3個重復,每個重復60尾。各處理組每天飽食投喂3次(7:00、12:00和17:00),試驗周期為20周。動物試驗由福建省淡水水產研究所動物倫理委員會批準,批準號FFRIFJ-DW-2024-1。

1.2生長性能指標測定

飼養(yǎng)20周結束后,計算斑鱖存活率(SR);每處理組每個重復隨機取10尾斑鱖,分別測量其體長、體質量和內臟總質量,然后計算增重率(WGR)、臟體比(VSI)及飼料系數(shù)(FC),具體公式如下:

式中,Mi表示試驗結束時的斑鱖存活數(shù)量(尾);M0表示試驗開始時的斑鱖數(shù)量(尾);Wi表示斑鱖終末體質量(g);W0表示斑鱖初始體質量(g);Wv表示試驗結束時的斑鱖內臟總質量(g);Feed表示飼料投喂量(g)。

1.3消化酶活性測定

每處理組取6尾斑鱖,在冰上解剖分離出腸道前中段,剔除脂肪組織,以PBS(pH 7.4)沖洗,濾紙吸干后稱重,并裝入1.5 mL無菌凍存管中,液氮速凍保存。樣品帶回實驗室后,取100 mg左右的組織樣品,分別加入9倍量的PBS進行勻漿,勻漿液在4℃下5000×g離心15min,吸取上清液進行消化酶活性測定。胃蛋白酶、胰蛋白酶、脂肪酶和α-淀粉酶試劑盒購自南京建成生物工程研究所,參照各試劑盒使用說明,通過iMarker酶標儀(美國Thermo Fisher Scientific公司)測定各處理組斑鱖腸道樣本的光密度(OD),再通過標準曲線計算腸道消化酶活性。

1.4腸道組織結構觀察

每處理組取6尾斑鱖,在冰上解剖分離出腸道,剔除脂肪組織和黏連物,以Bouin’s固定24 h后用70%乙醇反復浸洗至無色;經石蠟包埋、切片(切片厚度4~5μm)及蘇木精—伊紅染色后,置于Leica 3000顯微鏡下觀察拍照。

1.5基因組DNA提取和16S rRNA測序

每處理組取6尾斑鱖,取其腸道內容物100 mg,放入1.5 mL無菌凍存管中,利用液氮速凍將其打碎至粉末,取150~200 mg樣品進行基因組DNA提取,DNA提取試劑盒為E.Z.N.A.?Stool DNA Kit(美國Omega Bio-Tek公司)。提取的DNA以1.2%瓊脂糖凝膠電泳檢測其純度,然后利用NanoDrop Lite微量分光光度計測定其濃度。以適當稀釋的DNA為模板,使用通用引物(338F:5'-ACTCCTACGGGAGG CAGCAG-3',806R:5'-GGACTACHVGGGTWTCTA AT-3')對16S rRNA序列V3~V4變異區(qū)進行PCR擴增(Liu et al.,2016)。PCR反應體系20.0μL:DNA模板15 ng,5×TransStartFastPfu緩沖液4.0μL,上、下游引物(5μmol/L)各0.8μL,TransStartFastPfu DNA聚合酶0.4μL,ddH2O補足至20.0μL。擴增程序:95℃預變性3 min;95℃30 s,55℃30 s,72℃30 s,進行27個循環(huán);72℃延伸10min。PCR擴增產物經2.0%瓊脂糖凝膠電泳后,通過凝膠回收試劑盒進行純化回收,使用Qubit 4.0(美國ThermoFisherScien-tific公司)進行定量分析,同時將陽性擴增產物送至上海美吉生物醫(yī)藥科技有限公司構建測序文庫,并通過Illumina PE300/PE250平臺完成高通量測序。

1.6測序數(shù)據(jù)比對分析

獲得的Raw reads使用FASTP v0.19.6進行質控(Chen et al.,2018),并以FLASH v1.2.11進行拼接(Mago?and Salzberg,2011):(1)設置50 bp的過濾窗口,若窗口內Reads平均質量值低于20,則從窗口開始截去后端堿基,去除質控后長度在50bp以下或含N堿基的Reads;(2)根據(jù)PE Reads間的重疊關系,對Reads進行拼接,最小重疊長度設為10bp;(3)拼接序列重疊區(qū)允許的最大錯配比率為0. 去除不合格的Reads;(4)根據(jù)Reads上的條形碼和引物序列區(qū)分樣本,條形碼允許的錯配數(shù)為0,最大引物錯配數(shù)為2。使用UPARSE v7.1對質控拼接獲得的Clean reads進行操作分類單元(OTU)聚類分析(Edgar,2013),相似度設為97%,去除嵌合體,并剔除包含葉綠體和線粒體基因的序列。為減少測序深度對后續(xù)Alpha和Beta多樣性分析數(shù)據(jù)的影響,將所有樣本序列數(shù)抽平至20000,抽平后單個樣本的平均序列覆蓋度均在99.0%以上。通過RDP Classi-fier(v 2.11)和SILVA數(shù)據(jù)庫進行OTU物種分類學注釋(Wang et al.,2007),置信度閾值設為70%,在不同物種分類水平下統(tǒng)計單個樣本的群落組成;采用Mothur(http://www.mothur.org/wiki/Calculators)計算Alpha多樣性指數(shù)(ACE、Chao1、Shannon和Simpson)(Schloss et al.,2009;Douglas et al.,2020),通過Wilxocon秩和檢驗進行Alpha多樣性的組間差異分析;以基于Bray-Curtis距離算法的主坐標分析(PCoA)檢驗樣本間微生物群落結構的相似性,并結合PERMANOVA非參數(shù)檢驗分析樣本組間的微生物群落結構差異。

1.7統(tǒng)計分析

試驗數(shù)據(jù)采用SPSS 22.0進行單因素方差分析(One-way ANOVA)和獨立樣本t檢驗,并以Graph-Pad Prism 8.0繪圖。

2結果與分析

2.1不同餌料投喂模式對斑鱖生長性狀的影響

在不同餌料投喂模式下,活餌組、飼料組的斑鱖存活率分別為90%和85%(圖1),組間差異不顯著(P>0.05,下同);活餌組斑鱖的終末體質量、增重率較飼料組斑鱖分別顯著提高15.5%和14.1%(P<0.05,下同),但在臟體比方面兩處理組間無顯著差異。

2.2不同餌料投喂模式對斑鱖飼料轉化率和腸道消化酶活性的影響

由圖2可看出,不同餌料投喂模式下斑鱖的飼料系數(shù)存在顯著差異,活餌組斑鱖的飼料系數(shù)為763.3%,是飼料組(266.7%)的2.86倍,表明人工配合飼料投喂模式下斑鱖的飼料轉化率更高。在斑鱖腸道消化酶活性方面,不同餌料投喂模式下斑鱖腸道的胰蛋白酶和α-淀粉酶活性存在顯著差異(圖3)。其中,活餌組斑鱖腸道胰蛋白酶活性為275.00 U/mg,是飼料組斑鱖(30.10 U/mg)的9.12倍;而活餌組斑鱖腸道α-淀粉酶活性(46.30 U/mg),僅為飼料組斑鱖(81.80 U/mg)的56.6%。此外,斑鱖腸道胃蛋白酶和脂肪酶活性受餌料投喂模式的影響均不顯著。

2.3不同餌料投喂模式下斑鱖腸道結構特征比較

斑鱖腸道結構由黏膜層、黏膜下層、肌層和漿膜層組成。由圖4可看出,不同餌料投喂模式下,活餌組斑鱖腸道的肌層厚度(122.01±19.86μm)顯著高于飼料組斑鱖(75.41±15.21μm),活餌組斑鱖的腸黏膜褶皺數(shù)(26.97±6.58個)與飼料組斑鱖(22.67±5.51個)無顯著差異,但黏膜褶皺高度表現(xiàn)為活餌組斑鱖(969.52±32.65μm)顯著高于飼料組斑鱖(598.03±127.63μm)。

2.4不同餌料模式下斑鱖腸道微生物群落多樣性比較

經質控處理后,活餌組和飼料組樣本共獲得910521條Clean reads,平均每個樣本擁有75876條Clean reads,平均長度為423.51 bp。這些Clean reads注釋到1629個OTUs,歸屬于22個門(Phyla)、46個綱(Classes)、109個目(Orders)、191個科(Families)、447個屬(Genera)和642個種(Species)。稀釋曲線(圖5)顯示,所有樣本在20000條測序序列時均趨于平緩,樣本覆蓋度均超過99.0%,表明所有樣本序列幾乎全部被檢出且達到飽和狀態(tài),測序結果能全面反映斑鱖腸道微生物群落結構組成及多樣性的真實性,測序深度能反映每個樣本中的微生物群落信息,可用于后續(xù)數(shù)據(jù)分析。

由圖6可知,活餌組與飼料組斑鱖腸道微生物群落的OTUs數(shù)目分別為1112個和810個,其中共有OTUs數(shù)目為293個。為進一步了解活餌組與飼料組斑鱖腸道微生物的物種豐度及多樣性,采用Mothur對OTUs進行Alpha多樣性分析,結果(圖7)顯示,活餌組斑鱖腸道微生物群落的ACE指數(shù)和Chao1指數(shù)顯著高于飼料組斑鱖腸道微生物群落,Shannon指數(shù)和Simpson指數(shù)也高于飼料組斑鱖腸道微生物群落,但差異不顯著。

2.5不同餌料模式下斑鱖腸道微生物組成和相對豐度比較

Beta多樣性主要反映不同樣本間腸道微生物組成的相似性,PCoA分析結果(圖8)顯示,PCoA1貢獻率為16.2%,PCoA2貢獻率為11.9%。圖中每個點的間距可反映個體間差異程度,兩點間的距離越近表明相似性越高。在不同餌料投喂模式iV0o6YAlh06Y62bd9xYZzuV+KQVSPHM/cNnUDKOQigE=下,活餌組與飼料組斑鱖個體形成的圓圈有交集,且活餌組斑鱖個體較飼料組斑鱖個體有擴大趨勢,即投喂活餌的斑鱖腸道微生物群落類型更復雜多變。

在門分類(圖9-A)水平下,活餌組斑鱖腸道內相對豐度排名前10的優(yōu)勢菌群分別為變形菌門(Proteobacteria,91.12%)、厚壁菌門(Firmicutes,3.90%)、軟壁菌門(Tenericutes,1.79%)、放線菌門(Actinobacteria,1.39%)、擬桿菌門(Bacteroidetes,0.89%)、藍藻門(Cyanobacteria,0.47%)、酸桿菌門(Acidobacteria,0.32%)、彎曲菌門(Epsilonbacteraeota,0.03%)、梭桿菌門(Fusobacteria,0.02%)和螺旋體門(Spirochaetes,0.01%);飼料組斑鱖腸道內相對豐度排名前10的優(yōu)勢菌群依次為變形菌門(97.12%)、擬桿菌門(0.83%)、軟壁菌門(0.72%)、放線菌門(0.37%)、厚壁菌門(0.34%)、酸桿菌門(0.18%)、梭桿菌門(0.18%)、螺旋體門(0.04%)、藍藻門(0.02%)和彎曲菌門(0.03%)。此外,活餌組斑鱖腸道內的厚壁菌門、軟壁菌門和放線菌門相對豐度顯著高于飼料組斑鱖,而變形菌門相對豐度顯著低于飼料組斑鱖。

在屬分類(圖9-B)水平下,活餌組斑鱖腸道內相對豐度排名前10的優(yōu)勢菌群分別為伯克霍爾德菌屬(Burkholderia-Caballeronia-Paraburkholderia,78.14%)、鞘氨醇盒菌屬(Sphingopyxis,2.98%)、醋酸桿菌屬(Acetobacter,2.83%)、支原體屬(Mycoplasma,1.79%)、戴爾福特菌(Delftia,1.60%)、芽孢桿菌屬(Bacillus,1.30%)、雙歧桿菌屬(Bifidobacterium,1.02%)、假單胞菌屬(Pseudomonas,0.52%)、鞘脂單胞菌屬(Novosphingobium,0.50%)和伊麗莎白菌屬(Elizabethkingia,0.47%);飼料組斑鱖腸道內相對豐度排名前10的優(yōu)勢菌群分別為伯克霍爾德菌屬(87.76%)、鞘氨醇盒菌屬(2.21%)、醋酸桿菌屬(1.07%)、戴爾福特菌(1.90%)、支原體屬(0.72%)、伊麗莎白菌屬(0.72%)、假單胞菌屬(0.46%)、鞘脂單胞菌屬(0.42%)、芽孢桿菌屬(0.01%)和雙歧桿菌屬(0.01%)。此外,活餌組斑鱖腸道內的伯克霍爾德菌屬相對豐度顯著低于飼料組斑鱖,而鞘氨醇盒菌屬和支原體屬相對豐度顯著高于飼料組斑鱖。

3討論

目前,我國超過90%的鱖養(yǎng)殖仍以活餌或冰凍雜魚為食(Nirmal etal.,2022),與水產養(yǎng)殖的綠色可持續(xù)發(fā)展理念不符,亟待研發(fā)人工配合飼料替代活餌或冰凍雜魚。為此,本研究設計并開發(fā)出專門針對斑鱖營養(yǎng)的配合飼料,其替代活餌的養(yǎng)殖結果表明,以配合飼料與活餌喂養(yǎng)斑鱖的存活率無顯著差異,有效解決了以往飼料替代活餌養(yǎng)殖過程中斑鱖返口或閉口死亡的問題,對今后開展斑鱖的規(guī)?;蜆藴驶B(yǎng)殖具有重要指導意義。飼料的適口性和營養(yǎng)水平對魚類的生長發(fā)育也有重要影響,決定了水產養(yǎng)殖的成功與否(Li etal.,2013)。配合飼料的營養(yǎng)組分為粗蛋白占46.00%、粗脂肪占12.40%、粗灰分占15.90%、水分占8.00%,活餌的營養(yǎng)組分為粗蛋白占15.61%、粗脂肪占1.52%、粗灰分占5.45%、水分占76.20%。綜合2種餌料投喂模式養(yǎng)殖的斑鱖存活率,可初步確定配合飼料具有替代活餌養(yǎng)殖斑鱖的可行性。

近年來,使用人工配合飼料替代活餌投喂鱖的生長跟蹤研究已有相關報道。李燕等(2016)研究發(fā)現(xiàn),投喂以石斑魚粉料調配人工飼料的翹嘴鱖生長速率低于活餌組;Ding等(2022)研究表明,使用現(xiàn)有鱖商業(yè)飼料養(yǎng)殖的翹嘴鱖苗種生長速率低于活餌組。本研究中,飼料組斑鱖的增重率也顯著低于活餌組,與李燕等(2016)、Ding等(2022)的研究結果基本一致。活餌養(yǎng)殖鱖的生長速度優(yōu)于使用配制飼料,可能是由于鱖的生性以活餌為食,即使經人工馴化后可攝食人工配合飼料,但天生的偏好活餌特性使其面對活餌的攝食行為更積極(曾萌冬等,2024)。盡管活餌在促進鱖的生長方面表現(xiàn)良好,但也存在一些不利因素,如活餌組斑鱖個體的臟體比偏高,可能與活餌養(yǎng)殖斑鱖的內臟處于亞健康狀態(tài)有關(陳劍斌等,2023)。

魚類消化酶的活性與飼料吸收、生理狀態(tài)、腸道環(huán)境及其他因素有關(Buddington etal.,1997;余友斌等,2023)。Zhu等(2014)研究報道,添加外源酶制劑可增強黃顙魚等淡水魚類的消化酶活性,改善飼料中干物質和粗蛋白的表觀消化率,減少糞便中的蛋白含量,進而有效改善其生長性能。本研究結果表明,經過20周的飼喂試驗后,飼料組斑鱖腸道胰蛋白酶活性顯著低于活餌組斑鱖,可能與其特定生長率有關(李燕等,2016;曾萌冬等,2024)?!?淀粉酶活性與碳水化合物的利用有關(高梅等,2006)。飼料組斑鱖腸道“-淀粉酶活性顯著高于活餌組斑鱖,表明配方飼料中的淀粉含量高于活餌,因此需要更多“-淀粉酶進行消化和吸收(曾萌冬等,2024)。一般而言,肉食性魚類的腸道較短,雜食性魚類的腸道較長,草食性魚類則介于二者之間(曾端和葉元土,1998)。若攝食的餌料發(fā)生改變,魚類的消化道結構也會隨之發(fā)生適應性變化(歐紅霞等,2020;陳劍斌等,2023;榮華等,2023;曾萌冬等,2024),因此腸道結構完整性是消化能力的重要保證。本研究通過對比活餌組與飼料組斑鱖腸道組織切片,發(fā)現(xiàn)2種餌料投喂模式下的斑鱖腸道結構均由黏膜層、黏膜下層、肌層和漿膜層組成,結構完整?;铕D組斑鱖腸道的肌層厚度顯著高于飼料組斑鱖,說明試驗周期內斑鱖食性改變對其腸道節(jié)律性收縮運動已產生一定影響。此外,活魚組斑鱖的腸黏膜褶皺相對排列整齊,且黏膜褶皺高度顯著高于飼料組斑鱖,軸心中央乳糜管明顯,表現(xiàn)出更強的消化吸收79D44uk9Zk10xKdIqvPhwQ==能力。

腸道微生物群落組成對魚類營養(yǎng)物質的消化和吸收過程起重要作用,可生產短鏈脂肪酸和維生素等必需營養(yǎng)素,促進魚類宿主的生長發(fā)育(陳秀梅等,2022;Cao et al.,2024);同時腸道微生物群落結構受飼料營養(yǎng)水平、養(yǎng)殖環(huán)境及宿主狀態(tài)等因素的影響(Pelusio etal.,2020;Kim etal.,2021;Liu et al.,2023)。Alpha多樣性是反映腸道微生物群落豐富度和均勻度的綜合指標(Sullam et al.,2012;Huang et al.,2020),其中,ACE指數(shù)和Chao1指數(shù)主要表征魚類腸道菌群物種的豐富度,Shannon指數(shù)和Simpson指數(shù)主要指示魚類腸道微生物群落的豐度和均勻度。本研究中,雖然活餌組斑鱖腸道微生物群落的ACE指數(shù)和Chao1指數(shù)顯著高于飼料組斑鱖腸道微生物群落,但Shannon指數(shù)和Simpson指數(shù)無顯著差異,說明以活餌投喂斑鱖在腸道微生物群落均勻度上并無明顯優(yōu)勢。Beta多樣性又稱為群落間多樣性,主要用于比較群落間的物種差異性(Willis and Whittaker,2002)。本研究結果表明,在2種餌料投喂模式下的斑鱖腸道微生物群落類型存在一定差異,其中飼料組斑鱖個體聚集得更加緊密,說明飼料組斑鱖個體間的腸道微生物含量差異程度較小,腸道微生物群落結構更加趨于一致。

魚類腸道微生物群落結構受食物種類、宿主及水環(huán)境等多個因素的影響(Sullam etal.,2012;Wong and Rawls et al.,2012;Bolnick et al.,2014;Miyake et al.,2015)。在淡水養(yǎng)殖魚類腸道中,變形菌門、厚壁菌門和擬桿菌門等是腸道微生物群落結構中的常見優(yōu)勢菌群(馬阿敏等,2021)。本研究結果表明,2種餌料投喂模式下斑鱖腸道微生物群落結構中變形菌門、厚壁菌門、軟壁菌門和放線菌門的相對豐度之和均在98.00%以上。雖然不同的餌料投喂模式并未改變斑鱖腸道中優(yōu)勢菌門的類別,但在相對豐度方面存在明顯差異,活餌組斑鱖腸道內的厚壁菌門、軟壁菌門和放線菌門相對豐度顯著高于飼料組斑鱖,而變形菌門相對豐度顯著低于飼料組斑鱖,究其原因可能是活餌魚體內的微生物群落對斑鱖產生了影響。在屬分類水平上,飼料組斑鱖腸道內的伯克霍爾德菌屬相對豐度顯著高于活餌組斑鱖,而鞘氨醇盒菌屬和支原體屬相對豐度顯著低于活餌組斑鱖。伯克霍爾德菌屬作為變形菌門中參與糖類分解代謝的一類微生物,對宿主的健康和代謝具有促進作用(Zhang et al.,2024);支原體屬則是軟壁菌門中的條件致病菌,其較高的相對豐度對宿主免疫和疾病防控具有負面效應(McAuliffe et al.,2005)。綜上所述,飼料組斑鱖腸道內的條件致病菌相對豐度較低,而有益微生物相對豐度較高,即飼料組斑鱖具有更好的自我調節(jié)功能,能有效緩解外界環(huán)境導致的應激反應,而有助于降低養(yǎng)殖過程中的致病風險。

4結論

以配合飼料替代活餌投喂斑鱖,其生長速度顯著降低,腸道組織結構、消化酶活性及腸道微生物群落結構出現(xiàn)適應性變化,尤其是配合飼料的投喂有助于維持腸道微生物穩(wěn)定性??梢?,以配合飼料替代活餌養(yǎng)殖斑鱖具有可行性,但還需進一步優(yōu)化飼料營養(yǎng)組分及投喂策略,提高配合飼料養(yǎng)殖下斑鱖的生長速率。

參考文獻(References):

班賽男,朱傳忠,楊新冬,陳偉軍,李棟,夏冬梅,楊生燦,陳晶,孫云章,易敢峰.2020.攝食不同餌料對翹嘴鱖生長、體成分和消化酶活性的影響[J].淡水漁業(yè),50(1):93-100.[Ban S N,Zhu C Z,Yang X D,Chen W J,Li D,Xia D M,Yang S C,Chen J,Sun Y Z,Yi G F.2020.Effect of different diet on the growth performance,body composi-tion and digestive enzymes active of mandarin fish(Siniperca chuatsi)[J].Freshwater Fisheries,50(1):93-100.]doi:10.3969/j.issn.1000-6907.2020.01.014.

陳儉,代冰濤,王紅明,宋守鋼,譚北平,章雙.2022.飼料中添加β-葡聚糖對珍珠龍膽石斑魚生長性能、免疫指標、轉錄組及腸道菌群的影響[J].南方農業(yè)學報,53(5):1434-1447.[Chen J,Dai B T,Wang H M,Song S G,Tan B P,Zhang S.2022.Effects of addingβ-glucan to feed on the growth performance,immune indexes,transcriptome andintestinal flora of Epinephelusfuscoguttatus♀×Epinephe-lus lanceolatus♂[J].Journal of Southern Agriculture,53(5):1434-1447.]doi:10.3969/j.issn.2095-1191.2022.05.026.

陳劍斌,于俊琦,徐杭忠,馬俊康,劉天驥,李洪琴,劉匆,羅浩,李虹,翟旭亮,薛洋,羅莉.2023.配合飼料和餌料魚對鱖生長、胃腸結構功能及肉質的影響[J].水產學報,47(10):82-96.[Chen J B,Yu J Q,Xu H Z,Ma J K,Liu T J,Li H Q,Liu C,Luo H,Li H,Zhai X L,Xue Y,Luo L.2023.Effects of compound feed and bait fish on growth,gastrointestinal structure and function and meat quality of Siniperca chuatsi[J].Journal of Fisheries of China,47(10):82-96.]doi:10.11964/jfc.20230113886.

陳秀梅,王桂芹,單曉楓,錢愛東.2022.魚類腸道屏障損傷與腸道炎癥發(fā)生發(fā)展關系的研究進展[J].河南農業(yè)科學,51(5):1-9.[Chen X M,Wang G Q,Shan X F,Qian A D.2022.Research progress on the relationship between intes-tinal barrier damage and intestinal inflammation develop-ment in fish[J].Journal of Henan Agricultural Sciences,51(5):1-9.]doi:10.15933/j.cnki.1004-3268.2022.05.001.

高梅,羅毅平,曹振東.2006.飼料碳水化合物對南方鲇(Silu-rus meridionalis Chen)幼魚消化酶活性的影響[J].西南師范大學學報(自然科學版),31(2):119-123.[Gao M,Luo Y P,Cao Z D.2006.Effect of dietary carbohydrate on digestive enzyme activities in southern catfish(Silurus meridionalis Chen)juveniles[J].Journal of Southwest China Normal University(Natural Science),31(2):119-123.]doi:10.3969/j.issn.1000-5471.2006.02.028.

高云紅,景琦琦,黃濱,關長濤,張佳偉,李文升,翟介明,賈玉東.2021.云龍石斑魚胃排空特征和攝食消化特性研究[J].漁業(yè)科學進展,42(1):92-99.[Gao Y H,Jing Q Q,Huang B,Guan C T,Zhang J W,Li W S,Zhai J M,Jia Y D.2021.Characteristics of gastric evacuation and feeding digestion in“Yunlong”groupers(Epinephelus moara♀×E.lanceolatus♂)[J].Progress in Fishery Sciences,42(1):92-99.]doi:10.19663/j.issn2095-9869.20191216001.

何琴,王利,段薈芹,茍小蘭.2023.枯草芽孢桿菌和糞腸球菌對鯽魚生長性能、血清學指標和腸道微生物多樣性的影響[J].江蘇農業(yè)學報,39(1):142-147.[He Q,Wang L,Duan H Q,Gou X L.2023.Effects of Bacillus subtilis and Enterococcus faecalis on growth performance,serum bio-chemical indices and intestinal microflora of Carassius auratus[J].Jiangsu Journal of Agricultural Sciences,39(1):142-147.]doi:10.3969/j.issn.1000-4440.2023.01.017.

李傳陽,許淼洋,THAMMRATSUNTORN Jeerawat,趙金良,錢葉洲,吳超,錢德.2016.3種鱖魚生長與攝食量、胃蛋白酶活性和胃蛋白酶原基因表達相關分析[J].上海海洋大學學報,25(1):1-7.[Li C Y,Xu M Y,Thammratsun-torn J,Zhao J L,Qian Y Z,Wu C,Qian D.2016.Compari-son of growth,food intake,pepsin activity and pepsinogen genes expression among Siniperca species[J].Journal of Shanghai Ocean University,25(1):1-7.]

李松林,韓志豪,王小源,陳乃松.2021.鱖養(yǎng)殖概況及攝食調控機制研究進展[J].水產學報,45(10):1787-1795.[Li S L,Han Z H,Wang X Y,Chen N S.2021.Research prog-ress on aquaculture and feeding regulation mechanism of Mandarin fish[J].Journal of Fisheries of China,45(10):1787-1795.]doi:10.11964/jfc.20200812371.

李燕,李永強,李建忠,駱志強,施順昌,陸錦天.2016.配合飼料完全替代鮮活餌料對翹嘴鱖生長、體成分及消化能力的影響[J].水產科技情報,43(3):164-168.[Li Y,Li YQ,Li J Z,Luo Z Q,Shi S C,Lu J T.2016.Effects of com-plete replacement of live feed with compound feed on growth,body composition and digestive ability of Siniperca chuatsi[J].Fisheries Science&Technology Information,43(3):164-168.]doi:10.16446/j.cnki.1001-1994.2016.03.012.

馬阿敏,李娜,覃虹焱,王子悅,姚曲.2021.淡水魚類腸道微生物菌群研究進展[J].甘肅畜牧獸醫(yī),51(5):9-13.[Ma A M,Li N,Qin H Y,Wang Z Y,Yao Q.2021.Research progress of intestinal microbiota of freshwater fish[J].Gansu Animal and Veterinary Sciences,51(5):9-13.]doi:10.3969/j.issn.1006-799X.2021.05.003.

馬林,李明澤,畢相東,逯云召,薄其康,劉克明,王勝利,尤宏爭.2023.攝食不同餌料對翹嘴鱖生長性能、肌肉營養(yǎng)成分及消化酶活性的影響[J].飼料研究,46(6):44-49.[Ma L,Li M Z,Bi X D,Lu Y Z,Bo Q K,Liu K M,Wang S L,You H Z.2023.Effect of different diets on growth per-formance,muscle nutrient composition and digestive enzyme activity of Sinipercachuatsi[J].Feed Resrarch,46(6):44-49.]doi:10.13557/j.cnki.issn 1002-2813.2023.06.010.

歐紅霞,王廣軍,李志斐,余德光,龔望寶.2020.不同飼料對大口黑鱸腸道組織結構的影響[J].水產科學,39(6):902-907.[Ou H X,Wang G J,Li Z F,Yu D G,Gong W B.2020.Influence of different diets on intestinal histological morphologic structure of largemouth bass Micropterus salmoides[J].Fisheries Science,39(6):902-907.]doi:10.16378/j.cnki.1003-1111.2020.06.015.

蒲德永,黃小琪,魏剛.2013.大眼鱖和斑鱖消化道組織結構的比較研究[J].淡水漁業(yè),43(2):26-31.[Pu D Y,Huang X Q,Wei G.2013.Histological studies and comparison on the digestive tract in Siniperca kneri and Siniperca scher-zeri[J].Freshwater Fisheries,43(2):26-31.]doi:10.3969/j.issn.1000-6907.2013.02.005.

任萍,梁旭方,方劉,何珊,肖倩倩,史登勇.2020.鱖對葡萄糖和糊精利用差異比較研究[J].水生生物學報,44(2):364-371.[Ren P,Liang X F,F(xiàn)ang L,He S,Xiao Q Q,Shi D Y.2020.Comparative study of the difference in glucose and dextrin utilization in the Chinese perch(Siniperca chuatsi)[J].Acta Hydrobiologica Sinica,44(2):364-371.]doi:10.7541/2020.044.

榮華,張雷,王曉雯,武祥偉,王金浩,胡青,畢保良,孔令富,豆騰飛.2023.四種不同食性魚類的消化酶活性及腸道組織形態(tài)學比較研究[J].淡水漁業(yè),53(2):29-35.[Rong H,Zhang L,Wang X W,Wu X W,Wang J H,Hu Q,Bi B L,Kong L F,Dou T F.2023.Comparative study on diges-tive enzyme activity and intestinal tissue morphology of four fishes with different feeding habits[J].Freshwater Fisheries,53(2):29-35.]doi:10.3969/j.issn.1000-6907.2023.02.004.

田田,張風光,王茂元,黃洪貴,秦志清,賴銘勇,劉銀華,黃柳婷,吳妹英.2023.2月齡斑鱖形態(tài)性狀與體質量的相關性研究[J].河南農業(yè)科學,52(8):126-134.[Tian T,Zhang F G,Wang M Y,Huang H G,Qin Z Q,Lai M Y,Liu Y H,Huang L T,Wu M Y.2023.Correlation between morpho-logical traits and body weight of 2-month-old Sinipercascherzeri[J].Journal of Henan Agricultural Sciences,52(8):126-134.]doi:10.15933/j.cnki.1004-3268.2023.08.014.

田田.2023.人工養(yǎng)殖斑鱖(Siniperca scherzeri)形態(tài)性狀與體質量的相關性研究[J].水產學雜志,36(3):68-74.[Tian T.2023.Correlation analysis of morphological traits and body weight of spotted mandarin fish(Siniperca scherzeri)under artificial cultivation[J].Chinese Journal of Fisheries,36(3):68-74.]doi:10.3969/j.issn.1005-3832.2023.03.010.

王貴英,曾可為,高銀愛,李清,夏儒龍.2005.鱖配合飼料的最適蛋白質含量[J].水生生物學報,29(2):189-192.[Wang G Y,Zeng K W,Gao YA,Li Q,Xia R L.2005.The opti‐mum dietary protein level for Siniperca chuatsi[J].Acta Hydrobiologica Sinica,29(2):189-192.]doi:10.3321/j.issn:1000-3207.2005.02.015.

魏孟申,鄭濤,路思琪,強俊,陶易凡,李巖,徐跑.2024.氨氮脅迫對大口黑鱸幼魚組織結構、酶活及腸道微生物的影響[J].水生生物學報,48(1):10-22.[Wei M S,Zheng T,Lu S Q,Qiang J,TaoY F,Li Y,Xu P.2024.Ammonia-N stress on tissue structure,enzyme activity and intestinal microbiota of Macropterussalmoides[J].Acta Hydrobio‐logica Sinica,48(1):10-22.]doi:10.7541/2023.2023.0054.

辛晴晴,呂茜茜,吳利敏,田雪,馬文閣,李學軍.2022.飼料中添加檸檬黃對鯽肝、腸組織結構、抗氧化指標及腸道菌群的影響[J].水產學報,46(10):1902-1911.[Xin Q Q,LüX X,Wu L M,Tian X,Ma W G,Li X J.2022.Effects of tartrazine consumption on liver and intestine structure,antioxidant indices and intestinal microbiota in crucian carp(Carassius auratus)[J].Journal of Fisheries of China,46(10):1902-1911.f118380060750d93dab76311e2b533a57fec905cc06e951600e232235c55fced]doi:10.11964/jfc.20220313401.

余友斌,黃溫赟,崔銘超.2023.養(yǎng)殖密度對大黃魚生長、血清生化、營養(yǎng)成分、消化酶和代謝酶活力的影響[J].漁業(yè)現(xiàn)代化,50(3):64-71.[Yu Y B,Huang W Y,Cui M C.2023.Effects of stocking densities on growth performance,nutrient composition,serum biochemical,digestive and metabolic enzymes activities of large yellow croaker(Lar-imichthyscrocea)[J].Fishery Modernization,50(3):64-71.]doi:10.3969/j.issn.1007-9580.2023.03.008.

曾端,葉元土.1998.魚類食性與消化系統(tǒng)結構的研究[J].西南農業(yè)大學學報,20(4):81-84.[Zeng D,Ye Y T.1998.Studies on digestive system and different feeding habits of some fishes in freshwater[J].Journal of Southwest Agri‐cultural University,20(4):81-84.]doi:10.13718/j.cnki.xdzk.1998.04.017.

曾萌冬,馬晨夕,趙亮亮,趙金良.2024.活餌與飼料投喂對幼鱖腸肽酶活力及小肽轉運、吸收的影響[J].水生生物學報,48(1):53-62.[Zeng M D,Ma C X,Zhao L L,Zhao J L.2024.Feeding live bait and feed on the peptidase acti-vity,transport and absorption of small peptides in juvenile mandarin fish[J].Acta Hydrobiologica Sinica,48(1):53-62.]doi:10.7541/2023.2021.0108.

曾萌冬,徐俊,宋銀都,趙金良.2021.配合飼料替代活餌對鱖生長性能、消化功能及小肽轉運載體基因表達的影響[J].南方農業(yè)學報,52(1):228-237.[Zeng M D,Xu J,Song Y D,Zhao J L.2021.Effects of replacing live bait with compound feed on growth,digestion and expression of small peptide transporter(PepT1)gene of Siniperca chuatsi[J].Journal of Southern Agriculture,52(1):228-237.]doi:10.3969/j.issn.2095-1191.2021.01.028.

周景祥,余濤,黃權,李月紅.2001.鯉魚、黃顙魚和大眼鰤鱸消化酶活性的比較研究[J].吉林農業(yè)大學學報,23(1):94-96.[Zhou J X,Yu T,Huang Q,Li Y H.2001.Compari‐son studies on the activities of the digestive enzymes of common carp,Huangsang cat-fish and walleye[J].Journal of Jilin Agricultural University,23(1):94-96.]doi:10.13327/j.jjlau.2001.01.026.

Bolnick D I,Snowberg L K,Hirsch P E,Lauber C L,Knight R,Gregory Caporaso J,Svanb?ck.2014.Individuals?diet diversity influences gut microbial diversity in two fresh-water fish(threespine stickleback and Eurasian perch)[J].Ecology Letter,17(8):979-987.doi:10.1111/ele.12301.

Buddington R K,Krogdahl A,Bakke-McKellep A M.1997.The intestines of carnivorous fish:Structure and functions and the relations with diet[J].Acta Physiologica Scandi‐navica,638:67-80.

Cao S W,Dicksved J,Lundh T,Vidakovic A,Norouzitallab P,Huyben D.2024.A meta-analysis revealing the technical,environmental,and host-associated factors that shape the gut microbiota of Atlantic salmon and rainbow trout[J].Reviews in Aquaculture,16(4):1603-1620.doi:10.1111/raq.12913.

Chen S F,Zhou Y Q,Chen Y R,Jia G.2018.Fastp:An ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,34(17):i884-i890.doi:10.1093/bioinformatics/bty560.

Dawood M A O,Koshio S,Ishikawa M,Yokoyama S E,El Basuini M F,Hossain M S,Nhu T H,Dossou S,Moss A S.2016.Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth,gut microbiota and immune responses of red sea bream,Pagrus major[J].Fish&Shellfish Immunology,49:275-285.doi:10.1016/j.fsi.2015.12.047.

Ding LY,Zhang Y P,Chen J C,Chen W J,Xie S Q,Chen Q T.2022.Growth,muscle nutrition composition,and digestive enzyme activities of the juvenile and adult Siniperca chuatsi fed on live baits and a formulated diet[J].Fishes,7(6):379.doi:10.3390/fishes7060379.

Douglas G M,Maffei V J,Zaneveld J R,Yurgel S N,Brown J R,Taylor C M,Huttenhower C,Langille M G I.2020.PIC‐RUSt2 for prediction of metagenome functions[J].Nature Biotechnology,38(6):685-688.doi:10.1038/s41587-020-0548-6.

Edgar R C.2013.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,10:996-998.doi:10.1038/nmeth.2604.

Fernández I,Moyano F J,Díaz M,Martinez T.2001.Characteri-zation ofα-amylase activity in five species of Mediterra‐nean sparid fishes(Sparidae,Teleostei)[J].Journal of Ex-perimental Marine Biology and Ecology,262(1):1-12.doi:10.1016/S0022-0981(01)00228-3.

Huang Q,Sham R C,Deng Y,Mao Y P,Wang C X,Zhang T,Leung K M Y.2020.Diversity of gut microbiomes in marine fishes is shaped by host-related factors[J].Molecu‐lar Ecology,29(24):5019-5034.doi:10.1111/mec.15699.

Kim P S,Shin N R,Lee J B,Kim M S,Whon T W,Hyun D W,Yun J H,Jung M J,Kim J Y,Bae J W.2021.Host habitat is the major determinant of the gut microbiome of fish[J].Microbiome,9(1):166.doi:10.21203/rs.3.rs-332643/v 1.

Li W,Zhang T,Ye S W,Liu J S,Li Z J.2013.Feeding habits and predator-prey size relationships of mandarin fish Siniperca chuatsi(Basilewsky)in a shaqTCeAzrtYAuQLu0F33alTM12OQINfjL4GQzqSzO55lM=llow lake,central China[J].Journal of Applied Ichthyology,29(1):56-63.doi:10.1111/j.1439-0426.2012.02044.x.

Li Y,Li J Z,Lu J T,Li Z,Shi S C,Liu Z J.2017.Effects of live and artificial feeds on the growth,digestion,immunity and intestinal microflora of mandarin fish hybrid(Sini-percachuatsi♀×Siniperca scherzeri♂)[J].Aquaculture Research,48(8):4479-4485.doi:10.1111/are.13273.

Liu C S,Zhao D F,Ma W J,Guo Y D,Wang A J,Wang Q L,Lee D J.2016.Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.[J].Applied Microbiology and Biotechnology,100(3):1421-1426.doi:10.1007/s00253-015-7039-6.

Liu LW,Liang X F,F(xiàn)ang J G.2017.The optimal stocking den‐sity for hybrid of Sinipercachuatsi(♀)×Sinipercascher-zeri(♂)mandarin fish fed minced prey fish[J].Aquacul‐ture Research,48(3):1342-1345.doi:10.1111/are.12892.

Liu M K,Li Q Y,Tan L T,Wang L P,Wu F C,Li L,Zhang G F.2023.Host-microbiota interactions play a crucial role in oyster adaptation to rising seawater temperature in summer[J].Environmental Research,216(2):114585.doi:10.1016/j.envres.2022.114585.

Mago?T,Salzberg S L.2011.FLASH:Fast length adjustment of short reads to improve genome assemblies[J].Bioinfor‐matics,27(21):2957-2963.doi:10.1093/bioinformatics/btr507.

McAuliffe L,Ellis R J,Lawes J R,Ayling R D,Nicholas RA J.2005.16S rDNA PCR and denaturing gradient gel electro‐phoresis:A single generic test for detecting and differentia-ting Mycoplasma species[J].Journal of Medical Microbio-logy,54(8):731.doi:10.1099/jmm.0.46058-0.

Miyake S,Ngugi D K,Stingl U.2015.Diet strongly influences the gut microbiota of surgeon fishes[J].Molecular Eco-logy,24(3):656-672.doi:10.1111/mec.13050.

Nirmal N P,Santivarangkna C,Benjakul S,Maqsood S.2022.Fish protein hydrolysates as a health-promoting ingre-dient—Recent update[J].Nutrition Reviews,80(5):1013-1026.doi:10.1093/nutrit/nuab065.

Pelusio N F,Rossi B,Parma L,Volpe E,Ciulli S,Piva A,D'Amico F,Scicchitano D,Candela M,Gatta P P,Bonaldo A,Grilli E.2020.Effects of increasing dietary level of organic acids and nature-identical compounds on growth,intestinal cytokine gene expression and gut microbiota of rainbow trout(Oncorhynchus mykiss)reared at normal and high temperature[J].Fish&Shellfish Immunology,107:324-335.doi:10.1016/j.fsi.2020.10.021.

Schloss P D,Westcott S L,Ryabin T,Hall J R,Hartmann M,Hollister E M,Lesniewsk R A,Oakley B B,Parks A H,Robinson C J,Sahl J W,Stres B,Thallinger G G,van Horn D J,Weber C F.2009.Introducing mothur:Open-source,platform-independent,community-supported soft‐ware for describing and comparing microbial communities[J].Applied and Environmental Microbiology,75(23):7537-7541.doi:10.1128/AEM.01541-09.

Sullam K E,Essinger S D,Lozupone C A,O'Connor M P,Rosen G L,Knight R,Kilham S S,Russell JA.2012.Envi‐ronmental and ecological factors that shape the gut bacte‐rial communities of fish:A meta-analysis[J].Molecular Ecology,21(13):3363-3378.doi:10.1111/j.1365-294X.2012.05552.x.

Wang M Y,Lai1 M Y,Tian T,Wu M Y,Liu Y H,Liang P,Huang L T,Qin Z Q,Ye X J,Xiao W,Huang H G.2023.Comparison of growth performance and muscle nutrition levels of juvenile Siniperca scherzeri fed on an iced trash fish diet and a formulated diet[J].Fishes,8(8):393.doi:10.3390/fishes8080393.

Wang Q,Garrity G M,Tiedje J M,Cole J R.2007.Na?ve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J].Applied and Environ‐mental Microbiology,73(16):5261-5267.doi:10.1128/AEM.00062-07.

Willis K J,Whittaker R J.2002.Ecology.Species diversity—Scale matters[J].Science,295(5558):1245-1248.doi:10.1126/science.1067335.

Wong S,Rawls J F.2012.Intestinal microbiota composition in fishes is influenced by host ecology and environment[J].Molecular Ecology,21(3):3100-3102.doi:10.1111/j.1365-294X.2012.05646.x.

Yang M,Liang X F,Tian C X,Gul Y,Dou Y Q,Cao L,Yu R.2012.Isolation and characterization of fifteen novel micro‐satellite loci in golden mandarin fish(Siniperca scherzeri)steindachne[J].Conservation Genetic Resources,4(3):599-601.doi:10.1007/s 12686-012-9601-1.

Zhang Q Y,Cai Y Z,Zhang L P,Lu M,Yang LY,Wang D K,Jia Q J.2024.The accumulation of active ingredients of Polygonatumcyrtonema Hua is associated with soil charac‐teristics and bacterial community[J].Frontiers in Microbio-logy,15:1347204.doi:10.3389/fmicb.2024.1347204.

Zhu Y,Qing X,Ding Q L,Duan M M,Wang C F.2014.Com‐bined effects of dietary phytase and organic acid on growth and phosphorus utilization of juvenile yellow catfish Pel-teobagrusfulvidraco[J].Aquaculture,430:1-8.doi:10.1016/j.aquaculture.2014.03.023.

(責任編輯蘭宗寶)

衢州市| 东平县| 维西| 昔阳县| 化隆| 綦江县| 徐州市| 都匀市| 金坛市| 汤阴县| 剑河县| 竹北市| 双辽市| 长汀县| 红安县| 德保县| 平罗县| 时尚| 阳高县| 庆云县| 江油市| 郧西县| 泗水县| 昭平县| 莒南县| 鄂伦春自治旗| 沭阳县| 旅游| 乐业县| 定远县| 西贡区| 平度市| 孟村| 湖州市| 资阳市| 温州市| 牟定县| 张家川| 达拉特旗| 秭归县| 平南县|