摘 要:蠕變行為是限制超高強(qiáng)型超高分子量聚乙烯(UHMWPE)纖維應(yīng)用領(lǐng)域的關(guān)鍵因素。為研究超高強(qiáng)型UHMWPE纖維在多級熱拉伸過程中的蠕變行為,以工業(yè)生產(chǎn)線上不同熱拉伸倍率纖維為樣品,采用二維廣角X射線衍射儀、萬能試驗(yàn)機(jī)和化纖高強(qiáng)絲蠕變性能測試儀,表征纖維在熱拉伸過程中的凝聚態(tài)結(jié)構(gòu)、力學(xué)性能和蠕變行為。分析了不同溫度、應(yīng)力下纖維蠕變率的變化規(guī)律,以及蠕變大小與纖維結(jié)構(gòu)和力學(xué)性能的相關(guān)性。結(jié)果表明:隨著熱拉伸的分級進(jìn)行,纖維的結(jié)晶和取向度分別可達(dá)88.97%和0.973,同步改善了纖維的力學(xué)性能和抗蠕變性能。當(dāng)測試溫度低于70 ℃時(shí),纖維蠕變不明顯;隨著施加應(yīng)力的增加,蠕變表現(xiàn)出快速增加和緩慢增長兩個(gè)階段,兩個(gè)階段的轉(zhuǎn)變時(shí)間點(diǎn)隨著溫度和施加應(yīng)力的增加而縮短。但當(dāng)溫度達(dá)到90 ℃時(shí),纖維的蠕變呈現(xiàn)不斷加速的結(jié)果,施加應(yīng)力越大,后期的蠕變加速度也越大。當(dāng)纖維發(fā)生10%的蠕變后,其斷裂強(qiáng)力得到提高,而當(dāng)蠕變超過20%時(shí),力學(xué)性能轉(zhuǎn)而變差。
關(guān)鍵詞:超高分子量聚乙烯(UHMWPE);凝聚態(tài)結(jié)構(gòu);蠕變行為;力學(xué)性能;熱拉伸
中圖分類號:TS151
文獻(xiàn)標(biāo)志碼:A
文章編號:1009-265X(2024)10-0085-09
超高分子量聚乙烯(UHMWPE)纖維作為世界三大高性能纖維之一,具有耐磨性、耐沖擊性和抗切割性等諸多優(yōu)異性能,在軍事防護(hù)、航天航空等領(lǐng)域有著廣泛的應(yīng)用[1-3]。這種纖維主要采用凍膠紡絲-超倍拉伸法制備[4]。隨著UHMWPE聚合、紡絲技術(shù)的不斷進(jìn)步,實(shí)際生產(chǎn)出的UHMWPE纖維的強(qiáng)度不斷提高,目前工業(yè)上制備的UHMWPE纖維多為強(qiáng)度在35 cN/dtex以上的超高強(qiáng)型UHMWPE纖維[5]。超高強(qiáng)型UHMWPE纖維斷裂強(qiáng)度如此之高是因?yàn)槠浞肿渔湻浅R?guī)整,在溫度場和應(yīng)力場耦合作用下,纖維內(nèi)部可以形成結(jié)晶度和取向度極高的伸直鏈片晶結(jié)構(gòu)[ 6]。但是,分子鏈的高規(guī)整性也引發(fā)一系列問題,如存在分子鏈間相互作用力弱、表面缺乏極性、無法形成物理和化學(xué)交聯(lián)等結(jié)構(gòu)缺陷[7-9]。超高強(qiáng)型UHMWPE纖維所提供的高強(qiáng)高模、低密度等性能是其他高性能纖維無法比擬的,但是這些結(jié)構(gòu)缺陷所引起的耐熱性和抗蠕變性能差,限制了其在更多領(lǐng)域的應(yīng)用。
為了改善超高強(qiáng)型UHMWPE纖維結(jié)構(gòu)缺陷,目前主要存在以下幾種方法:第一,探究溫度場和應(yīng)力場耦合作用下纖維內(nèi)部晶體、取向等凝聚態(tài)結(jié)構(gòu)形成的規(guī)律,以此優(yōu)化熱拉伸設(shè)備和工藝,調(diào)控纖維內(nèi)部的凝聚態(tài)結(jié)構(gòu),實(shí)現(xiàn)性能提升[10];第二,物理改性主要是向聚乙烯中添加不同功能、尺寸和形態(tài)的有機(jī)、無機(jī)粒子,以此改善聚乙烯分子間的相互作用力[11-12];第三,化學(xué)改性主要是通過輻照交聯(lián)、表面接枝、過氧化物交聯(lián)和硅烷交聯(lián)等自由基反應(yīng)進(jìn)行,形成聚乙烯分子鏈間交聯(lián)鍵,增加分子鏈間的相互作用力[13-15]。物理和化學(xué)改性是提升超高強(qiáng)型UHMWPE纖維耐熱性和抗蠕變性的熱門研究方向,但交聯(lián)結(jié)構(gòu)或其他組分的引入易于引起紡絲穩(wěn)定性、纖維力學(xué)性能下降等問題。此外,溫度場和應(yīng)力場耦合作用下,超高強(qiáng)型UHMWPE纖維內(nèi)部凝聚態(tài)結(jié)構(gòu)形成及其與力學(xué)性能、蠕變性能的關(guān)系仍然值得進(jìn)一步研究。
鑒于此,本文重點(diǎn)針對超高強(qiáng)型UHMWPE纖維,探究其在多級熱拉伸過程中凝聚態(tài)結(jié)構(gòu)的演變過程,以及力學(xué)性能和蠕變行為的變化規(guī)律,為提升超高強(qiáng)型UHMWPE纖維抗蠕變性能提供支撐。
1 實(shí)驗(yàn)
1.1 樣品與儀器
樣品:超高強(qiáng)型UHMWPE纖維樣品均取自浙江金昊特種纖維有限公司同一工業(yè)生產(chǎn)線的不同拉伸階段,記為S1、S2和S3。S1、S2和S3分別為經(jīng)過一級(總拉伸4.77倍)、二級(總拉伸7.34倍)和三級(總拉伸9.55倍)超倍熱拉伸的纖維樣品,其中樣品S3型號為778 dtex/240f。
儀器:YG086W型縷紗測長儀(常州華紡紡織儀器有限公司);D8 Discover型二維X射線衍射儀(德國布魯克公司);68TM-30型萬能試驗(yàn)機(jī)(美國英斯特朗公司);YG959D化纖高強(qiáng)絲蠕變性能測試儀(常州華紡紡織儀器有限公司)。
1.2 性能表征
1.2.1 線密度
通過縷紗測長儀準(zhǔn)確繞取10 m長的待測超高強(qiáng)型UHMWPE纖維樣品,使用高精度電子天平稱取其質(zhì)量m,纖維樣品的線密度T根據(jù)式(1)計(jì)算,每種樣品測量6次取平均值,并通過公式(2)計(jì)算CV值(變異系數(shù)):
T=m×1000(1)
式中:T為線密度,dtex;m為質(zhì)量,g。
CV/%=σ/μ×100(2)
式中:σ為一組單值的標(biāo)準(zhǔn)偏差,μ為一組單值的算術(shù)平均值。
1.2.2 力學(xué)性能
采用萬能試驗(yàn)機(jī)表征超高強(qiáng)型UHMWPE纖維樣品的力學(xué)性能。測試模式為拉伸模式,夾持距離為500 mm,拉伸速度為250 mm/min,測試溫度為20 ℃,相對濕度為65%。參照GB/T 19975—2005《高強(qiáng)化纖長絲拉伸性能試驗(yàn)方法》,每種樣品測試10次取平均值,獲得纖維樣品的各項(xiàng)力學(xué)性能參數(shù),并計(jì)算CV值。
1.2.3 結(jié)晶性能
采用德國布魯克公司的二維廣角X射線衍射儀(D8 Discover)對超高強(qiáng)型UHMWPE纖維樣品的結(jié)晶性能開展表征。采用Cu靶,入射波長為0.154 nm,測試電壓和電流分別為40 kV和40 mA,測試模式為Coupled Two Theta/Theta,測試過程分為3步,相應(yīng)的2θ值為20°,40°和60°,測試時(shí)間為210 s。使用DIFFRAC.EVA軟件對二維譜圖進(jìn)行積分處理,并使用Jade軟件對所得數(shù)據(jù)進(jìn)行擬合處理,然后按照式(3)計(jì)算各樣品的結(jié)晶度Xc:
Xc/%=∑Ic∑Ic+∑Ia×100(3)
式中:Ic為晶區(qū)峰的積分面積;Ia為無定型峰的積分面積。
1.2.4 取向性能
采用二維X射線衍射儀對超高強(qiáng)型UHMWPE纖維樣品的晶區(qū)取向性能進(jìn)行表征。測試電壓和電流分別為40 kV和40 mA,入射波長為0.154 nm,采用Step (with count limit) 掃描模式,有效掃描時(shí)間為300 s。通過SAXS軟件對所測得的二維衍射圖進(jìn)行積分處理,獲得一維曲線圖,再使用Jade軟件對數(shù)據(jù)進(jìn)行分峰擬合處理,并根據(jù)式(4)計(jì)算出纖維樣品晶區(qū)取向度fc:
fc=180-∑Hi180(4)
式中:fc為取向因子;Hi為第i個(gè)峰的半高峰寬。
1.2.5 蠕變性能
采用化纖高強(qiáng)絲蠕變性能測試儀表征超高強(qiáng)型UHMWPE纖維樣品的蠕變性能。按照式(5)計(jì)算樣品的蠕變伸長率ε:
ε/%=L-L0L0×100(5)
式中:L0為試樣的初始長度,mm;L為施加恒定應(yīng)力后試樣的長度,mm。
兩種蠕變性能的測試模式如下所述:
模式一:纖維測試長度為300 mm,施加應(yīng)力為纖維斷裂強(qiáng)力的5%、10%、15%、20%,測試溫度為50、70、90 ℃,測試時(shí)間范圍為0~2 h,采樣頻率為1次/min。
模式二:纖維測試長度為300 mm,測試溫度為70 ℃,測試時(shí)間范圍為0~100 h,采樣頻率為10次/min。施加應(yīng)力按照式(6)計(jì)算:
F=T×0.0316(6)
式中:F為施加應(yīng)力,N;T為線密度,dtex。
2 結(jié)果與分析
2.1 力學(xué)性能
圖1為超高強(qiáng)型UHMWPE纖維不同拉伸階段樣品的負(fù)荷-應(yīng)變曲線,各樣品的平均斷裂強(qiáng)力、斷裂強(qiáng)度、斷裂伸長率和初始模量的具體數(shù)值如表1所示,這里初始模量取值的應(yīng)變區(qū)域?yàn)?.2%~1.0%。從表1中可以看出,各纖維樣品的斷裂強(qiáng)度均大于25 cN/dtex,初始模量高于948 cN/dtex。其中經(jīng)過3道熱拉伸的成品絲S3的平均斷裂強(qiáng)度和初始模量分別高達(dá)38.74 cN/dtex和1584.53 cN/dtex。隨著拉伸倍率的增加,纖維的斷裂強(qiáng)度和初始模量快速增加,斷裂伸長率不斷降低,表明纖維的剛性逐步改善。
2.2 結(jié)晶性能
在熱拉伸過程中,超高強(qiáng)型UHMWPE纖維的力學(xué)性能不斷提升,這是因?yàn)槔w維的結(jié)晶、取向等凝聚態(tài)結(jié)構(gòu)不斷完善。各樣品的二維廣角X衍射結(jié)果如圖2所示,一維衍射強(qiáng)度分布結(jié)果如圖3所示,并用Jade軟件積分處理得到各樣品的結(jié)晶度和取向度值,如表2所示。
圖2顯示,超高強(qiáng)型UHMWPE纖維主要存在3種晶型,分別是單斜晶的(010)特征晶面、正交晶的(110)和(200)特征晶面[16]。無論是經(jīng)過1道熱拉伸還是3道熱拉伸,其晶體的類型均未發(fā)生改變。但隨著拉伸倍率的不斷增加,其結(jié)晶度從83.57%增加到88.97%。在多級熱拉伸過程中,聚乙烯分子鏈段在溫度場和應(yīng)力場的耦合作用下發(fā)生運(yùn)動和重排,使得晶粒大小和數(shù)量發(fā)生改變,進(jìn)而提高了纖維的結(jié)晶度[17]。纖維的力學(xué)性能除了受晶體數(shù)量、晶粒大小的影響外,還受晶體的取向度的影響。取向度越高,更有利于改善纖維取向方向的力學(xué)性能[18]。從圖3中可知,隨著熱拉伸的進(jìn)行,纖維的取向度也在逐漸增大,經(jīng)過三道熱拉伸的S3樣品的取向度高達(dá)0.973。超高的結(jié)晶度和取向度是S3樣品斷裂強(qiáng)度高于38 cN/dtex的關(guān)鍵。超高強(qiáng)型UHMWPE纖維在多倍熱拉伸過程中所形成的結(jié)晶、取向等凝聚態(tài)結(jié)構(gòu)不僅影響纖維的力學(xué)性能[19],同時(shí)也對纖維的蠕變行為產(chǎn)生重要的影響。
2.3 蠕變行為
2.3.1 拉伸倍率對蠕變行為的影響
通過蠕變測試方法一分別測試不同牽伸倍率下S1、S2、S3纖維樣品在90 ℃、施加應(yīng)力(10%斷裂強(qiáng)力)、0~2 h測試時(shí)間條件下的蠕變過程,蠕變曲線如圖4所示。從圖4中可以看出,隨著牽伸倍率增大,纖維樣品的蠕變率逐漸減小,說明多級熱牽伸改善了UHMWPE纖維的抗蠕變性。這是因?yàn)殡S著牽伸倍率的增大,UHMWPE纖維大分子沿拉伸方向逐漸舒展和伸直,纖維的取向程度逐漸增大,晶體的結(jié)構(gòu)更加致密,纖維內(nèi)部大分子滑移變得更加困難,從而抗蠕變性能也得以改善。
2.3.2 處理時(shí)間對蠕變行為的影響
首先,分析S3纖維樣品在一定溫度下蠕變行為隨時(shí)間的變化。在溫度70 ℃、施加應(yīng)力24.0 N(約8%斷裂載荷)條件下連續(xù)測試100 h,同時(shí)選取試樣1-5分別進(jìn)行了5次測試,其蠕變曲線如圖5(a)所示,其均值蠕變曲線如圖5(b)所示。從圖5(b)中可以看出,數(shù)據(jù)點(diǎn)A將該曲線分成增長趨勢不同的兩段,將A點(diǎn)前后的曲線分別進(jìn)行擬合,所得曲線示于圖5(c)和圖5(d)。圖5(a)結(jié)果顯示,S3纖維試樣1-5的蠕變率分別為7.97%、9.53%、11.33%、8.96%、12.19%,平均蠕變率為10%。S3纖維樣品的長時(shí)間下的蠕變行為可以歸納為兩個(gè)階段:一是初始階段(A點(diǎn)前0~500 min),該階段蠕變增加的斜率是0.02785,主要受應(yīng)力和溫度的影響,分子鏈段的運(yùn)動較激烈;而A點(diǎn)之后的第二階段,即500 min以后的蠕變曲線的斜率降低至0.01791。接下來重點(diǎn)分析初始階段纖維樣品在不同實(shí)驗(yàn)條件(拉伸倍率、施加應(yīng)力、溫度)下的蠕變行為。
2.3.3 施加應(yīng)力和溫度對蠕變行為的影響
通過蠕變測試方法一測試分別得到不同溫度(50、70、90 ℃)下S3纖維在不同載荷(10%、15%、20%斷裂強(qiáng)力)下的蠕變曲線,結(jié)果如圖6和圖7所示。
環(huán)境溫度的升高會導(dǎo)致纖維的蠕變速率加快,蠕變斷裂時(shí)間縮短,并且蠕變伸長率會不斷增大;所施加的恒定應(yīng)力越大也會使纖維的蠕變速率加快,蠕變斷裂時(shí)間縮短,蠕變伸長率也相應(yīng)增大。當(dāng)環(huán)境溫度較低時(shí),纖維蠕變率較低,但在高溫下,纖維容易發(fā)生蠕變。50 ℃、20%斷裂載荷下,纖維蠕變率小于1.2%;70 ℃、20%斷裂載荷下,纖維蠕變率小于8%;90 ℃、20%斷裂載荷下,纖維蠕變率大于40%或斷裂。在低溫和低施加應(yīng)力下,纖維蠕變存在快速增長和平臺區(qū),即在實(shí)驗(yàn)的初始階段纖維內(nèi)部分子鏈段滑移運(yùn)動迅速發(fā)生,導(dǎo)致纖維蠕變率快速增加,此后蠕變率隨著時(shí)間的變化不明顯。
在低溫條件下(小于70 ℃),纖維內(nèi)分子鏈段運(yùn)動受阻,纖維蠕變不明顯,隨著施加應(yīng)力的增加經(jīng)歷快速增加和緩慢增加兩個(gè)階段,兩個(gè)速度轉(zhuǎn)變時(shí)間點(diǎn)隨著溫度和施加應(yīng)力的增加而縮短。但是當(dāng)溫度達(dá)到90 ℃時(shí),纖維的蠕變不斷加速,施加應(yīng)力越大,蠕變加速越明顯。
2.3.4 蠕變后纖維結(jié)晶和取向的變化
分別取蠕變率在5%、10%、20%的S3纖維樣品(測試條件為90 ℃、20%斷裂強(qiáng)力的載荷)測試?yán)w維蠕變之后的結(jié)晶取向指標(biāo)。蠕變后纖維樣品的二維廣角X射線衍射結(jié)果如圖8和圖9所示,一維衍射強(qiáng)度分布結(jié)果如圖10所示,表3為各樣品相對的結(jié)晶度和取向度值。UHMWPE纖維的蠕變過程中,所施加的恒定外力主要作用于連接晶區(qū)的纏結(jié)分子,通過應(yīng)力傳遞將晶區(qū)中的纏結(jié)分子拉出,直至纏結(jié)分子末端出現(xiàn)缺陷后斷裂[20]。在較小的蠕變范圍內(nèi),隨著蠕變率的增加,在應(yīng)力的誘導(dǎo)下,纖維內(nèi)部晶粒間排列會更加緊密,晶區(qū)更加完善,纖維的結(jié)晶度會有小幅度增加。雖然非晶區(qū)已擁有足夠高的取向度,但隨著應(yīng)力在晶區(qū)纏結(jié)分子間的傳遞,會導(dǎo)致晶區(qū)取向度[21]繼續(xù)增大。但當(dāng)纖維的蠕變率繼續(xù)增大時(shí),纖維的結(jié)晶度、取向度、斷裂強(qiáng)度均下降。
2.3.5 蠕變后纖維力學(xué)性能的變化
表4為蠕變后S3纖維樣品的斷裂強(qiáng)度。從表4數(shù)據(jù)可知,5%的蠕變纖維的斷裂強(qiáng)度增加,而當(dāng)蠕變繼續(xù)增加到10%以上時(shí),纖維的斷裂強(qiáng)度開始下降。在較小的蠕變范圍內(nèi),隨著蠕變率的增加,在應(yīng)力的作用下纖維的晶區(qū)取向度逐漸增加,大分子鏈在外力作用下沿著纖維軸向排列越來越規(guī)整,并且隨著纖維晶體結(jié)構(gòu)的完善以及取向度的增加有助于提升纖維的斷裂強(qiáng)度[22]。當(dāng)纖維的蠕變率過大時(shí),纖維的斷裂強(qiáng)度下降。
3 結(jié)論
本文研究了超高強(qiáng)型UHMWPE纖維在多級熱拉伸過程中的凝聚態(tài)結(jié)構(gòu)、力學(xué)性能和蠕變行為,分析了纖維在熱拉伸過程中的結(jié)晶、取向、力學(xué)性能、蠕變行為的變化規(guī)律,以及S3樣品在不同條件下的蠕變規(guī)律和蠕變后纖維的性能變化。主要得到以下結(jié)論:
a)經(jīng)過多級熱拉伸的超高強(qiáng)型UHMWPE纖維具有非常高的結(jié)晶度和取向度,其在100 h內(nèi)的蠕變率為10%(70 ℃,約8%斷裂強(qiáng)力的施加應(yīng)力)。隨著拉伸倍率的提高,纖維內(nèi)部凝聚態(tài)結(jié)構(gòu)的完善,不僅提升了纖維的力學(xué)性能,同時(shí)也提高其抗蠕變性能。
b)超高強(qiáng)型UHMWPE纖維在50 ℃下蠕變不明顯,尤其是當(dāng)施加應(yīng)力小于15%斷裂強(qiáng)力時(shí),其2 h內(nèi)的蠕變率均低于0.6%。但當(dāng)溫度提升到90 ℃時(shí),其蠕變率可高達(dá)50%。在低溫和低施加壓力下,纖維蠕變存在快速增長和平臺區(qū)兩個(gè)階段。在低溫條件下(小于70 ℃),纖維內(nèi)分子鏈段運(yùn)動受阻,纖維蠕變不明顯;隨著施加應(yīng)力的增加,纖維蠕變率同樣經(jīng)歷快速增加和緩慢增長兩個(gè)階段,兩個(gè)速度轉(zhuǎn)變時(shí)間點(diǎn)隨著溫度和施加應(yīng)力的增加而縮短。但是當(dāng)溫度達(dá)到90 ℃時(shí),纖維的蠕變不斷加速,施加應(yīng)力越大,纖維蠕變加速度也增大。
c)超高強(qiáng)型UHMWPE纖維在低蠕變率下,其結(jié)晶度、取向度以及斷裂強(qiáng)度均有增強(qiáng),而在較高蠕變率下其結(jié)晶度、取向度以及斷裂強(qiáng)度均下降。
參考文獻(xiàn):
[1]PATEL K, CHIKKALI S H, SIVARAM S. Ultrahigh molecular weight polyethylene: Catalysis, structure, pro-perties, processing and applications[J]. Progress in Polymer Science, 2020, 109: 101290.
[2]薛淑云, 葉偉, 王征, 等. 超高分子量聚乙烯纖維的耐高溫性能[J]. 現(xiàn)代紡織技術(shù), 2024, 32(3): 53-60.
XUE Shuyun, YEQ5GQuIw6YNemSqWKIz4+I9O9wOrEC6+1fHAJ4nO1sY0= Wei, WANG Zheng, et al. High-temperature resistance of ultra-high molecular weight polyethylene fibers[J]. Advanced Textile Technology, 2024, 32(3): 53-60.
[3]葉卓然, 羅靚, 潘海燕, 等. 超高分子量聚乙烯纖維及其復(fù)合材料的研究現(xiàn)狀與分析[J]. 復(fù)合材料學(xué)報(bào), 202 39(9): 4286-4309.
YE Zhuoran, LUO Liang, PAN Haiyan, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites[J]. Acta Materiae Compositae Sinica,202 39(9): 4286-4309.
[4]呂佳濱, 張冬霞, 王軍鋒, 等.我國超高分子量聚乙烯纖維的發(fā)展現(xiàn)狀與建議[J]. 高科技纖維與應(yīng)用, 2024, 49(1): 13-16.
L Jiabin, ZHANG Dongxia, WANG Junfeng, et al. Development status and suggestions of ultra-high molecular weight polyethylene fiber in China[J]. Hi-Tech Fiber and Application, 2024, 49(1): 13-16.
[5]王德誠. 九州星際打造超高相對分子質(zhì)量聚乙烯纖維研發(fā)生產(chǎn)基地[J]. 合成纖維工業(yè), 2023, 46(5): 40.
WANG Decheng. Kyushu interstellar building the R&D and production base of ultra-high relative molecular weight polyethylene fiber[J]. China Synthetic Fiber Industry, 2023, 46(5): 40.
[6]蘇家凱, 劉雙艷, 厲勇, 等. 無鹵阻燃改性超高分子量聚乙烯纖維的制備及性能[J]. 工程塑料應(yīng)用, 2024, 52(3): 39-44.
SU Jiakai, LIU Shuangyan, LI Yong, et al. Preparation and performance of halogen-free flame retardant modified ultra-high molecular weight polyethylene fiber[J]. Engineering Plastics Application, 2024, 52(3): 39-44.
[7]李美霞, 呂汪洋, 王剛強(qiáng), 等. 超高分子量聚乙烯纖維表面改性研究進(jìn)展[J]. 現(xiàn)代紡織技術(shù), 202 30(5): 235-245.
LI Meixia, L Wangyang, WANG Gangqiang, et al. Research progress on surface modification of ultra-high molecular weight polyethyene fibers[J]. Advanced Textile Technology, 202 30(5): 235-245.
[8]張杏, 葉偉, 龍嘯云, 等. 超高分子量聚乙烯纖維織物/熱塑性聚氨酯復(fù)合材料的界面黏結(jié)性能[J]. 紡織學(xué)報(bào), 2023, 44(8): 143-150.
ZHANG Xing, YE Wei, LONG Xiaoyun, et al. Interfacial bonding properties of ultra-high molecular weight polye-thylene fabric/thermoplastic polyurethane composites[J]. Journal of Textile Research, 2023, 44(8): 143-150.
[9]汪維海, 陳宏, 黃志超, 等. 多酚-氨基硅烷改性超高分子量聚乙烯纖維的制備及其界面性能[J]. 現(xiàn)代紡織技術(shù), 202 30(6): 63-72.
WANG Weihai, CHEN Hong, HUANG Zhichao, et al. Preparation and interfacial properties of UHMWPE fibers modified by polyphenol & dKUbZrf/JzbQ8mU7CdORRrGsRREuU3iHJngtdW566gs=amino silane[J]. Advanced Textile Technology, 202 30(6): 63-72.
[10]DA SILVA CHAGAS N P, LOPES DA SILVA FRAGA G, DE FTIMA VIEIRA MARQUES M. Fibers of ultra-high molecular weight polyethylene obtained by gel spinning with polyalphaolefin oil [J]. Macromolecular Research, 2020, 28(12): 1082-1090.
[11]嚴(yán)成, 顏甜甜, 何勇. 超高分子質(zhì)量聚乙烯纖維及其復(fù)合材料的共混改性[J]. 合成纖維, 202 51(5): 9-14.
YAN Cheng, YAN Tiantian, HE Yong. Blending modifi-cation of ultra high molecular weight polyethylene fiber and its composites[J]. Synthetic Fiber in China, 202 51(5): 9-14.
[12]WANG F, LIU L C, XUE P, et al. A Study of the Mechanical behavior and crystal structure of UHMWPE/HDPE blend fibers prepared by melt spinning [J]. Journal of Engineered Fibers and Fabrics, 2018, 13(3): 155892501801300.
[13]ZHU M, REN H, LU Q, et al. An in situ surface modification method of ultra-high molecular weight polye-thylene fiber on the basis of dry gel-spinning technique[J]. Polymer Testing, 202 93: 106951.
[14]張秀雨, 于俊榮, 彭宏, 等. 硅烷交聯(lián)改性對UHMWPE纖維蠕變性能的影響[J]. 東華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 41(1): 1-5.
ZHANG Xiuyu, YU Junrong, PENG Hong, et al. Effect of silane crosslinking modification on the creep behavior of UHMWPE fibers[J]. Journal of Donghua University (Natural Science), 2015, 41(1): 1-5, 27.
[15]WEN X, LI Z Y, YANG C G, et al. Electron beam irradiation assisted preparation of UHMWPE fiber with 3D cross-linked structure and outstanding creep resistance[J]. Radiation Physics and Chemistry, 202 199: 110370.
[16]MCDANIEL P B, DEITZEL J M, GILLESPIE J W. Structural hierarchy and surface morphology of highly drawn ultra-high molecular weight polyethylene fibers studied by atomic force microscopy and wide angle X-ray diffraction[J]. Polymer, 2015, 69: 148-158.
[17]HU W, SCHMIDT-ROHR K. Characterization of ultradrawn polyethylene fibers by NMR: Crystallinity, domain sizes and a highly mobile second amorphous phase[J]. Polymer, 2000, 41(8): 2979-2987.
[18]LITVINOV V M, KURELEC L. Remarkably high mobility of some chain segments in the amorphous phase of strained HDPE[J]. Polymer, 2014, 55(2): 620-625.
[19]LITVINOV V M, XU J, MELIAN C, et al. Morphology, chain dynamics, and domain sizes in highly drawn gel-spun ultrahigh molecular weight polyethylene fibers at the final stages of drawing by SAXS, WAXS, and 1H Solid-state NMR [J]. Macromolecules, 201 44(23): 9254-9266.
[20]OHTA Y, KAJI A, SUGIYAMA H, et al. Structural analysis during creep process of ultrahigh strength polyethylene fiber [J]. Journal of Applied Polymer Science, 200 81(2): 312-320.
[21]OHTA Y, YASUDA H.The influence of short branches on the α, β and γ-relaxation processes of ultra-high strength polyethylene fibers [J]. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(13): 2241-2249.
[22]MOONEN J A H M, ROOVERS W A C, MEIER R J, et al. Crystal and molecular deformation in strained high-performance polyethylene fibers studied by wide-angle X-ray scattering and Raman spectroscopy[J]. Journal of Polymer Science: Part B: Polymer Physics, 199 30(4): 361-372.
Creep behavior of ultrahigh molecular weight polyethylene with ultrahigh strength
during multistage thermal stretching
ZHENG Shuo WANG Yongjun JIN Yilin WANG Gangqiang DAI Junming L Wangyang1
(1.National Engineering Lab for Textile Fiber Materials and Processing Technology,Zhejiang Sci-Tech University,
Hangzhou 310018, China; 2.Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China)
Abstract:
Ultrahigh molecular weight polyethylene (UHMWPE) fibers have a highly oriented crystalline chain structure. This special structure contributes them with excellent physical and mechanical properties. UHMWPE fibers are considered to be the material with the highest specific strength and specific modulus in the world. Additionally, they exhibit low density, excellent moisture absorption, exceptional chemical resistance, high impact strength, and remarkable wear resistance. These outstanding characteristics make them indispensable in various industrial sectors such as aerospace, automotive engineering, national defense, textile manufacturing, chemical engineering, and medical technology. With so many excellent properties, the UHMWPE fiber has its shortcomings, for instance, poor temperature resistance, bad composite adhesion and creep resistance. The creep behavior makes UHMWPE fibers unstable in product size and shape, which greatly limits their application in composite materials, ropes and other fields. Therefore, improving the creep resistance of UHMWPE fibers has been the focus of researchers. By exploring the evolution of condensed matter structure of UHMWPE fibers during multistage thermal stretching, the creep rule of fibers under different conditions and the change rule of fiber properties after creep behavior, the article can provide theoretical support for improving the creep resistance of fibers. In order to study the creep properties of ultrahigh strength UHMWPE fibers during multistage thermal drawing, fiber samples with different thermal stretching rates were collected in different sections on actual industrial production lines. The condensed matter structure, mechanical properties and creep properties of chemical fibers during thermal stretching were studied by means of two-dimensional wide-angle X-ray diffractometer, universal testing machine and creep property tester. The variation of fiber creep rates under different temperatures and stresses, as well as the correlation between creep size and fiber structure and mechanical properties, were analyzed. The results showed that with tiered thermal stretching grading, the rate of crystallization and orientation of the fibers could reach 88.97% and 0.973 respectively, which indicated that not only the mechanical properties of the fibers but the creep resistance were improved. When the test temperature was less than 70 ℃, the creep behavior of the fiber was not obvious. It demonstrated two distinct stages of rapid and gradual increase with increasing applied stress, while the transition time between these stages decreased as both temperature and applied stress rose. The creep behavior of the fiber, however, exhibited a continuous acceleration when the temperature reached 90 ℃. Furthermore, it was observed that the magnitude of stress directly influenced the extent of creep acceleration during later stages. When the fiber creeped by 10%, its breaking strength showed an increasing trend, and when it creeped by more than 20%, its mechanical properties became worse.
Keywords:
UHMWPE; condensed matter structure; creep behavior; mechanical properties; thermal tensile