摘 要:為了制備出具有長余輝功能的海藻酸鈉纖維,拓寬海藻酸鈉纖維和長余輝發(fā)光材料的應用領域,文章首先以硝酸鍶、二氧化硅、氧化鎂、氧化硼、氧化銪和氧化鏑為原料,通過高溫固相法制備了長余輝發(fā)光材料,再采用共混方式結(jié)合海藻酸鈉制備出紡絲液,最后通過濕法紡絲制備了不同濃度的長余輝海藻酸鈉纖維。利用掃描電子顯微鏡、紅外光譜儀、熒光光譜儀、熒光余輝亮度測試儀和多功能力學測試儀對長余輝海藻酸鈉纖維的微觀形貌、化學結(jié)構(gòu)、余輝性能及力學性能進行分析。結(jié)果表明:隨著加入的長余輝發(fā)光材料質(zhì)量增加,長余輝海藻酸鈉纖維的余輝性能在不斷提高,但纖維的強力呈下降趨勢;當加入的長余輝發(fā)光材料質(zhì)量分數(shù)為2.0%時,所制備的長余輝海藻酸鈉纖維的綜合性能達到最優(yōu)。所制備的長余輝海藻酸鈉纖維在夜行服和防偽標志等方面具有良好的應用前景。
關鍵詞:海藻酸鈉纖維;長余輝發(fā)光材料;長余輝海藻酸鈉纖維;余輝性能;力學性能
中圖分類號:TS15
文獻標志碼:A
文章編號:1009-265X(2024)10-0078-07
長余輝發(fā)光材料,又叫蓄光材料,是一種在受到外界光源激發(fā)的時候能夠?qū)⒐饽軆Υ嬗诓牧现胁⒃诤诎禇l件下發(fā)光的材料[1-3]。其主要發(fā)光體系有3種,分別為硫化物體系、鋁酸鹽體系和硅酸鹽體系[4-6]。由于硫化物體系長余輝發(fā)光材料具有放射性,現(xiàn)已逐漸被硅酸鹽體系和鋁酸鹽體系的長余輝發(fā)光材料所替代。與鋁酸鹽體系長余輝發(fā)光材料相比,硅酸鹽體系長余輝發(fā)光材料不僅具有化學穩(wěn)定性好、成本低的特點,同時還具有優(yōu)異的耐水性[7-8]。此外,在制備長余輝發(fā)光纖維之前,硅酸鹽體系長余輝發(fā)光材料
無需用硅烷偶聯(lián)劑進行預處理[9-11],減少了發(fā)光纖維的制備工序。因此,硅酸鹽體系長余輝發(fā)光材料是制備長余輝發(fā)光纖維的首選。
長余輝發(fā)光纖維是通過特定的紡絲方法,將長余輝發(fā)光材料封閉于纖維中而獲得具有長余輝性能的纖維[12-13]。例如:He等[14]使用靜電紡絲的方法制備了直徑為200 nm的Sr2MgSi2O7:Eu2+,Dy3+/PVA納米纖維,經(jīng)過后續(xù)的煅燒工序(還原
氛圍)后得到在471 nm 處有藍色發(fā)射峰的發(fā)光纖維;Ye 等[15]以聚乳酸為纖維基質(zhì),以溶膠-凝膠法結(jié)合靜電紡絲制備了具有良好的藍色長余輝性能的Sr2MgSi2O7:Eu2+,Dy3+/PLA復合纖維,該復合纖維不僅具有良好的余輝性能,同時具有自降解特性。
海藻酸鈉纖維是一種由海藻中提取的海藻酸鈉經(jīng)特種工藝所制備成的纖維。其制備原料來源廣泛,同時還具有良好的自降解能力,是一種綠色環(huán)保材料。將長余輝發(fā)光材料應用于海藻酸鈉纖維中,不僅可以制作效果奇特的舞臺服飾,同時也可以制作具有防偽功能的標志[9]。本文將不同質(zhì)量分數(shù)的硅酸鎂鍶長余輝發(fā)光材料(Sr2MgSi2O7:Eu2+,Dy3+)摻入到海藻酸鈉紡絲液中,制備出不同質(zhì)量分數(shù)的長余輝海藻酸鈉纖維,并對其基本性能和余輝性能進行研究,為硅酸鎂鍶長余輝發(fā)光材料在紡織領域的應用提供理論參考。
1 實驗
1.1 實驗材料
硝酸鍶,上?;ぴ噭┮粡S;二氧化硅、氧化鎂、氧化硼、氧化銪、氧化鏑、海藻酸鈉、無水氯化鈣、去離子水和無水乙醇,上海麥克林生化試劑公司;氮氣和氫氣,杭州今工特種氣體有限公司。
1.2 實驗設備
管式爐(OTF-1200X,合肥科晶材料技術(shù)有限公司),注射泵(TYD01-01-CEhPTJLMVv5tchqlUf3gYq+w==,保定雷弗流體科技有限公司),電子天平(BSA124S,賽多利斯科學儀器有限公司),集熱式恒溫加熱磁力攪拌器(DF-101S,邦西儀器科技有限公司),電熱恒溫干燥箱(202-00AB,天津市通利信達儀器廠),場發(fā)射掃描電鏡(FE-SEM-S4800,日本日立),傅里葉紅外光譜儀(Nicolet-5700,美國熱電公司),熒光光譜儀(F-4600 日本日立),熒光余輝亮度測試儀(PR-305,杭州浙大三色儀器公司),拉伸儀(KES-G 日本Kato-Tech公司)。
1.3 實驗方法
按照一定的摩爾比將硝酸鍶、二氧化硅、氧化鎂、氧化硼、氧化銪和氧化鏑粉末倒入研缽中研磨。粉末混合均勻后,倒入方舟并將其放入管式爐中進行熱處理。反應條件為:升溫速率5 ℃/min,保溫溫度1100 ℃保溫時間3 h,降溫速率3 ℃/min,氣氛為還原氛圍(氮氣與氫氣的物質(zhì)的量百分比為9∶1)。反應完成后,得到長余輝發(fā)光材料Sr2MgSi2O7:Eu2+,Dy3+。
用電子天平和稱量紙稱取所需質(zhì)量的長余輝發(fā)光材料,加入100 mL去離子水中,配制成一系列質(zhì)量分數(shù)為1.5%、2.0%、2.5%的發(fā)光液,并放在磁力攪拌器上攪拌。稱取4 g海藻酸鈉粉末,緩慢加入盛有發(fā)光液的燒杯中,同時不斷攪拌,直至海藻酸鈉完全溶解,形成均勻穩(wěn)定的長余輝海藻酸鈉紡絲液。
將配制好的長余輝海藻酸鈉紡絲液加入到微量注射器中,在0.9 mL/min的擠出速度,以質(zhì)量分數(shù)為4%無水氯化鈣溶液為凝固浴的條件下進行紡絲。最終得到的摻雜不同質(zhì)量分數(shù)長余輝發(fā)光材料的海藻酸鈉纖維按照上述順序被標記為:1.5% 長余輝海藻酸鈉纖維、2.0% 長余輝海藻酸鈉纖維和2.5% 長余輝海藻酸鈉纖維。
1.4 測試與表征
對樣品噴金處理后,使用場發(fā)射掃描電鏡觀察純海藻酸鈉纖維和長余輝海藻酸鈉纖維的縱向形貌和截面形貌;使用Nicolet-5700傅里葉紅外光譜儀(FTIR)對純海藻酸鈉纖維和長余輝海藻酸鈉纖維在400~4000 cm-1波數(shù)內(nèi)的結(jié)構(gòu)進行表征,得到透過率隨波數(shù)變化的FTIR光譜圖;使用F-46001熒光光譜儀測試分析長余輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料的激發(fā)譜和發(fā)射譜,使用熒光余輝亮度測試儀測試和分析長余輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料的余輝性能;使用拉伸儀對海藻酸鈉纖維和長余輝海藻酸鈉纖維的斷裂強力進行測試,拉伸速度為0.02 cm/s。
2 結(jié)果與討論
2.1 表面形貌分析
海藻酸鈉纖維和長余輝海藻酸鈉纖維的橫向表面和縱向截面的掃描電鏡照片如圖1所示。從圖1(a)中可以看出:純海藻酸鈉纖維表面非常光滑,沒有附著顆粒和凸起,但表面有溝槽,其原因是形成的纖維與凝固浴之間存在雙重擴散。由圖1(b)可知:長余輝海藻酸鈉纖維表面經(jīng)長余輝發(fā)光材料的摻入后變得粗糙,說明長余輝發(fā)光材料已成功摻入到海藻酸鈉纖維當中。圖1(c)顯示了純海藻酸鈉纖維橫向截面形狀均勻,接近為圓形。而從圖1(d)中可以看出:長余輝海藻酸鈉纖維的橫向截面形狀為鋸齒狀,這是由于長余輝發(fā)光材料與海藻酸鈉相互擠壓所造成的。
從EDS譜圖(見圖2)可知:長余輝海藻酸鈉纖維截面中含有Sr,Si,Mg和O元素,說明長余輝發(fā)光材料被包覆在海藻酸鈉纖維中。
2.2 紅外光譜分析
海藻酸鈉纖維和長余輝海藻酸鈉纖維的紅外光譜圖如圖3所示。由海藻酸鈉纖維的紅外光譜可知:3335 cm-1處又寬又強的吸收峰為氫鍵締合狀態(tài)下—OH的伸縮振動峰,這與海藻酸鈉纖維表面自由水有關。1598 cm-1與1428 cm-1的兩個強峰分別表示COO-反對稱伸縮振動與對稱伸縮振動,1012 cm-1處為C—O—C的吸收振動峰,上述所提及的吸收峰都為海藻酸鈉的特征吸收峰[16]。此外,從圖3中可以看出,長余輝海藻酸鈉纖維的紅外光譜基本與海藻酸鈉纖維的一致,推測長余輝發(fā)光材料與海藻酸鈉的結(jié)合方式為物理結(jié)合[17]。同時,在1646、1502 cm-1和671 cm-1 處存在吸收峰,分別對應硅酸鎂鍶長余輝發(fā)光材料中Mg—O鍵的伸縮振動峰、Sr—O鍵的伸縮振動峰和Si—O鍵的彎曲振動峰[18]。綜上所述,長余輝發(fā)光材料已成功摻入海藻酸鈉纖維中。
2.3 熒光光譜分析
長余輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料的激發(fā)光譜如圖4(a)所示,由圖可知:長余輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料的激發(fā)光譜均由連續(xù)波長組成的寬帶譜構(gòu)成,在330 nm和365 nm處分別有一個激發(fā)峰,其中365 nm處的激發(fā)峰較高。同時,隨著摻雜在海藻酸鈉纖維中的長余輝發(fā)光材料質(zhì)量的增加,纖維所對應的發(fā)光強度也在增加。長余
輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料的發(fā)射光譜如圖4(b)所示。由圖可知:長余輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料的發(fā)射光譜由一個連續(xù)分布在400~550 nm范圍內(nèi)的寬發(fā)射帶組成,并且在468 nm處有一個發(fā)射峰。該發(fā)射峰對應于摻雜在海藻酸鈉纖維中的長余輝發(fā)光材料中Eu2+離子的4f65d1→4f7躍遷[13]。同時,長余輝海藻酸鈉纖維的發(fā)光強度也隨著摻雜在纖維中的長余輝發(fā)光材料質(zhì)量的增加而增大。
綜上所述,長余輝海藻酸鈉纖維的激發(fā)譜和發(fā)射譜均與硅酸鎂鍶長余輝發(fā)光材料的激發(fā)譜和發(fā)射譜基本一致,說明長余輝發(fā)光材料已成功摻入到海藻酸鈉纖維中,并且所制備的長余輝海藻酸鈉纖維具有較好的PL性能。
2.4 余輝性能分析
長余輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料的余輝衰減曲線如圖5所示,用Origin軟件對曲線進行了指數(shù)擬合,擬合公式為:
I=I0+A1*exp-tτ1+A2*exp(-tτ2)(1)
式中:I代表發(fā)光強度,I0為初始發(fā)光強度,A1和A2是常數(shù),t為時間,τ1和τ2表示余輝壽命。
衰減過程分為2個階段:快衰減和慢衰減階段。由圖5可知:隨著摻雜在海藻酸鈉纖維中的長余輝發(fā)光材料質(zhì)量的增加,長余輝海藻酸鈉纖維的初始亮度也在增大。同時,硅酸鎂鍶長余輝發(fā)光材料的初始亮度大于摻入的長余輝發(fā)光材料質(zhì)量分數(shù)為2.5% 的長余輝海藻酸鈉纖維的初始亮度,原因可能為海藻酸鈉包覆了長余輝發(fā)光材料,導致長余輝發(fā)光材料所能夠吸收的光能減少。表1為長余輝海藻酸鈉纖維和硅酸鎂鍶長余輝發(fā)光材料各階段的初始亮度和余輝壽命數(shù)據(jù)表,由表可知:隨著摻雜在海藻酸鈉纖維中的長余輝發(fā)光材料質(zhì)量的增加,長余輝海藻酸鈉纖維的初始發(fā)光亮度和余輝壽命時間也在增大。除此之外,長余輝海藻酸鈉纖維的初始發(fā)光亮度和余輝壽命小于硅酸鎂鍶長余輝發(fā)光材料的初始發(fā)光亮度和余輝壽命。
2.5 力學性能分析
純海藻酸鈉纖維與長余輝海藻酸鈉纖維的應力應變曲線如圖6所示。從圖6中可知:純海藻酸鈉纖維的拉伸應變?yōu)?6%左右,斷裂強力為20.5 MPa。隨著摻雜在海藻酸鈉纖維中的長余輝發(fā)光材料質(zhì)量的增加,長余輝海藻酸鈉纖維的拉伸應變和斷裂強力在減小,說明長余輝發(fā)光材料的摻入使得海藻酸鈉纖維的力學性能降低,這是因為長余輝發(fā)光材料的摻入降低了海藻酸鈉聚合物在纖維中的取向度和海藻酸鈉大分子間的結(jié)合力[19]。
長余輝海藻酸鈉纖維光照10 min后在黑暗條件下的實物圖如圖7所示。從圖8中可以看出:長余輝海藻酸鈉纖維在光照之后能夠在黑暗的條件下發(fā)出藍色的光,說明制備的長余輝海藻酸鈉纖維具有良好的余輝性能,可以用于防偽標志和舞臺裝飾等應用領域。
3 結(jié)論
本文采用濕法紡絲工藝成功制備出了外觀形貌較好的硅酸鎂鍶長余輝海藻酸鈉纖維,并探究了不同質(zhì)量分數(shù)的長余輝發(fā)光材料對長余輝海藻酸鈉纖維的性能影響,得出以下結(jié)論:
a)當海藻酸鈉的質(zhì)量分數(shù)為4%,摻入的長余輝發(fā)光材料的質(zhì)量分數(shù)為2.0%時,得到的長余輝海藻酸鈉纖維不僅具有良好的余輝性能(0.129 cd/m2),同時具有較好的力學性能(19.6 MPa, 16.5%)。
b)隨著摻入長余輝發(fā)光材料質(zhì)量的增加,長余輝海藻酸鈉纖維的余輝性能也在增強,但因其打破了海藻酸鈉纖維內(nèi)部固有的有序排列,纖維的機械強力有所下降。
c)長余輝發(fā)光材料的摻入讓海藻酸鈉纖維的形貌發(fā)生了改變,縱向表面由光滑變得粗糙,橫截面形狀由圓形變成了鋸齒形。
本文所制備長余輝纖維可用于舞臺裝飾、夜行服和防偽標志等應用領域,具有良好的應用前景。
參考文獻:
[1]高晗, 遲祥, 宋曉雪, 等. 發(fā)光纖維的研究進展[J]. 功能材料, 202 52(2): 2085-2097.
GAO Han, CHI Xiang, SONG Xiaoxue, et al. Research progress of luminescent fiber[J]. Journal of Function Materials, 202 52(2): 85-97.
[2]LIU Y L, KUANG J Y, LEI B F, et al. Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors[J]. Journal of Materials Chemistry, 2005, 15(37): 4025-4031.
[3]ABDUKAYUM A, CHEN J T, ZHAO Q, et al. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc galloger-manate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J]. Journal of the American Chemical Society, 2013, 135(38): 14125-14133.
[4]TERRASCHKE H, WICKLEDER C. UV, blue, green, yellow, red, and small: Newest developments on Eu2+-doped nanophosphors[J]. Chemical Reviews, 2015, 115(20): 11352-11378.
[5]LI Y, GECEVICIUS M, QIU J R. Long persistent phosphors: From fundamentals to applications[J]. Chemical Society Reviews, 2016, 45(8): 2090-2136.
[6]ARRAS J, BRAESE S. The world needs new colors: Cutting edge mobility focusing on long persistent luminesc-ence materials[J]. Chemphotochem, 2018, 2(2): 55-66.
[7]HAI O, ZHANG Z H, REN Q, et al. The preparation and functional studies of the porous long afterglow luminescent materials[J]. Dyes and Pigments, 2018, 156: 160-166.
[8]HAI O, REN Q, WU X L, et al. Insights into the element gradient in the grain and luminescence mechanism of the long afterglow material Sr2MgSi2O7:Eu2+,Dy3+[J]. Journal of Alloys and Compounds, 2019,779: 892-899.
[9]卞雪艷, 朱平, 王懷芳, 等. 長余輝發(fā)光海藻纖維的制備及性能研究[J]. 合成纖維, 2017, 46(12): 11-14.
BIAN Xueyan, ZHU Ping, WANG Huaifang, et al. Preparation and properties of long afterglow luminescent alginate fiber[J]. Synthetic Fiber in China, 2017, 46(12): 11-14.
[10]史晨, 侯雪斌, 晉陽, 等. 長余輝發(fā)光再生纖維素纖維的制備[J]. 紡織學報, 2016, 37(12): 1-5.
SHI Chen, HOU Xuebin, JIN Yang, et al. Preparation of long-afterglow luminescent regenerated cellulose fiber[J]. Journal of Textile Research, 2016, 37(12): 1-5.
[11]郭雪峰. 發(fā)光纖維用納米鋁酸鹽發(fā)光材料的研究進展[J]. 現(xiàn)代紡織技術(shù), 2020, 28(1): 21-26.
GUO Xuefeng. Research progress of nanoscale aluminate luminescent materials for luminous fiber[J]. Advanced Textile Technology, 2020, 28(1): 21-26.
[12]蘆博慧, 魏新, 朱亞楠, 等. 稀土夜光纖維光色的研究與進展[J]. 化工新型材料, 202 49(12): 210-214.
LU Bohui, WEI Xin, ZHU Yanan, et al. Research and development on light color property of rare earth luminous fiber[J]. New Chemical Materials, 202 49(12): 210-214.
[13]梁小平, 劉凱, 王歡, 等. 納米SrAl2O4: Eu2+, Dy3+長余輝發(fā)光材料的制備與表征[J]. 天津工業(yè)大學學報, 2014, 33(6): 25-29.
LIANG Xiaoping, LIU Kai, WANG Huan, et al. Synthesis and characterization of nanosized SrAl2O4: Eu2+, Dy3+ long afterglow luminescent material[J]. Journal of Tianjin Polytechnic University, 2014, 33(6): 25-29.
[14]HE L, JIA B L, CHE L Y, et al. Preparation and optical properties of afterglow Sr2MgSi2O7:Eu2+,Dy3+ electrospun nanofibers[J]. Journal of Luminescence, 2016, 172(2): 317-322.
[15]YE F, DONG S J, TIAN Z, et al. Fabrication of the PLA/Sr2MgSi2O7:Eu2+,Dy3+ long-persistent luminescence composite fibers by electrospinning[J]. Optical Materials, 2013, 36(2): 463-466.
[16]狄純秋, 郭靜, 管福成, 等. 雙金屬離子交聯(lián)海藻酸鹽復合相變纖維的制備與性能[J]. 紡織學報, 2023, 44(5): 54-62.
DI Chunqiu, GUO Jing, GUAN Fucheng, et al. Preparation and characterization of phase change fibers of bimetal ion crosslinked alginate composites[J]. Journal of Textile Research, 2023, 44(5): 54-62.
[17]卞雪艷, 朱平, 楚旭東, 等. 光致變色海藻纖維的制備及性能研究[J]. 合成纖維, 2018, 47(8): 1-5.
BIAN Xueyan, ZHU Ping, CHU Xudong, et al. Preparation and performance of photochromic alginate fiber[J]. Synthetic Fiber in China, 2018, 47(8): 1-5.
[18]XIONG M, XI X, GONG H, et al. Effects of SiO2 coating on luminescence property and thermostability of Sr2MgSi2O7:Eu2+,Dy3+ phosphors[J]. Journal of Sol-Gel Science and Technology, 2017, 81(2): 894-902.
[19]ZHANG Y S, YIN H B, WANG A L, et al. Deposition and characterization of binary Al2O3/SiO2 coating layers on the surfaces of rutile TiO2 and the pigmentary properties[J]. Applied Surface Science, 2010, 257(4): 1351-1360.
Preparation of long afterglow sodium alginate fibers and their properties
WANG Yong, DU Pingfan
(College of Textile Science and Engineering (International Institute of Silk),
Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract:
As the concept of green environmental protection continues to be deeply rooted in people's minds, long afterglow luminescent materials, as a kind of green energy-saving environmental protection materials, have gradually attracted widespread attention from researchers. At the same time, most of the studies on the application of long afterglow luminescent materials in the textile field are aluminate long afterglow luminescent materials, and there is relatively little research on the application of silicate long afterglow luminescent materials. In addition, silicate long afterglow luminescent materials have excellent water resistance compared with aluminate materials, so there is no need for coupling modification before incorporating them into the spinning solution, which can reduce the process of preparing long afterglow fibers with afterglow properties.
To prepare sodium alginate fibers with afterglow properties, a series of sodium alginate spinning solutions with mass gradients (1.5%, 2.0% and 2.5%) doped with Sr2MgSi2O7:Eu2+,Dy3+ long afterglow luminescent materials were set up, and a series of long afterglow sodium alginate fibers with different mass fractions of long afterglow luminescent materials were prepared by wet spinning. The surface microstructure, chemical structure, afterglow properties and mechanical properties of sodium alginate fibers and sodium alginate fibers were tested and analyzed by field emission scanning electron microscope, Fourier infrared instrument, fluorescence spectrometer, fluorescence brightness tester and tension meter, and the best doping quality of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow luminescent material was explored. It provides a theoretical basis for determining the doping quality of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow luminescent materials in other kinds of fiber spinning solution. The results show that the surface of sodium alginate fiber changes from being smooth to being rough and its cross section shape changes from being round to being sawtooth after the addition of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow luminescent material. At the same time, as the Sr2MgSi2O7:Eu2+,Dy3+ long afterglow luminescent material is successfully incorporated into the sodium alginate fiber, the sodium alginate fiber has the afterglow performance, and has a wide and strong emission peak in its emission spectrum, which is attributed to the characteristic emission peak of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow sodium alginate. In addition, the mechanical properties of sodium alginate fiber decrease due to the addition of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow luminescent materials. All the experimental results show that when the mass fraction of sodium alginate is 4% and the mass fraction of Sr2MgSi2O7:Eu2+,Dy3+ is 2%, the prepared sodium alginate fiber not only has good surface morphology and mechanical properties, but also has good afterglow properties.
In this paper, a series of long afterglow sodium alginate fibers with different mass fractions were prepared by wet spinning and their properties were characterized. The influence of doping different mass fractions of Sr2MgSi2O7:Eu2+,Dy3+ afterglow luminescent materials on the properties of sodium alginate fibers was studied. The optimal doping concentration of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow luminescent material was determined, providing a theoretical basis for the incorporation of other kinds of spinning fluids into the material. At the same time, the prepared long afterglow sodium alginate fiber has good afterglow performance and excellent mechanical properties, and can be used in night clothing, stage decoration and anti-counterfeiting signs and other applications.
Keywords:
sodium alginate fiber; long afterglow luminescent materials; long afterglow sodium alginate fiber; afterglow property; mechanical property