国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

番石榴抗壞血酸合成酶基因在果實(shí)發(fā)育過程中表達(dá)特性分析

2024-08-24 00:00:00蕭允藝趙曉夢(mèng)劉金豐于澤浩劉杰鳳林麗靜
關(guān)鍵詞:番石榴基因表達(dá)抗壞血酸

摘要:【目的】測(cè)定番石榴果實(shí)發(fā)育過程中的抗壞血酸含量,并分析番石榴抗壞血酸合成酶基因的表達(dá)特性,為后續(xù)深入挖掘果實(shí)抗壞血酸合成調(diào)控機(jī)理及選育優(yōu)質(zhì)番石榴品種提供理論參考?!痉椒ā恳苑衿贩N珍珠果實(shí)為研究對(duì)象,測(cè)定不同果實(shí)發(fā)育(花后10~130 d)過程中果肉(鮮重)中抗壞血酸含量及單果抗壞血酸總量,并從番石榴基因組數(shù)據(jù)中挖掘其抗壞血酸合成途徑酶基因,通過實(shí)時(shí)熒光定量PCR檢測(cè)其在果實(shí)發(fā)育過程中的表達(dá)特性?!窘Y(jié)果】珍珠番石榴品種果實(shí)發(fā)育成熟周期為130d,生長(zhǎng)速率出現(xiàn)2個(gè)高峰期,分別出現(xiàn)在幼果膨大期和大果膨大期,果實(shí)果皮顏色從深綠色向淺綠轉(zhuǎn)變,在花后110 d果皮顏色轉(zhuǎn)變最明顯。番石榴果肉抗壞血酸含量在果實(shí)發(fā)育成熟前期(花后10~40 d)保持在較高水平,特別是在花后30 d,果肉抗壞血酸含量達(dá)132 mg/100 g,在花后40~100 d抗壞血酸含量稍微下降但較穩(wěn)定,保持在102.73 mg/100 g以上,成熟后期隨果實(shí)迅速膨大而抗壞血酸含量略有下降,為84.39 mg/100 g,但單果抗壞血酸總量持續(xù)上升。從番石榴基因組數(shù)據(jù)共鑒定獲得13個(gè)基因編碼果實(shí)抗壞血酸合成途徑相關(guān)酶的基因,這些基因編碼完整L-半乳糖途徑的相關(guān)酶,其中有6個(gè)基因集中于3號(hào)染色體,推測(cè)3號(hào)染色體是番石榴果實(shí)維生素合成的關(guān)鍵染色體。實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果顯示,除磷酸甘露糖異構(gòu)酶基因(PgPMII)和甘露糖磷酸變位酶基因(PgPMMI)在果實(shí)發(fā)育成熟過程中表達(dá)不規(guī)律外,其余11個(gè)L-半乳糖途徑相關(guān)酶基因均在果實(shí)發(fā)育中期上調(diào)表達(dá),后期表達(dá)又下調(diào)。果實(shí)抗壞血酸含量與GDP-甘露糖焦磷酸化酶基因(PgGMP1)和GDP-甘露糖-3,5'-表型異構(gòu)酶基因(gGME2)表達(dá)顯著正相關(guān)(Plt;0.05)?!窘Y(jié)論】番石榴果實(shí)抗壞血酸積累與其合成途徑基因的完整性及表達(dá)水平密切相關(guān),推測(cè)由9類酶組成的L-半乳糖途徑存在復(fù)雜的分子調(diào)控網(wǎng)絡(luò),挖掘獲得的13個(gè)L-半乳糖途徑成員,可用于后續(xù)番石榴優(yōu)良品種的選育及轉(zhuǎn)錄調(diào)控機(jī)理研究。

關(guān)鍵詞:番石榴;抗壞血酸;果實(shí)發(fā)育;基因表達(dá)

中圖分類號(hào):S667.903.6文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)02-0422-10

Expression characteristics ofascorbic acid synthase gene in guava fruit during fruit development

XIAO Yun-yi1,ZHAO Xiao-meng1,LIU Jin-feng',YU Ze-hao',LIU Jie-feng',LIN Li-jing?\"

('College of Biological and Food Engineering,Guangdong University of Petrochemical Technology,Maoming,Guangdong 525000,China;2Institute of Agricultural Products Processing,Chinese Academyof Tropical Agricultural Sciences/

Hainan Key Laboratory of Fruit and VegetableStorageand Processing,Zhanjiang,Guangdong 524001,China)

Abstract:[Objective]The content of ascorbic acid during the development of guava fruit was determined and the expression characteristics of ascorbic acid synthase gene in guava were analyzed,which provided theoretical reference for further exploring the regulation mechanism of fruit ascorbic acid synthesis and breeding guavavarieties with high quality.【Method】The fruit of guava variety Pearl was used as the research object to determine the content of ascorbic acid in the flesh(fresh weight)and thetotal amount of ascorbic acid in single fruit during the development of different fruits(10-130d after anthesis).The ascorbate synthesis pathway enzyme genes were obtained from the genomic data of guava,and their expression characteristics during the development of fruit were detected by real-time fluorescence quantitative PCR.【Result】The ripening period of Pearl guava variety was 130 d,and the growthrate showed two peaks,which appeared in theyoung fruit expansion stage and the large fruit expansion stage,respectively.The color of the fruit peel changed from dark green to lightgreen,and thecolor change was the most obvious at 110 d after flowering.The content of ascorbicacid in guava flesh remained at ahigh level in the early stage of fruit development and ripening(10-40 d after flowering),es-pecially at 30 d after flowering,the contentof ascorbic acid in guava flesh reached 132 mg/100 g,and slightly decreased but remained stable at more than 102.73 mg/100 g at 40-100 d after flowering.The ascorbic acid content decreased slightly with the rapid expansion of fruit in the late ripening period,to 84.39 mg/100 g,but the total ascorbic acid content of single fruit continued to increase.A total of 13 genes encoding enzymes related to fruit ascorbate synthesis pathway were obtained fromguava genome data,and these genes encoded complete L-galactose pathway related enzymes,among which 6 genes were concentrated in chromosome 3,suggesting that chromosome 3 was the key chromosome for vitamin synthesis in guava fruit.Real-time fluorescence quantitative PCR results showed that except for the iregular expression of phosphomannose isomerase gene(PgPMII)and phosphomannomutase gene(PgPMMI)during fruit development and maturation,the expression of the other 11 L-galactose pathway related enzyme genes was up-regulated in the middle stage of fruit development,and down-regulated in the later stage.The content of ascorbic acid in fruit was significantly posi- tively correlated with the expression of GDP-mannose pyrophosphorylase gene(PgGMP1)and GDP-mannose-3',5'-epime- rase gene(PgGME2)(Plt;0.05).【Conclusion】The accumulation of ascorbic acid in guava fruits is closely related to the in- tegrity and expression level of the synthesis pathway genes.It is speculated that the L-galactose pathway composed of 9 enzymes has acomplex molecular regulatory network.The 13 members of L-galactose pathway obtained by mining can be used for subsequent breeding of excellent guava varieties and transcriptional regulation mechanism research.

Keywords:guava;ascorbic acid;fruit development;gene expression

Foundation items:National Natural Science Foundation of China(31901733);Guangdong Universities Key Areas Special Project(2020ZDZX1056);Guangdong Universities Characteristic Innovation Project(2023KTSCX090);Open Project of Hainan Key Laboratory of Fruit and Vegetable Storage and Processing(HNGS202201)

0引言

【研究意義】番石榴(Psidium guajava Linn.)又名雞矢果,因其果實(shí)中豐富的抗壞血酸而備受關(guān)注,享有“熱帶蘋果”之美稱(Feng et al.,2021)??箟难嵊置S生素C,具有強(qiáng)抗氧化活性,可保護(hù)人體活性細(xì)胞組織免受自由基的影響,增強(qiáng)人體免疫力,在維護(hù)人體健康方面起著至關(guān)重要的作用,尤其對(duì)預(yù)防和治療動(dòng)脈硬化性心血管疾病和高血壓、中風(fēng)等疾病有顯著效果(Radi et al.,2020;Sunnetci et al.,2020;Vasques et al.,2023),且促進(jìn)膠原質(zhì)的形成,使皮膚緊致(Maione-Silva et al.,2019)。此外,抗壞血酸對(duì)植物生理生化具有多方面的影響,如有絲分裂、細(xì)胞膨大、衰老和抵抗逆境等(Xiang et al.,2020;Deng et al.,2022;Liao et al.,2023)。由于人類自身無法合成抗壞血酸(Nishikimi et al.,1994),食用新鮮水果是人們獲得抗壞血酸的主要途徑之一。因此,研究番石榴果實(shí)發(fā)育過程中富集抗壞血酸的分子機(jī)理,對(duì)挖掘熱帶水果營(yíng)養(yǎng)與保健機(jī)理具有重要指導(dǎo)意義?!厩叭搜芯窟M(jìn)展】目前植物抗壞血酸生物合成有4條途徑,即Smirnoff-Wheeler(L-半乳糖)途徑(Wheeler et al.,1998)、半乳糖醛酸途徑(Agius et al.,2003)、古洛糖途徑(Wolucka and van Montagu,2003)和肌醇途徑(Lorence et al.,2004)。植物抗壞血酸生物合成的L-半乳糖途徑由9類酶組成,包括磷酸葡萄糖異構(gòu)酶(PGI)、甘露糖-6-磷酸異構(gòu)酶(PMI)、甘露糖磷酸變位酶(PMM)、GDP-甘露糖焦磷酸化酶(GMP)、GDP-甘露糖-3',5'-表型異構(gòu)酶(GME)、GDP-L-半乳糖磷酸化酶(GGP)、L-半乳糖-1-磷酸磷酸酶(GPP)、L-半乳糖脫氫酶(GalDH)、L-半乳糖-1,4-內(nèi)酯脫氫酶(GLDH),其中GME和GGP是調(diào)節(jié)抗壞血酸生物合成的關(guān)鍵步驟(陳衛(wèi)芳等,2023;王壯壯等,2023)(圖1)。目前已從擬南芥中篩選出多個(gè)抗壞血酸缺陷型突變體(vtcl、vtc2、vtc3、vtc4和vtc5),除VTC3基因,其余基因均被克隆并確認(rèn)是L-半乳糖合成途徑的基因(Conklin et al.,1999,2006,2013;Gao et al.,2011),說明L-半乳糖途徑是植物體內(nèi)抗壞血酸合成的最主要途徑。刺梨L-半乳糖途徑成員GLDH、GGP、GPP和GME響應(yīng)果實(shí)發(fā)育成熟基因的表達(dá)水平明顯提高,與果實(shí)抗壞血酸含量也明顯提高(Yan et al.,2015)。獼猴桃品種紅陽果實(shí)成熟發(fā)育過程中AcPMII、AcPMMI1、AcGMP1、AcGME1、AcGGPI、AcGPP1和AcGPP2基因表達(dá)水平顯著下降,果實(shí)抗壞血酸含量也逐漸下降(Zhang et al.,2018)。類似的研究結(jié)果還有甜櫻桃品種紅燈,果實(shí)成熟過程中抗壞血酸含量下降與其合成酶相關(guān)基因(GPI、PMI、PMM、GMP、GME、GPP、GGP1、GGP2、GalDH、GalLDH)表達(dá)量下降密切相關(guān)(Liang et al.,2017)。隨著番石榴品種新世紀(jì)基因組測(cè)序完成,進(jìn)一步證明了番石榴果實(shí)抗壞血酸合成的主導(dǎo)途徑為L(zhǎng)-半乳糖途徑(Feng et al.,2021),該途徑的基因成員齊全,但其他3條合成途徑(半乳糖醛酸途徑、古洛糖途徑、肌醇途徑)均缺乏部分關(guān)鍵基因。【本研究切入點(diǎn)】雖然已有研究證明L-半乳糖途徑是番石榴果實(shí)抗壞血酸合成的主導(dǎo)途徑,但未見有關(guān)番石榴果實(shí)抗壞血酸合成途徑(L-半乳糖途徑)成員在果實(shí)成長(zhǎng)發(fā)育過程中的表達(dá)特性及其與果實(shí)抗壞血酸積累的研究報(bào)道?!緮M解決的關(guān)鍵問題】篩選番石榴基因組數(shù)據(jù),獲得L-半乳糖途徑的所有基因成員,分析其在間隔10 d的果實(shí)生長(zhǎng)發(fā)育過程中的表達(dá)特性,為后續(xù)深入挖掘果實(shí)抗壞血酸合成調(diào)控機(jī)理及選育優(yōu)質(zhì)番石榴品種提供理論參考。

1材料與方法

1.1試驗(yàn)材料

供試材料為番石榴品種珍珠的果實(shí),采自茂名市新安鎮(zhèn)化州市化潤(rùn)農(nóng)業(yè)有限公司果園。在果實(shí)盛花期掛牌,選用10棵番石榴樹,每棵樹掛牌標(biāo)記至少15個(gè)果實(shí),花后130d果實(shí)發(fā)育成熟,每隔10d采摘果實(shí)(每棵樹采摘1個(gè)果,共10個(gè))后立即運(yùn)回實(shí)驗(yàn)室,測(cè)量果實(shí)的重量,并拍照,然后果肉切成小塊并用液氮速凍,并置于-80℃冰箱保存?zhèn)溆谩?/p>

主要試劑:Solarbio抗壞血酸含量檢測(cè)試劑盒購自廣州鼎國生物技術(shù)有限公司;HifairⅢ1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)、Hieff UNICON°qPCR SYBR Green Master Mix(抗體法,No Rox)試劑購自翌圣生物科技(上海)股份有限公司;其他生化試劑均購自生工生物工程(上海)股份有限公司。主要儀器設(shè)備:GelDocTM EZ image凝膠成像儀(美國Bio-Rad公司)、CFX96熒光定量PCR儀(美國Bio-Rad公司)、LSHW-500D立式恒溫振蕩器(北京亞泰科隆儀器技術(shù)有限公司)、GL-21MC冷凍離心機(jī)(湖南湘儀離心機(jī)儀器有限公司)、A?1研磨機(jī)(德國IKA公司)和多功能酶標(biāo)儀[美谷分子(Molecular Devices)儀器(上海)有限公司]。

1.2試驗(yàn)方法

1.2.1果肉抗壞血酸含量測(cè)定取3 g果肉樣品,在液氮中研磨至粉狀,再稱取約0.1 g組織按Solar-bio抗壞血酸含量檢測(cè)試劑盒說明書進(jìn)行抗壞血酸含量測(cè)定,使用多功能酶標(biāo)儀測(cè)量樣品吸光值(波長(zhǎng)

265 nm),計(jì)算每100 g果肉(鮮重)中抗壞血酸含量(mg/100 g),并計(jì)算單個(gè)果實(shí)中抗壞血酸總含量(mg)。

1.2.2總RNA提取和反轉(zhuǎn)錄使用熱硼酸法提取果實(shí)總RNA(Wan et al.,1994),稱取約3 g果實(shí)樣品,液氮下研磨成粉,加入5mL 80℃預(yù)熱的提取液[0.2 mol/L十水硼酸鈉,30 mmol/L乙二醇雙(2-氨乙基醚)四乙酸(EGTA),1%十二烷基硫酸鈉(SDS),1%脫氧膽酸鈉,2%PVP-40,0.5%NP-40,0.1%二硫蘇糖醇(DTT)],并加入0.5 mg的蛋白酶K,于42℃下振蕩提取2 h,然后加入0.6 mL 2 mol/L氯化鉀溶液于4℃下放置1 h后離心沉淀蛋白,上清液通過加入1/3體積的8 mol/L氯化鋰溶液過夜沉淀RNA,最后經(jīng)過2 mol/L氯化鋰溶液清洗沉淀,再經(jīng)過0.5 mL Tris-HCl(10 mmol/L,pH 7.5)緩沖液溶解沉淀后加入50μL 2 mol/L醋酸鉀,通過乙醇沉淀并清洗RNA,真空干燥后加入無RNase水溶解RNA,-80℃凍存。通過1%瓊脂糖凝膠電泳檢測(cè)總RNA完整性,取1μg總RNA為模板,使用HifairⅢ1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)反轉(zhuǎn)錄試劑盒中的DNase I去除樣品中殘留的DNA,再以Random primers/Oligo(dT)18混合引物反轉(zhuǎn)錄合成番石榴cDNA第一鏈,cDNA稀釋20倍后置于-20℃冰箱保存?zhèn)溆谩?/p>

1.2.3番石榴抗壞血酸合成途徑構(gòu)建基因圖譜

通過番石榴基因組數(shù)據(jù)(https:/ftp.ncbi.nlm.nih.gov/genomes/genbank/plant/Psidium_guajaval),使用在線基因圖譜軟件MG2C(http://mg2c.iask.in/mg2c_v2.1/)繪制相關(guān)基因的圖譜(Chao et al.,2015)。

1.2.4引物設(shè)計(jì)及合成采用Primer Premier 5.0

設(shè)計(jì)PgPGII、PgPGI2、PgPGI3、PgPMII、PgPMM1、PgGMP1、PgGME1、PgGME2、PgGGP1、PgGGP2,PgGPP1、PgGalDH1和PgGLDH1基因的熒光定量PCR引物并委托生工生物工程(上海)股份有限公司廣州分公司合成(表1)。

1.2.5實(shí)時(shí)熒光定量PCR檢測(cè)選用PgActin為內(nèi)參基因(Sulistio et al.,2022),選用HieffUNICON qPCR SYBR Green Master Mix試劑,擴(kuò)增程序:95℃預(yù)變性30 s;95℃,10s,60℃,30s,進(jìn)行40個(gè)循環(huán)。基因相對(duì)表達(dá)量采用2~0方法進(jìn)行計(jì)算(宋國華等,2014),每個(gè)樣品設(shè)3個(gè)重復(fù),將花后10d定義為1個(gè)單位作為對(duì)照。最后對(duì)目的基因在花后果實(shí)不同發(fā)育時(shí)期的表達(dá)模式進(jìn)行分析。

1.3統(tǒng)計(jì)分析

采用IBM SPSS Statistics 27.0進(jìn)行單因素方差顯著性分析及數(shù)據(jù)相關(guān)分析,通過Sigmaplot 12.0作圖。

2結(jié)果與分析

2.1番石榴果實(shí)發(fā)育變化及增長(zhǎng)速率分析結(jié)果

供試番石榴品種珍珠于11月5日謝花,翌年3月15日成熟,果實(shí)發(fā)育成熟周期為130 d,成熟番石榴果實(shí)形態(tài)偏梨形,果實(shí)生長(zhǎng)發(fā)育過程中,果皮顏色從深綠色向淺綠轉(zhuǎn)變,在花后110d果皮顏色轉(zhuǎn)變最明顯(圖2)。番石榴單果重從花后10d的1.7g到花后130d的376.9 g(圖3-A),共有2個(gè)果實(shí)生長(zhǎng)發(fā)育高峰期,呈現(xiàn)雙S形生長(zhǎng)趨勢(shì)(圖3-B)。單果增長(zhǎng)速率可分為3個(gè)階段:幼果膨大期、小果生長(zhǎng)緩慢期和大果膨大期,幼果膨大期為開花后10~40 d,峰值出現(xiàn)在花后20 d,果實(shí)增重明顯;小果生長(zhǎng)緩慢期為花后50~90 d,該階段果實(shí)生長(zhǎng)緩慢,果實(shí)增重不顯著(Pgt;0.05);大果膨大期為花后100~130 d,該階段果實(shí)進(jìn)入膨大期,單果增長(zhǎng)速率顯著加快(Plt;0.05,下同),峰值在花后120 d(圖3-B)。

2.2番石榴果實(shí)發(fā)育過程中果肉抗壞血酸含量變化

番石榴果肉抗壞血酸含量在果實(shí)發(fā)育成熟前期(花后10~40 d)保持在較高水平,特別是在花后30 d,果肉抗壞血酸含量達(dá)132 mg/100 g,后續(xù)果肉抗壞血酸含量稍微下降,但在花后50~100 d抗壞血酸含量較為穩(wěn)定,保持在稍高于102.73 mg/100 g,然而自花后120 d開始果實(shí)迅速膨大,抗壞血酸含量降低,果實(shí)成熟時(shí)(花后130 d)抗壞血酸含量為84.39 mg/100 g(圖4-A)。番石榴果實(shí)發(fā)育過程中,單果重量升高,雖然果肉抗壞血酸含量呈上下波動(dòng),但單果抗壞血酸總量持續(xù)上升,并在花后110 d顯著升高(圖4-B)。

2.3番石榴抗壞血酸合成途徑相關(guān)酶基因圖譜分析結(jié)果

通過比較番石榴轉(zhuǎn)錄組數(shù)據(jù)和基因組數(shù)據(jù),共獲得13個(gè)編碼果實(shí)抗壞血酸合成途徑相關(guān)酶

蛋白的基因,分別命名為PgPGI1、PgPGI2、PgPGI3、PgPMI1、PgPMM1、PgGMP1、PgGME1、PgGME2、PgGGPI、PgGGP2、PgGPPI、PgGalDHI和PgGLDHI,

花后天數(shù)(d)Days after anthesis

其中PgPGII、PgPGI2、PgPGI3、PgPMII、PgPMMI和

PgGMP1為果實(shí)抗壞血酸合成前體相關(guān)酶基因,涉及果糖和甘露糖代謝;PgGMEI、PgGME2、PgGGPI、PgGGP2、PgGPP1、PgGalDHI和PgGLDH1為果實(shí)抗壞血酸合成后期相關(guān)酶基因,這些合成前后期基因成員編碼完整L-半乳糖途徑相關(guān)酶,證實(shí)L-半乳糖途徑是番石榴抗壞血酸合成的主導(dǎo)途徑。通過基因圖譜分析發(fā)現(xiàn),13個(gè)抗壞血酸合成途徑相關(guān)酶基因中,有6個(gè)基因集中分布在3號(hào)染色體上,2號(hào)和7號(hào)染色體上均分布2個(gè)基因,4號(hào)、5號(hào)和10號(hào)染色體上各有1個(gè)基因,其他染色體上未存在基因分布(圖5),推測(cè)3號(hào)染色體是番石榴果實(shí)抗壞血酸合成的關(guān)鍵染色體。

2.4番石榴果實(shí)發(fā)育成熟過程中抗壞血酸合成途徑關(guān)鍵酶基因表達(dá)特性

番石榴果實(shí)發(fā)育成熟過程中,抗壞血酸合成途徑關(guān)鍵酶基因表達(dá)特性如圖6所示。果實(shí)抗壞血酸合成途徑中,PgPGI1、PgPGI2和PgPGI3基因編碼PGI,能使磷酸葡萄糖轉(zhuǎn)變?yōu)榱姿峁?,在果?shí)發(fā)育后期基因的相對(duì)表達(dá)量均顯著下降,與果肉抗壞血酸含量(圖4)呈正相關(guān)。PgGMP1基因也呈現(xiàn)相似的表達(dá)模式,其編碼的GMP能催化D-甘露糖-1-磷酸合成GDP-D-甘露糖。另外,PgPMII和PgPMMI基因在果實(shí)發(fā)育成熟過程中表達(dá)不規(guī)律。PgGME1和PgGME2能催化GDP-D-甘露糖生成GDP-L-半乳糖,是在糖核苷水平上植物抗壞血酸生物合成的第一步,PgGMEI和PgGME2基因在果實(shí)成熟后期表達(dá)也明顯下降。果實(shí)抗壞血酸合成的L-半乳糖途徑的其他基因成員(PgGGP1、PgGGP2、PgGPP1、PgGalDH1和PgGLDH1)均在果實(shí)發(fā)育后期表達(dá)顯著降低。

2.5番石榴抗壞血酸合成途徑關(guān)鍵酶基因表達(dá)與抗壞血酸含量的相關(guān)分析結(jié)果

相關(guān)分析結(jié)果(表2)顯示,果實(shí)生長(zhǎng)發(fā)育過程中,只有PgGMP1和PgGME2基因表達(dá)與果肉抗壞血酸含量顯著正相關(guān),推測(cè)其原因是抗壞血酸含量變化滯后,同時(shí)抗壞血酸參與果實(shí)生長(zhǎng)代謝,果實(shí)呼吸過程中也會(huì)氧化或分解。

3討論

富含抗壞血酸水果存在較高的加工和保健商品價(jià)值,因此果實(shí)抗壞血酸合成及調(diào)控研究也逐漸受到人們的關(guān)注。植物抗壞血酸合成存在組織特異性,同一植物不同組織之間抗壞血酸含量存在差異,如嘎拉蘋果鮮葉片中抗壞血酸含量超過500 mg/100 g,然而果肉抗壞血酸含量低于5mg/100 g(Mellidou et al.,2012)。此外,植物抗壞血酸合成還存在品種差異,張麗梅等(2019)對(duì)33份番石榴種質(zhì)資源進(jìn)行分類,結(jié)果發(fā)現(xiàn)果肉抗壞血酸含量為50.39~115.44 mg/100 g,可分為六大類,其中番石榴品種珍珠歸第4類(82.35~87.68 mg/100 g),與本研究測(cè)定數(shù)據(jù)相似。本研究結(jié)果顯示,番石榴品種珍珠在不同生長(zhǎng)發(fā)育時(shí)期果肉抗壞血酸含量變化不大,幼果膨大期比130 d成熟果的含量稍高,與番石榴品種新世紀(jì)的研究結(jié)果(Feng et al.,2021)存在明顯差異,其果實(shí)抗壞血酸含量隨著果實(shí)生長(zhǎng)發(fā)育逐步上升,從幼果抗壞血酸含量57.20 mg/100 g升至中期果的188.69 mg/100g,最后成熟果達(dá)551.66 mg/100 g,存在差異的原因可能是品種差異及測(cè)量方法不同。

富含抗壞血酸的植物果實(shí)及其合成酶相關(guān)基因表達(dá)一直備受關(guān)注。享有“維生素C大王”的刺梨果實(shí)中發(fā)現(xiàn)14個(gè)抗壞血酸合成相關(guān)基因,且證實(shí)其高抗壞血酸積累與合成基因的高表達(dá)密切相關(guān)(Huang et al.,2014)。結(jié)合轉(zhuǎn)錄組測(cè)序和實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果,共發(fā)現(xiàn)刺梨中存在15個(gè)參與果實(shí)抗壞血酸合成的基因(Yan et al.,2015)。其他富含抗壞血酸水果如櫻桃(Liang et al.,2017)、獼猴桃(Zhang et al.,2018)、菠蘿(Léchaudel et al.,2018)、辣椒(Chiaiese et al.,2019)、梨(Xing et al.,2019a)、蘋果(Lemmens et al.,2020)、甜玉米(Xiang et al.,2020)等也陸續(xù)有果實(shí)發(fā)育過程中抗壞血酸合成相關(guān)分子機(jī)理的研究報(bào)道。番石榴品種珍珠是廣東主栽番石榴品種,本研究結(jié)合基因組和轉(zhuǎn)錄組數(shù)據(jù),共發(fā)現(xiàn)參與番石榴L-半乳糖途徑的13個(gè)關(guān)鍵成員,與刺梨(Yan et al.,201)、甜櫻(Liang et al.,2017)等其他水果抗壞血酸合成途徑成員數(shù)量相當(dāng)。番石榴果實(shí)富含抗壞血酸,因?yàn)楣麑?shí)抗壞血酸合成途徑(L-半乳糖途徑)完整,且基因成員在果實(shí)發(fā)育過程中保持表達(dá),并在花后70~90 d出現(xiàn)小高峰,推測(cè)其維持果實(shí)抗壞血酸合成相關(guān)酶水平,從而保持果實(shí)抗壞血酸含量不至于因?yàn)楣麑?shí)迅速膨大而顯著下降?;虮磉_(dá)與抗壞血酸含量相關(guān)分析結(jié)果發(fā)現(xiàn),只有PgGMP1和PgGME2基因表達(dá)與果肉抗壞血酸含量顯著正相關(guān),其他11個(gè)L-半乳糖途徑成員表達(dá)與抗壞血酸含量無顯著相關(guān)性。櫻桃果實(shí)中PacGPI、PacPMI、PacPMM、PacGMP、PacGME、PacGGP1、PacGGP2、PacGPP、PacGalDH和PacGalLDH基因表達(dá)與果實(shí)抗壞血酸含量也呈不顯著相關(guān)(Liang et al.,2017)。上述結(jié)果間接說明果實(shí)發(fā)育成熟過程中物質(zhì)代謝的復(fù)雜性,基因可能存在轉(zhuǎn)錄后修飾或蛋白水平調(diào)控,另外果肉抗壞血酸含量亦受其他因素影響,如氧化代謝與分解。

果肉抗壞血酸含量在果實(shí)發(fā)育過程中受一系列因素影響,如果實(shí)膨大,光照、溫度、土肥以及病蟲害等。光照可刺激抗壞血酸生物合成的L-半乳糖途徑,通過誘導(dǎo)途徑基因表達(dá),使植物組織中抗壞血酸含量增加(Ntagkas et al.,2018)。Jiang等(2018)研究發(fā)現(xiàn),茄子抗壞血酸合成相關(guān)基因SmGMP、SmGME1、SmGME2、SmGGP、SmGPP、SmGalDH和SmGLDH的啟動(dòng)子中存在大量光響應(yīng)元件,從而受光誘導(dǎo)。本研究供試番石榴取樣于秋末至初春,日照時(shí)間于中期最短,而中期抗壞血酸含量有所下降,推測(cè)抗壞血酸合成與光照時(shí)間密切相關(guān)。番茄果實(shí)低溫脅迫下,抗壞血酸生物合成相關(guān)酶基因GAILDH、GME和GPP均響應(yīng)低溫誘導(dǎo)表達(dá)上升,從而促進(jìn)抗壞血酸的積累(Ioannidi et al.,2009;Tsaniklidis et al.,2014),因番石榴種植所處位置溫度未達(dá)到低溫脅迫要求,未見果實(shí)抗壞血酸含量因溫度變化而出現(xiàn)顯著差異。本研究挖掘了番石榴抗壞血酸合成途徑的成員,為四季成花成果的番石榴品質(zhì)形成及貯藏保鮮過程中品質(zhì)的保持提供研究對(duì)象及思路。

植物抗壞血酸的積累除受外界環(huán)境影響外,還受到內(nèi)在轉(zhuǎn)錄調(diào)控因子影響。AMR1(F-box蛋白)是從擬南芥臭氧處理突變體庫中篩選出的第1個(gè)抗壞血酸合成調(diào)控因子,AMR1可負(fù)調(diào)控L-半乳糖途徑中GMP、GME、GGP、GPP、GalDH和GLDH基因的表達(dá)水平從而調(diào)控抗壞血酸含量(Zhang et al.,2009)。AtERF98是擬南芥中的第2個(gè)抗壞血酸合成控因子,瞬時(shí)表達(dá)和染色質(zhì)免疫沉淀(ChIP)試驗(yàn)也證明了AtERF98可結(jié)合VTCI基因啟動(dòng)子上的順式作用元件DRE-2,正向調(diào)控VTCI基因表達(dá),從而正向調(diào)控?cái)M南芥抗壞血酸合成(Zhang et al.,2012)。ABI4轉(zhuǎn)錄因子直接結(jié)合到抗壞血酸生物合成途徑關(guān)鍵基因VTC2的啟動(dòng)子上,抑制VTC2基因轉(zhuǎn)錄,從而阻礙抗壞血酸的生物合成(Kakan et al.,2021)。番茄作為果實(shí)抗壞血酸合成調(diào)控研究的模式植物,研究發(fā)現(xiàn)番茄的SIHZ24(HD-ZIP轉(zhuǎn)錄因子)可通過正向調(diào)控SIGMP3基因的表達(dá)來正向調(diào)控抗壞血酸的積累(Hu et al.,2016),另外,SlbHLH59轉(zhuǎn)錄因子直接結(jié)合于SIPMM、SIGMP2和SIGMP3基因啟動(dòng)子,同樣促進(jìn)抗壞血酸積累(Ye et al.,2019),后續(xù)挖掘獲得抗壞血酸合成正調(diào)控因子SIDof22(Caiet al.,2016)及負(fù)調(diào)控因子SINFYA10(Chen et al.,2020)和SIEIL2(Chen et al.,2023)。類似的研究還有杜梨抗壞血酸合成激活子PbrMYB5(Xing et al.,2019b)、獼猴桃抗壞血酸合成激活子AceMYBS 1(Liu et al.,2022)。本研究通過實(shí)時(shí)熒光定量PCR檢測(cè)番石榴珍珠果實(shí)在發(fā)育成熟過程13個(gè)抗壞血酸合成途徑關(guān)鍵酶基因的表達(dá)特征,為后續(xù)挖掘其中的轉(zhuǎn)錄調(diào)控具有指導(dǎo)意義,如抗壞血酸合成關(guān)鍵酶基因PgGMEI和PgGME2在果實(shí)發(fā)育后期(大果膨大期)表達(dá)顯著下降,推測(cè)其受相關(guān)轉(zhuǎn)錄因子調(diào)控,從而影響果實(shí)抗壞血酸含量。后續(xù)應(yīng)以抗壞血酸合成關(guān)鍵酶基因啟動(dòng)子為突破口,酵母單雜交篩選番石榴果實(shí)酵母單雜文庫,深入挖掘番石榴果實(shí)抗壞血酸合成轉(zhuǎn)錄調(diào)控機(jī)制。

4結(jié)論

番石榴果實(shí)抗壞血酸積累與其合成途徑基因的完整性及表達(dá)水平密切相關(guān),推測(cè)由9類酶組成的L-半乳糖途徑存在復(fù)雜的分子調(diào)控網(wǎng)絡(luò),挖掘獲得的13個(gè)L-半乳糖途徑成員,可用于后續(xù)番石榴優(yōu)良品種的選育及轉(zhuǎn)錄調(diào)控機(jī)理研究。

參考文獻(xiàn)(References):

陳衛(wèi)芳,袁偉玲,劉志雄,嚴(yán)承歡,陳磊夫,張文格.2023.植物抗壞血酸合成調(diào)控研究進(jìn)展[J].植物生理學(xué)報(bào),59(3):481-489.[ChenWF,Yuan WL,Liu ZX,Yan CH,Chen LF,Zhang WG.2023.Research progress on regulation of ascorbic acid synthesis in plant[J].Plant Physiology Jour nal,59(3):481-489.]doi:10.13592/j.cnki.ppj.300120

宋國華,高繼萍,王春芳,劉茂林,王裕.2014.相對(duì)定量2-^~法分析Caspase-3和Caspase-9在氟誘導(dǎo)大鼠腎臟中的表達(dá)[J].毒理學(xué)雜志,28(4):274-278.[Song GH,Gao J"P,Wang CF,Liu ML,Wang Y.2014.Relative quantita-tive detection of Caspase-3 and Caspase-9 mRNA expres-sion of kidney in rats induced with fluoride[J].Journal of Toxicology,28(4):274-278.]doi:10.16421/j.cnki.1002-3127.2014.04.020.

王壯壯,董邵云,周琪,苗晗,劉小萍,徐奎鵬,顧興芳,張圣平.2023.黃瓜果實(shí)維生素C合成關(guān)鍵基因克隆與分析[J].中國農(nóng)業(yè)科學(xué),56(3):508-521.[Wang ZZ,Dong S"Y,Zhou Q,Miao H,Liu XP,Xu KP,GuXF,Zhang SP 2023.Cloning and analysis of key genes for vitamin Csyn-"thesis in cucumber fruit[J].Scientia Agricultura Sinica,56(3):508-521.]doi:10.3864/j.issn.0578-1752.2023.03.009.張麗梅,張朝坤,陳洪彬,陳鐘佃.2019.番石榴種質(zhì)資源果實(shí)性狀的聚類分析[J].中國南方果樹,48(6):53-58.[Zhang LM,Zhang CK,Chen HB,Chen ZD.2019.Cluster"analysis of fruit traits of guava germplasm resources[J].South China Fruits,48(6):53-58.]doi:10.13938/j.issn.1007-1431.20180586.

Agius F,Gonzalez-Lamothe R,Caballero JL,Munoz-Blanco J,Botella MA,Valpuesta V.2003.Engineering increased vitamin Clevels in plants by overexpression of aD-galacturonic acid reductase[J].Nature Bioechnology,21(2):177-181.doi:10.1038/nbt777.

Cai XF,Zhang CJ,Shu WB,Ye ZB,Li HX,Zhang YY 2016.The transcription factor SIDof 22 involved in ascor-bate accumulation and salinity stress in tomato[J].Bio-chemical and Biophysical Research Communications,474(4):736-741.doi:10.1016/j.bbrc.2016.04.148

Chao JT,KongYZ,Wang Q,Sun YH,Gong DP,Lv J,Liu GS.2015.MapGene2Chrom,a tool to draw gene physical map based on Perl and SVG languages[J].Hereditas,37(1):91-97.doi:10.16288/j.yczz.2015.01.013

Chen C,Zhang M,Zhang MY,Yang MM,DaiS S,Meng QW,Lv W,Zhuang KY.2023.ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbicacid accumula-tion in tomatoesduring ripening[J].Plant Physiology,192(3):2067-2080.doi:10.1093/plphys/kiad151.

Chen WF,Hu TX,Ye J,Wang B,Liu GZ,Wang Y,Yuan L,LiJM,Li FM,Ye ZB,Zhang YY.2020.A CCAAT-binding factor,SINFYA10,negatively regulates ascorbate accumulation by modulating the D-mannose/L-galactose pathway in tomato[J].Horticulture Research,7(1):200.doi:10.1038/s41438-020-00418-6.

Chiaiese P,Corrado G,Minutolo M,Barone A,Errico A.2019.Transcriptionalregulationof ascorbic acid during fruitripe-ning in pepper(Capsicum anmum)varieties with low and high antioxidants content[J].Plants(Basel),8(7):206.doi:10.3390/plants8070206.

Conklin PL,DePaolo D,Wintle B,Schatz C,Buckenmeyer G.2013.Identification of Arabidopsis VTC3 as aputativeand unique dual function protein kinase:Protein phosphatase involved in the regulation ofthe ascorbic acid pool in plants[J].Journal of Experimental Botany,64(10):2793-2804.doi:10.1093/jxb/ert140.

Conklin PL,Gatzek S,Wheeler GL,Dowdle J,RaymondMJ,Rolinski S,Isupov M,Littlechild JA,Smirnoff N.2006

Arabidopsis thaliana VTC4 encodes L-galactose-1-Pphos-phatase,a plant ascorbic acid biosynthetic enzyme[J].Jour-nal of Biological Chemistry,281(23):15662-15670.doi:10.1074/jbc.M601409200.

Conklin PL,Norris SR,Wheeler GL,Williams EH,Smirnoff N,Last RL.1999.Genetic evidence for the role of GDP-mannose in plant ascorbic acid(vitamin C)biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America,96(7):4198-4203.doi:10.1073/pnas.96.7.4198.

Deng HH,Xia H,GuoYQ,Liu XL,Lin LJ,Wang J,XuK F,Lv XL,Hu RH,Liang D.2022.Dynamic changes in ascorbic acid content during fruit development and ripe-ning of Actinidia latifolia(an ascorbate-rich fruit crop)and the associated molecular mechanisms[J].International Journal of Molecular Sciences,23(10):5808.doi:10.3390/ijms 23105808.

Feng C,F(xiàn)eng C,Lin XG,Liu SH,LiYZ,Kang M.2021.A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava(Psidium guajava)[J].Plant Biotechnology Journal,19(4):717-730.doi:10.1111/pbi.13498.

Gao YS,BadejoAA,Shibata H,Sawa Y,Maruta T,Shigeoka S,Page M,Smirnoff N,Ishikawa T.2011.Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase,an enzyme involved in ascorbate"biosynthesis,in Arabidopsis thaliama[J].Bioscience Bio-technology and Biochemistry,75(9):1783-1788.doi:10.1271/bbb.110320.

Hu TX,YeJ,Tao PW,LiHX,ZhangJ,Zhang Y,Ye Z.2016.The tomato HD-Zip Itranscription factor SIHZ24 modu-lates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway[J].Plan Journal,85(1):16-29.doi:10.1111/tpj.13085.

Huang M,Xu Q,Deng XX.2014.L-ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose(Rosa roxburghii Tratt)[J].Journal of Plant Physiology,171(14):1205-1216.doi:10.1016/j.jplph.2014.03.010

Ioannidi E,Kalamaki MS,Engineer C,PaterakiI,Alexandrou D,Mellidou I,GiovannonniJ,Kanellis AK.2009.Expres sion profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions[J].Journal of Experimental Botany,60(2):663-678.doi:10.1093/jxb/erm322.

Jiang M,LiuY,Ren L,She X,Chen HY.2018.Light regulates ascorbic acid accumulation and ascorbic acid-related genes expression in thepeel of eggplant[J].South African Jour-nal of Botany,114:20-28.doi:10.1016/j.sajb.2017.10.012.

Kakan X,Yu YW,LiS H,LiXY,Huang RF,Wang J.2021.Ascorbic acid modulation by ABI4 transcriptional repres-sion of VTC2 in the salt tolerance of Arabidopsis[J].BMC Plant Biology,21(1):112.doi:10.1186/s12870-021-02882-1.

Lemmens E,Alós E,Rymenants M,De Storme N,Keulemans WJ.2020.Dynamics of ascorbic acid content in apple"(Malus×domestica)during fruit development and storage"[J].Plant Physiology and Biochemistry,151:47-59.doi 10.1016/j.plaphy.2020.03.006.

Liang D,Zhu T,NiZ,Lin L,Tang Y,Wang Z,Wang X,Wang J,Lv X,Xia H.2017.Ascorbic acid metabolism during"sweet cherry(Prums avium)fruit development[J].PLoS"One,12(2):e172818.doi:10.1371/journal.pone.0172818.Liao GL,Xu Q,Allan AC,Xu XB.2023.L-ascorbic acid"metabolism and regulation in fruit crops[J].Plant Physio-logy,192(3):1684-1695.doi:10.1093/plphys/kiad241.

Liu X,Wu R,Bulley SM,Zhong C,Li D.2022.Kiwifruit MYBS1-like and GBF3 transcription factors influence L-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3[J].New Phytologist,234(5):1782-1800.doi:10.1111/nph.18097

Lorence A,Chevone BI,Mendes P,Nessler CL.2004.Myo-inositol oxygenase offers apossible entry point into plant ascorbate biosynthesis[J].Plant Physiology,134(3):1200-1205.doi:10.1104/pp.103.033936.

Léchaudel M,Darnaudery M,Joet T,F(xiàn)ournier P,Joas J.2018 Genotypic and environmental effects onthe level of ascor-bic acid,phenolic compounds and related gene expression during pineapple fruit development and ripening[J].Plant Physiology andBiochemistry,130:127-138.doi:10.1016/j.plaphy.2018.06.041.

Maione-Silva L,de Castro EG,Nascimento TL,Cintra ER,Moreira LC,Cintra BA S,Valadares MC,Lima EM.2019.Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation,retention and enhances collagen synthesis by fibroblasts[J].Scien-tific Reports,9(1):522.doi:10.1038/s41598-018-36682-9.

Mellidou I,Chagné D,Laing WA,Keulemans J,Davey MW 2012.Allelic variation in paralogs of GDP-L-galactose phosphorylase is amajor determinant of vitaminCconcen-trations in apple fruit[J].Plant Physiology,160(3):1613-1629.doi:10.1104/pp.112.203786.

Nishikimi M,F(xiàn)ukuyama R,Minoshima S,Shimizu N,Yagi K.1994.Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase,the enzyme for L-ascorbic acid biosynthesis missing in man[J].Journal of Biological Chemistry,269(18):13685-13688.doi:10.1016/0009-3084(94)02321-2.

Ntagkas N,Woltering EJ,Marcelis LF M.2018.Light regu lates ascorbate in plants:An integrated view on physiology andbiochemistry[J].Environmental andExperimental Bo-tany,147:271-280.doi:10.1016/j.envexpbot.2017.10.009.

Radi AM,Mohammed ET,Abushouk AI,Aleya L,Abdel-Daim MM.2020.The effects of abamectin on oxidative stress and gene expression in rat liver and brain tissues:Modulation by sesame oil and ascorbic acid[J].Science of the Total Environment,701:134882.doi:10.1016/j.scito-tenv.2019.134882.

Sulistio M,Chao C,Chen C,Wu CT.2022.Nonclimacteric‘Jen-Ju Bar'guava ripening behavior iscaused by Copia LTR retrotransposon insertion in the promoter region of PgACSI,a System-2 ACC synthase gene[J].Postharvest Biology and Technology,193:112038.doi:10.1016/j.post-harvbio.2022.112038.

SunnetciS E,Erbas 0.2020.The ameliorative effects of ascor-bic acid on critical illness polyneuropathy in rodentsepsis model[J].Journal ofPediatric Intensive Care,9(4):265-270.doi:10.1055/s-0040-1710587.

Tsaniklidis G,Delis C,Nikoloudakis N,Katinakis P,Aivalakis G.2014.Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits[J].Plant Physiology and Biochemistry,84:149-157.doi:10.1016/j.plaphy.2014.09.009.

Vasques LI,Vendruscolo CW,Leonardi GR.2023.Topical application of ascorbic acid and its derivatives:A review considering clinical trials[J].Current Medicinal Chemis-try,30(29):3272-3286.doi:10.2174/0929867329666221003102238.

Wan CY,Wilkins TA.1994.A modified hot borate method sig-nificantly enhances the yield of high-quality RNA from"cotton(Gossypium hirsutmm L.)[J].Analytical Biochemis-try,223(1):7-12.doi:10.1006/abio.1994.1538.

Wheeler GL,Jones MA,Smirnoff N.1998.The biosynthetic pathway of vitamin Cin higher plants[J].Nature,393(6683):365-369.doi:10.1038/30728.

Wolucka BA,van Montagu M.2003.GDP-mannose 3',5'-epi-merase formsGDP-L-gulose,aputative intermediate forthe de novo biosynthesis of vitamin Cinplants[J].Journal of Biological Chemistry,278(48):47483-47490.doi:10.1074/jbc.M309135200

Xiang N,Hu J,Wen T,Brennan MA,Brennan CS,Guo X.2020.Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn(Zea mays L.)seedlings[J].Journal of the Science of Food and Agricul-ture,100(4):1694-1701.doi:10.1002/jsfa.10184.

Xing C,Liu Y,Zhao L,Zhang S,Huang X.2019a.A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance[J].Plant Cell and Environment,42(3):832-845.doi:10.1111/pce.13387.

Xing C,Liu Y,Zhao L,Zhang S,Huang X.2019b.A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance[J].Plant Cell and Environment,42(3):832-845.doi:10.1111/pce.13387.

Yan X,Zhang X,Lu M,He Y,An H.2015.De novo sequen-cing analysis of the Rosa roxburghii fruit transcriptome revealsputative ascorbate biosynthetic genes and EST-SSR markers[J].Gene,561(1):54-62.doi:10.1016/j.gene.2015.02.054.

Ye J,LiWF,Ai G,LiCX,Liu GZ,ChenWF,Wang B,Wang WQ,Lu YG,Zhang JH,LiHX,Ouyang B,Zhang HY,F(xiàn)ei ZJ,Giovannoni JJ,Ye ZB,Zhang YY.2019.Genome-wide association analysis identifies anatural variation in basic helix-loop-helixtranscription factor regu-lating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato[J].PLoS Genetics,15(5):e1008149.doi:10.1371/journal.pgen.1008149.

Zhang JY,Pan DL,JiaZH,Wang T,Wang G,Guo ZR.2018.Chlorophyll,carotenoid and vitamin Cmetabolism regula-tion in Actimidia chinensis‘Hongyang'outerpericarp du-ring fruit development[J].PLoSOne,13(3):e194835.doi:10.1371/journal.pone.0194835.

ZhangWY,Lorence A,Gruszewski HA,ChevoneBI,Nessler CL.2009.AMR1,anArabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway[J].Plant Physiology,150(2):942-950.doi:10.1104/pp.109.138453.

Zhang ZJ,WangJ,Zhang RX,Huang RF.2012.The ethylene response factor AtERF98enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis[J].Plant Journal,71(2):273-287.doi:10.1111/j.1365-313X.2012.04996.x.

(責(zé)任編輯 陳燕)

猜你喜歡
番石榴基因表達(dá)抗壞血酸
中國番石榴主要品種
番石榴的選購與保存
益壽寶典(2018年31期)2018-11-19 06:39:26
草莓番石榴果實(shí)化學(xué)成分的研究
中成藥(2017年12期)2018-01-19 02:06:41
抗菌肽對(duì)細(xì)菌作用機(jī)制的研究
基因芯片在胃癌及腫瘤球細(xì)胞差異表達(dá)基因篩選中的應(yīng)用
美洲大蠊提取液對(duì)大鼠難愈合創(chuàng)面VEGF表達(dá)影響的研究
二甲基砷酸毒理學(xué)的研究進(jìn)展
抗壞血酸的電化學(xué)研究
高效液相色譜法同時(shí)測(cè)定水果蔬菜中L-抗壞血酸、D-異抗壞血酸、脫氫抗壞血酸及總維生素C的含量
抗壞血酸-(熒光素+CTMAB+Cu2+)化學(xué)發(fā)光檢測(cè)尿液的尿酸
鹤壁市| 闸北区| 伊宁市| 汽车| 辽阳县| 西盟| 焦作市| 乐亭县| 册亨县| 丹江口市| 邯郸县| 田阳县| 大港区| 和林格尔县| 花莲县| 砀山县| 木兰县| 仪征市| 顺昌县| 阳山县| 奉节县| 新龙县| 来宾市| 闽侯县| 根河市| 特克斯县| 广汉市| 利辛县| 格尔木市| 沅江市| 泰和县| 玛沁县| 兴国县| 临洮县| 锡林郭勒盟| 甘孜| 新泰市| 广州市| 潼南县| 安丘市| 双鸭山市|