摘要:【目的】探究不同森林類型土壤細(xì)菌群落的多樣性和組成,以及土壤細(xì)菌群落與土壤因子間的相關(guān)性,為掌 握華南地區(qū)森林生態(tài)系統(tǒng)土壤細(xì)菌群落結(jié)構(gòu)提供參考依據(jù)。【方法】采用高通量測(cè)序技術(shù)結(jié)合土壤理化性質(zhì)試驗(yàn),對(duì) 土壤細(xì)菌群落結(jié)構(gòu)進(jìn)行分類鑒定,測(cè)定土壤pH、含水率、有機(jī)質(zhì)(OM)、堿解氮(AN)、速效磷(AP)、速效鉀(AK)、鈣(Ca)、鎂(Mg)、總酚、復(fù)合態(tài)酚及水溶性酚等理化指標(biāo);分析桉樹林、馬尾松林、馬尾松石櫟針闊混交林及桂花林 土壤細(xì)菌群落多樣性差異。【結(jié)果】通過測(cè)序從4種森林類型土壤樣品中共得到內(nèi)生細(xì)菌有效序列731289條,注釋得 到6320個(gè)操作分類單元(OTUs),共有2界36門85綱116目136科152屬57種。其中,優(yōu)勢(shì)細(xì)菌門分別是變形菌門(Pro-teobacteria,33.16%)、放線菌門(Actinobacteria,30.24%)、酸桿菌門(Acidobacteria,16.83%)及綠彎菌門(Chloroflexi, 6.71%),優(yōu)勢(shì)菌屬分別是紅游動(dòng)菌屬(Rhodoplanes,7.72%)、分枝桿菌屬(Mycobacterium,2.82%)、Candidatus_Soli- bacter(1.57%)、慢生根瘤菌屬(Bradyrhizobium,0.91%)及伯克霍爾德氏菌屬(Burkholderia,0.67%)。不同森林生態(tài) 系統(tǒng)中,桂花林的土壤細(xì)菌群落豐富度和多樣性均最高,其次是桉樹林和馬尾松林,針闊混交林最低。冗余分析結(jié)果 顯示pH(1=0.943)、AK(1=0.861)對(duì)細(xì)菌群落結(jié)構(gòu)均有極顯著影響(Plt;0.01),其中,細(xì)菌在門分類水平上影響程度排序 依次為pHgt;AKgt;復(fù)合態(tài)酚gt;總酚gt;Cagt;Mggt;APgt;水溶性酚gt;OMgt;AN,在屬分類水平上排序依次為pHgt;AKgt;Cagt;Mggt;APgt; 總酚gt;復(fù)合態(tài)酚gt;ANgt;水溶性酚gt;OM?!窘Y(jié)論】4種森林類型土壤細(xì)菌群落多樣性和豐度受土壤化學(xué)性質(zhì)中pH和AK影 響最大,部分門分類水平細(xì)菌受土壤酚類物質(zhì)的影響較大。
關(guān)鍵詞:高通量測(cè)序;森林類型;細(xì)菌群落;土壤理化性質(zhì);土壤酚酸類物質(zhì)
文章編號(hào):2095-1191(2024)04-0954-10
中圖分類號(hào):S714.3
文獻(xiàn)標(biāo)志碼:A
Soil bacterial community diversity of different forest types in southern subtropical Guangxi and their correlation to soilchemical properties
YANG Xi-yu1, TIAN Xiang2, WU Qing-biao1*
(1College of Forestry, Guangxi University, Nanning, Guangxi 530004, China; 2Nanning Forest Park in Guangxi,Nanning, Guangxi 530031, China)
Abstract:【Objective]The objective of this study was to explore the diversity and composition of soil bacterial com- munities in different forest types, as well as the correlation between soil bacterial communities and soil factors, so as to provide reference for mastering the soil bacterial community structure in the forest ecosystem in southern China. 【Method】 High-throughput sequencing technology combined with soil physicochemical properties experiment was used to classify and identify the soil bacterial community structure, and the soil physicochemical indexes such as pH, soil moisture con- tent, organic matter (OM) , available nitrogen (AN) , available phosphorus (AP) , available potassium (AK), calcium (Ca), magnesium (Mg), total phenols, complex phenols and water-soluble phenols were determined. The differences in soil bacterial community diversity in Eucalyptus spp. forest, Pinus massoniana Lamb. forest, P. massoniana and Lithocar- pus glaber(Thunb.) Nakai mixed coniferous and broad-leaved mixed forest and Osmanthus sp. forest were analyzed. 【Re- sult 】A total of 731289 effective sequences of endophytic bacteria were obtained from soil samples of four forest types bysequencing, and 6320 operational taxonomic units (OTUs) were annotated, with a total of 57 species, 152 genera, 136 families, 116 orders, 85 classes, 36 phyla in 2 kingdoms. Among them, the dominant bacterial phyla were Proteobacteria(33.16%), Actinobacteria (30.24%), Acidobacteria (16.83%) and Chloroflexi (6.71%), and the dominant bacterial genera were Rhodoplanes (7.72%) , Mycobacterium (2.82%), Candidatus_Solibacter (1.57%) , Bradyrhizobium (0.91%) and Burkholderia (0.67%). Among the different forest ecosystems, the richness and diversity of soil bacterial communities were the highest in Osmanthus sp. forest, followed by Eucalyptus spp. forest, P. massoniana forest, and the richness and diversity of coniferous and broad-leaved mixed forest were the lowest. The results of redundancy analysis showed that pH(1=0.943) and AK(1=0.861) had extremely significant effects on bacterial community structure (Plt;0.01), among which the degree of influence of bacteria at the phylum classification level was pHgt;AKgt;complex phenolsgt;total phenolsgt;Cagt; Mggt;APgt;water-soluble phenolsgt;OMgt;AN and pHgt;AKgt;Cagt;Mggt;APgt;total phenolsgt;complex phenolsgt;ANgt;water-soluble phenolsgt;OM at the genus taxonomic level. 【Conclusion】The diversity and abundance of soil bacterial communities in the four forest types are mostly affected by pH and AK in soil chemical properties, and some phylum-level bacteria are greatly affected by soil phenols.
Key words: high-throughput sequencing; forest type; bacterial community; soil physicochemical properties; soil phenolic acids
Foundation items: Youth Project of National Natural Science Foundation of China (32201431); Liangfengjiang National Forest Park Science and Technology Plan Project(LFJ2020001)
0 引言
【研究意義】土壤是微生物最主要的棲息地之一(Munawar et al.,2023)。土壤微生物是森林生態(tài)系統(tǒng)中的重要組成部分,能反映生境中土壤的健康程度,在增強(qiáng)植物抗逆性(Lan et al.,2023)、促進(jìn)其生長(zhǎng)及維持生態(tài)系統(tǒng)穩(wěn)定方面有著不可替代的地位(曾廣娟等,2022)。同時(shí),土壤微生物對(duì)環(huán)境有迅速應(yīng)變的能力,可利用該特點(diǎn)監(jiān)測(cè)生態(tài)系統(tǒng)的健康程度(Huang et al.,2023)。酚酸類物質(zhì)在土壤中活性較強(qiáng),影響著土壤的質(zhì)量,同時(shí)也能影響真菌和細(xì)菌的群落結(jié)構(gòu),直接或間接影響植物的生長(zhǎng)發(fā)育(保麗美,2022)。因此,通過研究土壤中酚酸物質(zhì)與細(xì)菌群落作用關(guān)系,進(jìn)一步了解森林土壤細(xì)菌群落結(jié)構(gòu),對(duì)華南地區(qū)森林生態(tài)系統(tǒng)可持續(xù)發(fā)展有重要意義?!厩叭搜芯窟M(jìn)展】近年來,土壤細(xì)菌及真菌反硝化條件能改善土壤酸化(Liuet al.,2023),細(xì)菌與藻類聯(lián)合施用能促進(jìn)植物生物量積累及氮磷鉀元素吸收(Zhou et al.,2023),植物和細(xì)菌的組合具有修復(fù)土壤的潛力(Shirzadian Gilan et al.,2023)。在土壤微生態(tài)系統(tǒng)中,土壤、植物和微生物間的關(guān)系密不可分,互相影響,土壤理化因子是影響細(xì)菌群落多樣性的重要因素之一(焦嘉卉等,2023)。有研究發(fā)現(xiàn)桂北地區(qū)杉木人工林土壤有機(jī)碳等養(yǎng)分并不會(huì)隨著林齡的增加而減少,有效鉀是影響土層間細(xì)菌群落結(jié)構(gòu)的主要影響因子(鄭威等,2023)。另外,土壤酚類物質(zhì)是植物根系產(chǎn)生的分泌物(楊敏等,2020),一定量的酚類物質(zhì)能活化土壤中難溶性養(yǎng)分,過量的酚類物質(zhì)則會(huì)造成植物自毒、連作危害及土壤微生物失衡等(王燁軍等,2012;羅華龍等,2022;楊淑娜,2022)。土壤酚類物質(zhì)對(duì)微生物的影響具有選擇性,能影響細(xì)菌群落結(jié)構(gòu),高濃度酚酸物質(zhì)能促進(jìn)細(xì)菌生長(zhǎng)發(fā)育,低濃度酚酸則抑制真菌生長(zhǎng)發(fā)育(伍麗華等,2022)。[本研究切入點(diǎn)]目前,土壤酚酸類物質(zhì)及土壤細(xì)菌群落多樣性和組成的研究較多,但土壤酚酸類物質(zhì)影響土壤細(xì)菌群落結(jié)構(gòu)的相關(guān)研究較少。[擬解決的關(guān)鍵問題]以廣西桉樹林、馬尾松林、馬尾松石櫟針闊混交林及桂花林為研究對(duì)象,基于IIllu-mina 高通量測(cè)序技術(shù)對(duì)不同森林類型土壤細(xì)菌群落多樣性及組成展開研究,分析土壤細(xì)菌群落結(jié)構(gòu)與土壤理化因子間的相關(guān)性,為掌握廣西南亞熱帶森林土壤細(xì)菌群落結(jié)構(gòu)提供理論依據(jù)。
1材料與方法
1.1采樣森林概況
試驗(yàn)開展于2021年10月—2022年1月廣西南寧樹木園連山管理區(qū)壇里林場(chǎng)(22°65N,108°31E),丘陵盆地地貌,屬南亞熱帶季風(fēng)氣候,冬短夏長(zhǎng),年均降水量達(dá)1300mm以上,土壤為第四紀(jì)紅土發(fā)育的赤紅壤。4種森林類型分別為桉樹林、馬尾松林、馬尾松石櫟針闊混交林(簡(jiǎn)稱針闊混交林)及桂花林。桉樹林(Eucalyptus spp.)為3年生的萌芽三代林;馬尾松林為40年以上樹林,郁閉度0.6~0.9;針闊混交林以馬尾松(Pinus massoniana Lamb.)和石櫟[Lithocarpus glaber(Thunb.)Nakai]為主,石櫟為5年以上樹齡;桂花林以桂花(Osmanthus sp.)為主,間植羊蹄甲(Bauhinia purpurea L.)和降香黃檀(Dalber-gia odorifera T. Chen)。
1.2土壤樣品采集及其化學(xué)性質(zhì)測(cè)定
于2021年10月,在每種類型森林中隨機(jī)選擇5個(gè)樣地,采用五點(diǎn)采樣法,采集土壤表層0~20cm土層土樣,去除石塊及雜質(zhì),裝袋并標(biāo)記,帶回實(shí)驗(yàn)室。 將土樣風(fēng)干,過2mm篩,用于后續(xù)土壤理化性質(zhì)的 測(cè)定。土壤含水率(SWC)測(cè)定采用烘干法(黃中雄等,2014);土壤pH測(cè)定采用電位法;有機(jī)質(zhì)(OM)含 量測(cè)定采用重鉻酸鉀容量法(王瑞琨,2018);堿解氮 (AN)含量測(cè)定采用堿解擴(kuò)散法(吳恙和陳江,2016);速效磷(AP)、速效鉀(AK)及交換性陽(yáng)離子鈣(Ca)、鎂(Mg)含量測(cè)定采用ICP-AES分析法(梅連 平等,2021)。土壤總酚、復(fù)合態(tài)酚和水溶性酚含量 參考王燁軍等(2012)的方法采用Folin試劑顯色法 測(cè)定。
1.3高通量測(cè)序分析
土壤樣品送至深圳微科盟科技集團(tuán)有限公司 進(jìn)行DNA提取及Illumina測(cè)序。擴(kuò)增引物為338F(5'-ACTCCTACGGGAGGCAGCAG-3')和806R(5'-G GACTACHVGGGTWTCTAAT-3'),擴(kuò)增片段長(zhǎng)度為 468 bp。
1.4多樣性分析
Alpha多樣性指數(shù)是充分反映土壤微生物群落多樣性和豐富度的指標(biāo)。具體從Chaol指數(shù)、Faith'sPD、香農(nóng)指數(shù)和辛普森指數(shù)進(jìn)行統(tǒng)計(jì)。Chao1指數(shù)反映物種豐富度,一般用于估計(jì)細(xì)菌群落所含操作分類單元(OTU)的總數(shù)。反映物種多樣性的指數(shù)有Faith's PD、香農(nóng)指數(shù)、辛普森指數(shù)。Faith's PD主要反映群落成員系統(tǒng)發(fā)育的相關(guān)性,也能檢測(cè)年輕種群與年老種群間的差異,數(shù)值越高,多樣性越高;香農(nóng)指數(shù)主要包含物種豐富度和均勻度,指數(shù)值越大,物種多樣性越高;辛普森指數(shù)數(shù)值越小,物種多樣性越高,反之,物種多樣性越小。
1.5統(tǒng)計(jì)分析
土壤理化性質(zhì)及細(xì)菌群落結(jié)構(gòu)多樣性采用SPSS 22.0的單因素方差分析(One-way ANOVA)進(jìn)行數(shù)據(jù)分析及差異顯著檢驗(yàn)。運(yùn)用ANCOM及ANOVA等方法鑒定分組與樣本間細(xì)菌相對(duì)豐度的差異。多樣性分析采用QIIME2 core-diversity插件計(jì)算多樣性矩陣。使用主坐標(biāo)分析(PCoA)和NMDS圖進(jìn)行展示特征序列水平Alpha和Beta多樣性指數(shù)。應(yīng)用R軟件包Vegan,使用冗余分析(RDA)方法揭示微生物群落與相關(guān)環(huán)境因子間的潛在關(guān)聯(lián)。
2結(jié)果與分析
2.1廣西南亞熱帶不同森林類型土壤化學(xué)性質(zhì)分析結(jié)果
由表1可知,桉樹林、針闊混交林、馬尾松林及桂花林的土壤pH為3.88~4.79,為偏酸性土壤,其中,桂花林pH最高,顯著高于其他森林類型(Plt;0.05,下同)。桂花林中AK、Ca、Mg含量均高于桉樹林、針闊混交林和馬尾松林,但SWC顯著低于其他森林類型;馬尾松林AN含量最高,Ca含量較高;桉樹林和針闊混交林的AK、AN、Ca和Mg含量均較低。4種森林類型間土壤的AK、AN、Ca和Mg含量及SWC均存在明顯差異,OM和AP含量無顯著差異(Pgt;0.05,下同),AP和Mg含量均偏低。
2.2廣西南亞熱帶不同森林類型土壤酚酸類物質(zhì)含量分析結(jié)果
由表2可知,4種森林類型間的土壤總酚、復(fù)合態(tài)酚存在明顯差異,其中,針闊混交林的總酚含量顯著高于其他類型,針闊混交林和馬尾松林的復(fù)合態(tài)酚含量顯著高于其他類型;馬尾松林與針闊混交林水溶性酚數(shù)值接近,桉樹林與桂花林水溶性酚無顯著差異??偡雍颗判蛞来螢獒橀熁旖涣謌t;馬尾松林gt;桉樹林gt;桂花林,桉樹林與馬尾松林差異不顯著;復(fù)合態(tài)酚含量排序依次為馬尾松林gt;針闊混交林gt;桉樹林gt;桂花林,針闊混交林與馬尾松林無顯著差異;水溶性酚含量排序依次為馬尾松林gt;針闊混交林gt;桂花林gt;桉樹林??梢?,桂花林的酚類物質(zhì)含量總體偏低。
2.3廣西南亞熱帶不同森林類型土壤細(xì)菌群落測(cè)序序列統(tǒng)計(jì)及多樣性指數(shù)分析結(jié)果
通過測(cè)序所獲得原始序列和有效序列分析可知(表3),桉樹林、針闊混交林、馬尾松林及桂花林分別獲得55287、50327、58254和58979條原始序列,依次獲得37055、34965、38956和35283 條有效序列,共731289條。經(jīng)質(zhì)控分析后得到的有效序列率均在59.0%以上,表明原始序列利用率偏高,大部分原始序列能參與到后續(xù)分析中,且4種類型土壤樣品覆蓋率均在82.0%以上,說明取樣合理,測(cè)序結(jié)果真實(shí)有效。桂花林土壤細(xì)菌組成最豐富,物種多樣性也最高,桉樹林和馬尾松林次之,針闊混交林最低,而4種森林土壤細(xì)菌群落的辛普森指數(shù)無顯著差異。
2.4廣西南亞熱帶不同森林類型土壤細(xì)菌群落物種組成分析結(jié)果
2.4.1土壤細(xì)菌OTUs分布Venn圖分析
由圖1可知,桉樹林、針闊混交林、馬尾松林和桂花林的土壤所含OTUs分別為991、596、707和2456個(gè)。特有OTUs個(gè)數(shù)中,桂花林土壤最多,占其OTUs總數(shù)的43.94%,桉樹林土壤次之,占其OTUs總數(shù)的22.78%,第三是馬尾松林土壤,OTUs個(gè)數(shù)占其總數(shù)的18.32%,針闊混交林土壤的OTUs個(gè)數(shù)最少,占其總數(shù)的19.07%。4個(gè)樣品共有的OTUs個(gè)數(shù)為271個(gè),占OTUs總數(shù)的4.28%。桉樹林、針闊混交林、馬尾松林、桂花林相互重疊的土壤細(xì)菌群落OTUs個(gè)數(shù)分別占各自總數(shù)的27.69%、25.77%、31.06%和13.02%。上述結(jié)果體現(xiàn)了土壤細(xì)菌群落結(jié)構(gòu)的復(fù)雜性和共性。綠彎菌門的排序依次為桂花林(10.52%)gt;按樹林 (7.52%)gt;針闊混交林(5.07%)gt;馬尾松林(3.74%); 綠彎菌門排序與變形菌門截然相反。
4種森林類型土壤細(xì)菌群落共獲得152屬,其 中相對(duì)豐度高于0.50%有7個(gè)屬(圖3)。各類型間細(xì)菌屬類分布不均勻,優(yōu)勢(shì)屬依據(jù)生境聚類較明顯 (圖4),桉樹林、馬尾松林、針闊混交林和少量桂花 林土壤細(xì)菌群落接近且共處于一個(gè)分支中,表明其 細(xì)菌群落結(jié)構(gòu)接近,而桂花林與另外3種森林類型的細(xì)菌群落存在較大差異。4種森林類型共有優(yōu)勢(shì) 屬包括紅游動(dòng)菌屬(Rhodoplanes,7.72%)、分枝桿菌 屬(Mycobacterium, 2.82%)、Candidatus_Solibacter(1.57%)、慢生根瘤菌屬(Bradyrhizobium,0.91%)、伯克霍爾德氏菌屬(Burkholderia,0.67%)。桉樹林、馬 尾松林及針闊混交林特有優(yōu)勢(shì)屬有伍氏束縛菌屬(Conexibacter)、Candidatus_Xiphinematobacter;桂 花林特有優(yōu)勢(shì)菌屬有鏈孢菌屬(Catellatospora)、 Kaistobacter、發(fā)仙菌屬(Pilimelia)及DA101類群。 另外,桂花林與桉樹林共有特色菌屬是鏈霉菌屬 (Streptomyces)。針闊混交林土壤中戴氏菌屬(Dyella)占比高于另外3種森林類型。
2.4.3土壤細(xì)菌群落Beta多樣性分析
組間PCoA結(jié)果(圖5)表明,第一軸序(Axis.1)和第二軸序(Axis.2)解釋變量方差分別為47.6%和17.1%,總貢 獻(xiàn)率為64.7%,仍有35.3%的群落尚不能解釋。桉樹 林、馬尾松林和針闊混交林土壤樣品組間距離較近, 而3種森林類型與桂花林樣品組間距離較遠(yuǎn),得出 前3種森林類型相似度較高,且與桂花林樣本組間 Beta多樣性差異較大。針闊混交林與桉樹林組間距 離則較為分散且有少量重合,而針闊混交林與馬尾松林有較高重合,說明針闊混交林與桉樹林組內(nèi)Beta多樣性有差異,組間較相似,針闊混交林與馬尾松林組間Beta多樣性相似度較高。此外,單組組內(nèi)樣品較聚集的有桂花林與馬尾松林,而2組樣品組間距離較遠(yuǎn),說明2組樣本組內(nèi)Beta多樣性相似,組間差異較大。
2.4.4 土壤細(xì)菌與土壤化學(xué)因子冗余分析
為進(jìn)一步了解環(huán)境因子對(duì)不同森林類型細(xì)菌群落多樣性及組成的影響,RDA基于距離對(duì)細(xì)菌群落多樣性及組成和環(huán)境因子進(jìn)行解釋分析,以細(xì)菌群落相對(duì)豐度為響應(yīng)變量、土壤環(huán)境因子為解釋變量。門分類水平上,第一軸序(RDA1)和第二軸序(RDA2)分別解釋細(xì)菌群落總變異的 27.45%和19.47%,總解釋度為46.92%(圖6);屬分類水平上,RDA1和RDA2分別解釋細(xì)菌群落總變異的35.77%和19.54%,總解釋度為55.31%(圖7)。
由RDA圖可知生境因子對(duì)細(xì)菌群落結(jié)構(gòu)影響,當(dāng)環(huán)境因子間的夾角為銳角時(shí),表示2個(gè)環(huán)境因子間呈正相關(guān),呈鈍角則代表為負(fù)相關(guān),直角代表無相關(guān)性。由圖6可知,門分類水平上,細(xì)菌群落的pH(r=0.868)和AK(r=0.829)對(duì)細(xì)菌群落分布的影響極顯著(P=0.0005lt;0.01,下同),復(fù)合態(tài)酚、總酚對(duì)細(xì)菌群落分布也具有極顯著影響(P=0.001),細(xì)菌在門分類水平上影響程度排序依次為pHgt;AKgt;復(fù)合態(tài)酚gt;總酚gt;Cagt;Mggt;APgt;水溶性酚gt;OMgt;AN。變形菌門、放線菌門、疣微菌門與OM、AN、總酚、水溶性酚和復(fù)合態(tài)酚呈顯著正相關(guān);而酸桿菌門、綠彎菌門、AD3類群與pH、總酚、水溶性酚和復(fù)合態(tài)酚呈顯著負(fù)相關(guān);芽單胞菌門、擬桿菌門與pH、AK、Ca和AP呈顯著正相關(guān);浮霉菌門、WPS-2類群與pH、AK、Ca和AP呈顯著負(fù)相關(guān),與OM、AN和總酚呈顯著正相關(guān)。由圖7可知,屬分類水平上,除pH(r=0.943)、AK(r=0.861)影響最高之外(P=0.0005),Ca、Mg、AP對(duì)細(xì)菌群落分布也具有極顯著影響(P=0.001),排序依次為pHgt;AKgt;Cagt;Mggt;APgt;總酚gt;復(fù)合態(tài)酚gt;ANgt;水溶性酚gt;OM。桉樹林、馬尾松林及針闊混交林的土壤樣品細(xì)菌群落與總酚、復(fù)合態(tài)酚、水溶性酚呈正相關(guān),桂花林的土壤樣品細(xì)菌群落與總酚、復(fù)合態(tài)酚、水溶性酚則呈負(fù)相關(guān)。紅游動(dòng)菌屬、CandidatusSolibacter、伯克霍爾德氏菌屬、鏈霉菌屬、DA101類群與Mg、AK和 OM呈顯著正相關(guān);分枝桿菌屬、伍氏束縛菌屬、戴氏菌屬、Candidatus Xiphinemato-bacter、鹽水孢菌屬與總酚、復(fù)合態(tài)酚和 OM呈顯著正相關(guān)。另外,克雷伯氏菌屬、Kaistobacter與 pH、Ca、Mg、AK和OM呈顯著正相關(guān);鏈孢菌屬與AP呈極顯著正相關(guān);發(fā)仙菌屬與 Ca呈極顯著正相關(guān);Candidatus Koribacter屬與pH呈極顯著正相關(guān);慢生根瘤菌屬與AK呈極顯著正相關(guān)。
3討論
本研究采用高通量測(cè)序技術(shù)對(duì)地處南亞熱帶的南寧市良鳳江森林公園不同森林類型土壤細(xì)菌群落多樣性及組成進(jìn)行分析,分別為桉樹林、馬尾松石櫟針闊混交林、馬尾松林及桂花林,共得到6320個(gè)OTUs,獲得細(xì)菌群落2界36門85綱116目136科152屬57種。pH、AK、復(fù)合態(tài)酚、總酚、Ca、Mg、AP、水溶性酚、OM和AN是影響微生物群落結(jié)構(gòu)的關(guān)鍵土壤環(huán)境因子。土壤pH能直接或間接對(duì)細(xì)菌的養(yǎng)分利用、生理代謝及種群競(jìng)爭(zhēng)產(chǎn)生影響,適宜的土壤pH則起到促進(jìn)作用(張坤等,2017;李善敏等;2023)。真菌更適應(yīng)在偏酸土壤中生長(zhǎng),細(xì)菌和放線菌則更適應(yīng)在中性或偏堿性土壤中生長(zhǎng)(Duan et al.,2023)。變形菌門和酸桿菌門細(xì)菌在人為施肥的高pH、富含鋅的土壤中富集(Kim et al.,2021)。本研究中4種森林類型的土壤pH均較低,其中針闊混交林土壤pH最低,為3.88,而酸性土壤中氫和活性鋁離子可能對(duì)細(xì)菌有抑制作用。
4種森林類型中物種多樣性及豐富度指數(shù)(OTUs數(shù)量、Chao1指數(shù)、Faith’s PD、香農(nóng)指數(shù)和辛普森指數(shù))變化規(guī)律為桂花林gt;桉樹林gt;馬尾松林gt;針闊混交林,桉樹林與馬尾松林差異不大。我國(guó)馬尾松林的土壤養(yǎng)分含量偏薄瘠、土壤有效磷含量少且變異系數(shù)高的情況(簡(jiǎn)尊吉等,2021)。廣西林地中桉樹林普遍存在土壤保水性較差、肥力較低的情況(蘭秀等,2022)。本研究中4種森林類型土壤的OM 含量均偏低,對(duì)微生物新陳代謝熵的增加有一定影響,同時(shí)會(huì)降低土壤細(xì)菌群落相對(duì)含量及豐富度(Hamer et al.,2009)。
土壤酚類物質(zhì)含量主要從植物凋落物分解、植物根際分泌物和葉面淋溶獲得,主要分布在0~20 cm土層處,其對(duì)土壤中的氮循環(huán)、微生物活性及金屬還原具有重要影響(黃中雄等,2014;王子威等,2021;Jiang et al.,2023)。有研究表明,桉樹水溶性酚類物質(zhì)能維持土壤酸度,但會(huì)對(duì)土壤中的全氮產(chǎn)生抑制作用(王妙玲,2022)。此外,具有氮代謝功能的微生物會(huì)隨著桉樹林齡的增加而顯著降低(胡凱和王微,2015)。變形菌門、放線菌門和酸桿菌門的細(xì)菌均可同時(shí)參與氨同化、硝酸鹽(同化、異化)還原等多種氮代謝途徑(呂雪麗等,2021)。其中,變形菌門包含較多可進(jìn)行固氮的細(xì)菌,也屬于腐敗菌,主要參與土壤、水體及動(dòng)植物的碳氮循環(huán);放線菌門具有降解木質(zhì)素、纖維素等高分子化合物的特點(diǎn)(王玉鳳,2022);酸桿菌門可參與鐵循環(huán)、碳代謝及降解纖維素等生態(tài)功能(Sui et al.,2022)。另外,綠彎菌門也參與一些生物地球化學(xué)循環(huán),如碳循環(huán)、氮循環(huán)、硫循環(huán)等(鮮文東等,2020)。
目前,與桉樹林、馬尾松林、針闊混交林和桂花林土壤酚類物質(zhì)影響微生物相關(guān)研究較少。本研究關(guān)于土壤化學(xué)性質(zhì)、土壤酚類物質(zhì)含量及細(xì)菌群落多樣性的結(jié)果可看出,桂花林土壤的pH和AK含量最高,酚類物質(zhì)含量最低,以桂花林的土壤細(xì)菌群落相對(duì)豐度及多樣性最高;馬尾松林與桉樹林的土壤pH和AK含量及細(xì)菌群落多樣性次之;針闊混交林的土壤pH和AK含量最低,酚類物質(zhì)含量較高,細(xì)菌群落的相對(duì)豐度及多樣性最低。同時(shí),針闊混交林中土壤總酚含量最高,放線菌門細(xì)菌占比最高;馬尾松林中土壤復(fù)合態(tài)酚含量最高,變形菌門細(xì)菌占比最高;桉樹林中土壤水溶性酚含量最低,酸桿菌門細(xì)菌占比最高;桂花林中土壤復(fù)合態(tài)酚含量最低,綠彎菌門細(xì)菌占比最高。
4結(jié)論
4種森林類型土壤細(xì)菌群落多樣性和豐度受土壤化學(xué)性質(zhì)中pH和AK影響最大,部分門分類水平細(xì)菌受土壤酚類物質(zhì)的影響較大。
參考文獻(xiàn)(References):
保麗美.2022.三七連作過程中酚酸和皂苷類自毒物質(zhì)對(duì)其 根際土壤微生物的影響研究[D].昆明:昆明理工大學(xué).
[Bao L M. 2022. Effects of phenolic acid and saponin autotoxicants on soil microorganisms in rhizosphere during Panax notoginseng continuous cropping[D]. Kunming: Kunming University of Science and Technology.] doi: 10.
27200/d.cnki.gkmlu.2022.001611.
胡凱,王微.2015.不同種植年限桉樹人工林根際土壤微生物 的活性[J].貴州農(nóng)業(yè)科學(xué),43(12):105-109.[Hu K,Wang W. 2015. Microbial activity of rhizosphere soil of Eucalyptus plantation with different planting years[J]. Guizhou Agricultural Sciences,43(12):105-109.]
黃中雄,蘇永秀,周劍波.2014.土壤水分測(cè)定技術(shù)探討[J].氣象研究與應(yīng)用,35(4):58-62.[Huang Z X,Su Y X, Zhou J B. 2014. Study on the soil moisture measurement techniques[J]. Journal of Meteorological Research and App- lication,35(4):58-62.]
簡(jiǎn)尊吉,倪妍妍,徐瑾,雷蕾,曾立雄,肖文發(fā).2021.中國(guó)馬尾 松林土壤肥力特征[J].生態(tài)學(xué)報(bào),41(13):5279-5288.[Jian Z J, Ni Y Y, Xu J, Lei L,Zeng L X,Xiao W F. 2021. Soil fertility in the Pinus massoniana forests of China[J]. Acta Ecologica Sinica, 41 (13) : 5279-5288.] doi: 10.5846/stxb202007021716.
焦嘉卉,符曉,張碩,劉偉,周姣姣,吳旭艷,林曉榕,田雨露,唐光輝,李培琴.2023.不同林齡花椒根際土壤理化性質(zhì)與微生物群落結(jié)構(gòu)的分析[J].西北林學(xué)院學(xué)報(bào),38(4):156-165. [Jiao J H,F(xiàn)u X, Zhang S, Liu W, Zhou J J,WuX Y, Lin X R, Tian Y L, Tang G H, Li P Q. 2023. Physio-chemical properties and microorganism community struc-ture of Zanthoxylum bungeanum rhizosphere soil at diffe-rent ages [J]. Journal of Northwest Forestry University,38(4):156-165.] doi: 10.3969/j.issn.1001-7461.2023.04.20.
蘭秀,劉永賢,宋同清,陳海生,曾馥平.2022.廣西不同齡級(jí) 桉樹人工林植被與土壤特征及相關(guān)分析[J].中南林業(yè)科技大學(xué)學(xué)報(bào),42(7):127-136.[Lan X,Liu Y X,Song T Q, Chen H S, Zeng F P. 2022. Characteristics and correla- tion analysis of vegetation and soil of Eucalyptus planta- tions of different ages in Guangxi[J]. Journal of Central South University of Forestry amp; Technology, 42 (7) : 127- 136.] doi: 10.14067/j.cnki.1673-923x.2022.07.014.
李善敏,曾歆花,黃衛(wèi)昌,付浩,黃清俊.2023.不同林地類型 對(duì)白及生長(zhǎng)及其內(nèi)生真菌多樣性的影響[J].河南農(nóng)業(yè)科學(xué),52(7):70-80.[Li S M,Zeng XH,Huang W C,F(xiàn)u H, Huang Q J. 2023. Effects of different forest type on the growth of Bletilla striata and diversity of endophytic fungi [J]. Journal of Henan Agricultural Sciences,52(7) : 70-80]
doi: 10.15933/j.cnki.1004-3268.2023.07.007.
羅華龍,劉文祥,楊梅,葉紹明,程飛.2022.不同桉樹混交林 土壤理化性質(zhì)、酚酸含量與酶活性的差異[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),50(12):54-63.[LuoHL,
Liu W X, Yang M, Ye S M, Cheng F. 2022. Differences in soil physicochemical properties, phenolic acid content and enzyme activity in different Eucalyptus mixed forests[J].
Journal of Northwest Aamp;F University (Natural Science Edition) , 50 (12) : 54-63.] doi : 10.13207/j.cnki. jnwafu.2022.12.007.
呂雪麗,趙永鵬,林清火,彭顯龍,尹云峰,蔣先軍.2021.我國(guó) 典型森林土壤微生物驅(qū)動(dòng)的氮代謝途徑特征解析[J].環(huán)境科學(xué),42(10):4951-4958.[LüXL,ZhaoYP,Lin QH, Peng X L, Yin Y F, Jiang X J. 2021. Analysis of the traits of nitrogen metabolism pathways for several forest soils in eastern China[J]. Environmental Science, 42 (10) : 4951- 4958.] doi:10.13227/j.hjkx.202101250.
梅連平,劉晨曦,李云東,楊曉龍,張慧.2021.ICP-AES法測(cè)定堿性土壤中有效磷、速效鉀[J].磷肥與復(fù)肥,36(5): 34-35. [Mei L P, Liu C X, Li Y D, Yang X L, Zhang H.
2021. Determination of effective P and available K in alkaline soil by ICP-AES method[J]. Phosphate amp; Compound Fertilizer,36(5):34-35.]
王妙玲.2022.桉樹單寧對(duì)土壤呼吸及微生物群落結(jié)構(gòu)的影
響[D].南寧:廣西大學(xué).[Wang M L.2022.Effects of Eucalyptus tannins on soil respiration and microbial com- munity structure [D]. Nanning: Guangxi University.] doi: 10.27034/d.cnki.ggxiu.2022.002451.
王瑞琨.2018.用電位法測(cè)定土壤pH值[J].山西化工,38(3) : 64-65. [Wang R K. 2018. Determination of soil pH by potentiometry[J]. Shanxi Chemical Industry,38 (3):64-65.] doi: 10.16525/j.cnki.cn14-1109/tq.2018.03.22.
王燁軍,廖萬(wàn)有,蘇有健,張永利,孫力.2012.茶園土壤中水 溶性酚酸和復(fù)合態(tài)酚酸含量的調(diào)查[J].安徽農(nóng)業(yè)科學(xué),40 (29): 14256-14258. [Wang Y J, Liao W Y, Su Y J, Zhang Y L, Sun L. 2012. Investigation of content of water-soluble phenolic acids and complex phenolic acids in teagarden soil [J]. Journal of Anhui Agricultural Sciences, 40(29):14256-14258.] doi:10.13989/j.cnki.0517-6611.2012.29.266.
王玉鳳.2022.南亞熱帶鄉(xiāng)土樹種人工林土壤剖面細(xì)菌群落的分子生態(tài)網(wǎng)絡(luò)結(jié)構(gòu)與潛在功能[D].南寧:廣西大學(xué).[Wang Y F. 2022. Molecular ecological network structureand potential function of bacterial community in soil pro-file under native tree plantations in south subtropical China[D]. Nanning: Guangxi University.] doi: 10.27034/d.cnki.ggxiu.2022.000494.
王子威,賈夏,閆占寬,曹柯萌,張春燕,王璐,張寧?kù)o,高云峰.2021.大氣CO2濃度升高和Cd污染耦合對(duì)刺槐幼苗根微域土壤酚酸積累的影響[J].生態(tài)學(xué)雜志,40(7):2067-2075. [Wang Z W,Jia X, Yan Z K,Cao K M,ZhangC Y, Wang L, Zhang N J, Gao Y F. 2021. Responses ofphenolic acids accumulation in the rhizosphere soil of Ro-binia pseudoacacia L. seedlings to the combination ofelevated atmospheric CO, and Cd exposure [J]. ChineseJournal of Ecology, 40 (7) : 2067-2075.] doi: 10.13292/j.1000-4890.202107.037.
吳恙,陳江.2016.重鉻酸鉀容量法測(cè)定土壤有機(jī)質(zhì)一加熱法 研究[J].中國(guó)高新技術(shù)企業(yè),(26):11-12.[Wu Y,Chen J. 2016. Study on determination of soil organic matter by potassium dichromate volumetric method-Heating method [J]. China High-Tech Enterprises, (26) : 11-12.] doi: 10.13535/j.cnki.11-4406/n.2016.26.006.
伍麗華,康述海,陳愛玲,楊秋菊,曹光球.2022.地形對(duì)杉木 林土壤酚酸物質(zhì)含量及微生物群落結(jié)構(gòu)影響[J].山地學(xué)報(bào),40(2):205-219.[Wu LH,Kang SH,Chen A L,Yang Q J, Cao G Q. 2022. Effects of terrain on soil phenolic acids content and microbial community in Cunninghamia lanceolata forest[J]. Mountain Research,40 (2) :205-219.]doi:10.16089/j.cnki.1008-2786.000666.
鮮文東,張瀟橦,李文均.2020.綠彎菌的研究現(xiàn)狀及展望 [J].微生物學(xué)報(bào),60(9):1801-1820.[Xian W D,Zhang X T, Li W J. 2020. Research status and prospect on bacte- rial phylum Chloroflexi[J]. Acta Microbiologica Sinica,60(9):1801-1820.J doi:10.13343/j.cnki.wsxb.20200463.
楊敏,曹敬東,鄭元仙,王繼明,許銀蓮,和明東,周厚發(fā),段杰,閆鼎,蔡憲杰,童文杰,陳小龍,余磊,何元?jiǎng)?2020.生物有機(jī)肥對(duì)熱區(qū)烤煙根際土壤酚酸類物質(zhì)和細(xì)菌群落結(jié)構(gòu)的影響[J].江蘇農(nóng)業(yè)科學(xué),48(24):244-251.[YangM,Cao J D,Zheng Y X,Wang J M, Xu Y L,He M D,Zhou H F,Duan J,Yan D, Cai X J,Tong W J, Chen X L,Yu L, He Y S. 2020. Effects of bio-organic fertilizer onphenolic acids and bacterial community structure in rhizo-sphere soil of tobacco[J]. Jiangsu Agricultural Sciences,48(24) : 244-251. 」 doi: 10.15889/j.issn.1002-1302.2020.24.046.
楊淑娜.2022.桃園連作對(duì)土壤特性和再植幼樹生長(zhǎng)的影響及其調(diào)控措施研究[D].杭州:浙江大學(xué).[Yang S N.2022. Study on the effect of peach replanting on soil pro-perty and growth of replanted young trees and its control[D]. Hangzhou: Zhejiang University.] doi: 10.27461/d.cnki.gzjdx.2022.002499.
曾廣娟,馮陽(yáng),吳舒,彭紅麗,耿世剛.2022.基于高通量測(cè)序 的有機(jī)種植蔬菜地土壤微生物多樣性分析[J].南方農(nóng)業(yè)學(xué)報(bào),53(9):2403-2414.[Zeng GJ,F(xiàn)eng Y,Wu S,Peng H L, Geng S G. 2022. Soil microbial diversity analysis in organic vegetable field based on high-throughput sequen- cing[J]. Journal of Southern Agriculture, 53 (9) : 2403- 2414.] doi: 10.3969/j.issn.2095-1191.2022.09.003.
張坤,包維楷,楊兵,胡斌.2017.林下植被對(duì)土壤微生物群落 組成與結(jié)構(gòu)的影響[J].應(yīng)用與環(huán)境生物學(xué)報(bào),23(6):1178-1184. [Zhang K,Bao W K,Yang B,Hu B. 2017. The effects of understory vegetation on soil microbial community composition and structure[J]. Chinese Journal of Applied and Environmental Biology,23(6): 1178-1184.]
鄭威,彭玉華,申文輝,譚長(zhǎng)強(qiáng),董利軍,雷震,何峰,陳始貴.2023.不同林齡杉木人工林細(xì)菌群落多樣性及其影響因 素[J].生態(tài)科學(xué),42(3):37-45.[Zheng W,Peng Y H, Shen W H, Tan C Q, Dong L J, Lei Z, He F, Chen S G.
2023. Soil bacterial diversity and its control factors of Cunninghamia lanceolata plantation of different ages [J]. Ecological Science,42(3): 37-45.] doi: 10.14108/j.cnki.1008-8873.2023.03.005.
Duan C W,Li X L,Li C Y,Yang P N,Chai Y,Xu W Y. 2023. Positive effects of fungal β diversity on soil multifunctiona- lity mediated by pH in the natural restoration succession stages of alpine meadow patches[J]. Ecological Indicators, 148:110122. doi:10.1016/j.ecolind.2023.110122.
Hamer U, Makeschin F, An S S, Zheng F L. 2009. Microbial activity and community structure in degraded soils on the Loess Plateau of China [J]. Journal of Plant Nutrition and Soil Science , 172 ( 1 ) : 118-126. doi : 10.1002/jpln.200700
340. Huang C Y, Guo Z H, Peng C, Anaman R, Zhang P. 2023. Immobilization of Cd in the soil of mining areas by Fe-Mn oxidizing bacteria[J]. Science of the Total Environment, 873:162306. doi: 10.1016/j.scitotenv.2023.162306.
Jiang X F, Long W J,Xu T, Liu J Y, Tang Y L,Zhang W H.2023. Reductive transformation of Cr (VI) in contaminated soil by polyphenols: The role of gallic and tannic
acid[J]. Ecotoxicology and Environmental Safety, 255: 114807. doi:10.1016/j.ecoenv.2023.114807.
Kim H S, Lee S H,Jo H Y, Finneran K T, Kwon M J. 2021. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland[J]. Science of the Total Environment, 797: 148944. doi: 10.1016/j. scitotenv.2021.148944.
Lan Y H,Zhang H,He Y Q,Jiang C Y, Yang M,Ye S M. 2023. Legume-bacteria-soil interaction networks linked to improved plant productivity and soil fertility in intercropping systems[J]. Industrial Crops and Products, 196: 116504.
doi: 10.1016/j.indcrop.2023.116504.
Liu J B, Hou H J, Zhang W Z. 2023. Fungi contribute more to N_O emissions than bacteria in two paddy soils with different textures [J]. European Journal of Soil Biology, 115: 103476. doi: 10.1016/j.ejsobi.2023.103476.
Munawar A, Shaheen M, Ramzan S, Masih S A,Jabeen F, Younis T, Aslam M. 2023. DIVERISTY and enzymatic potential of indigenous bacteria from unexplored contaminted soils in Faisalabad[J]. Heliyon,9(4):e15256. doi: 10.1016/ j.heliyon.2023.e15256.
ShirzadianGilan R, Parvizi Y, Pazira E, Rejali F. 2023. Remediation capacity of drought-tolerant plants and bacteria in petroleum hydrocarbon-contaminated soil in Iran[J]. South African Journal of Botany, 153: 1-10. doi : 10.1016/j.sajb.2022.12.014.
Sui X,F(xiàn)rey B,Liu Y B,Zhang R T, Ni H W, Li M H. 2022. Soil Acidobacterial community composition changes sensitively with wetland degradation in northeastern of China [J]. Frontiers in Microbiology, 13. doi:10.3389/fmicb.2022.
1052161. Zhou L X,Liu W,Duan H J,Dong H W,Li J C,Zhang S X, Zhang J, Ding S G, Xu T T, Guo B B. 2023. Improved effects of combined application of nitrogen-fixing bacteria Azotobacter beijerinckii and microalgae Chlorella pyrenoidosa on wheat growth and saline-alkali soil quality[J].
Chemosphere , 313 : 137409. doi : 10.1016/j.chemosphere.2022.137409.
(責(zé)任編輯鄧慧靈)