董林林+?,|浩+王瑞+徐江+張連娟+張軍+陳士林
[摘要]連作障礙導(dǎo)致人參減產(chǎn)減收,影響人參產(chǎn)業(yè)的可持續(xù)發(fā)展。土壤真菌群落參與關(guān)鍵生態(tài)過程,其多樣性及組成的變化與連作障礙相關(guān)。該研究采用高通量測序技術(shù),分析人參根際土壤真菌群落多樣性及組成的變化,闡述人參栽培模式對根際微生態(tài)的影響,為克服連作障礙提供策略。與森林土壤相比,人參根際土壤微生物多樣性增加,且隨著種植年限的增加,多樣性增加趨勢下降;真菌群落Sordariomycetes,Alatospora,Eurotiomycetes,Leotiomycetes,Saccharomycetes,Mucorales,Pezizomycetes的豐度增加。皮爾森相關(guān)分析表明,土壤理化指標(biāo)影響人參根際真菌群落的豐度,pH與Dothideomycetes和Alatospora的豐度顯著相關(guān),有效鉀含量與Dothideomycetes, Alatospora,Mucorales的豐度顯著相關(guān),土壤總氮含量與Sordariomycetes,Mucorales的豐度顯著相關(guān)。結(jié)果表明,施肥是影響人參根際微生態(tài)的關(guān)鍵因素之一,優(yōu)化施肥體系是克服人參連作障礙的有效途徑之一。
[關(guān)鍵詞]人參; 連作障礙; 根際微生態(tài); 真菌; 高通量測序
[Abstract]Continuous cropping obstacles resulted in the yield losses of Panax ginseng, and affected the development of ginseng industry. Soil fungal communities participated in the key ecological process, and their changes of diversity and composition were related to the continuous cropping obstacles. We analyzed the changes of fungal diversity and composition in the rhizosphere of ginseng using the high-throughput sequencing method, stated the effects of ginseng cultivation on the micro-ecology, and provided effective strategies for overcoming continuous cropping obstacles. Compared to those of the forest soils, the fungal diversity of ginseng rhizosphere soils was increased, and the increasing trends were declined with an increasing years of ginseng cultivation; the relative abundance of Sordariomycetes, Alatospora, Eurotiomycetes, Leotiomycetes, Saccharomycetes, Mucorales and Pezizomycetes were increased in the rhizosphere of ginseng. Pearson′s correlation index indicated that soil chemical perporties affected the relative abundance of fungal communities. pH was significantly related to the relative abundance of Dothideomycetes and Alatospora; the content of available potassium was markedly associated with the relative abundance of Dothideomycetes, Alatospora and Mucorales; the content of total nitrogen was significant correlation with the relative abundance of Sordariomycetes and Mucorales. These results indicated that fertilization was one of pivotal factors affecting the rhizosphere micro-ecology of ginseng, and optimization of fertilization system was an effective method to overcome continuous cropping obstacles.
[Key words]Panax ginseng; continuous cropping obstacles; rhizosphere micro-ecology; fungi; high-throughput sequencing
人參 Panax ginseng C. A. Mey為多年生五加科藥用植物,享有“百草之王”的美譽(yù),具有大補(bǔ)元?dú)猓堂撋?,安神等功效。人參是宿根植物,忌地性極強(qiáng),栽過一茬人參的土壤要30年后才能再栽參,這已成為參業(yè)發(fā)展的限制因子[1]。用重茬地繼續(xù)栽種人參一般在第2年以后存苗率降至30%以下,有大約70%土地上的人參須根脫落、燒須,根周皮爛紅色、長滿病疤,致使人參地上部分死亡,有的地塊幾乎全部絕苗[2]。克服連作障礙是保障人參產(chǎn)業(yè)可持續(xù)發(fā)展的基礎(chǔ)之一。
自毒作用、土壤理化性狀劣變、微生物失衡以及土傳病害增加導(dǎo)致作物連作障礙[3-4],其中土壤微生物群落的失衡是導(dǎo)致連作障礙的主要因子[5]。研究表明,連作體系下土壤微生物多樣性及組成發(fā)生變化,進(jìn)而影響土壤的生產(chǎn)力[6]。土壤真菌群落參與關(guān)鍵的生態(tài)過程,包含大量土傳病害的致病因子及拮抗因子[7-9]。連作體系下真菌群落多樣性及組成發(fā)生變化,致病群落豐度增加,導(dǎo)致花生連作障礙[10]。因此,土壤真菌群落在根際微生態(tài)過程、土傳病害方面,扮演重要角色,然而關(guān)于人參根際真菌群落變化的研究較少,加強(qiáng)根際真菌群落的研究利于闡述人參連作障礙機(jī)制。
本研究采用高通量測序的技術(shù),分析人參根際土壤真菌群落多樣性及組成的變化,闡述土壤理化性狀與土壤真菌群落的相關(guān)性,為克服人參連作障礙提供有效的策略。
1 材料與方法
1.1 土壤樣品采集 樣品采集于中國中醫(yī)科學(xué)院中藥研究所靖宇縣林下栽參試驗(yàn)基地(126.8°E,42.39°N)。土壤樣品采集于移栽后種植年限分別為1,2,3年的人參根際土壤,見圖 1。試驗(yàn)小區(qū)隨機(jī)排放且面積為1.5 m×20 m,每個(gè)小區(qū)隨機(jī)選取5株人參苗,收集其根際土壤[11],混勻合并為一個(gè)樣品,并采集參園外的0~20 cm森林土作為對照。12個(gè)土壤樣品,過2 mm篩,一部分用于理化性狀的測定,一部分用于土壤微生物群落的鑒定。
1.2 土壤理化性狀的分析
采用水浸提法測定土壤的pH[12];水合熱法測定土壤有機(jī)質(zhì)[13];凱氏定氮法測定土壤中氮含量[14];分別采用鉬藍(lán)法及火焰光度法測定土壤有效磷及有效鉀的含量。
1.3 土壤微生物群落的分析
采用MOBIO PowerSoil Kit(MOBIO,美國)提取土壤總DNA,利用通用引物擴(kuò)增真菌18S rRNA片段[15],標(biāo)簽序列見表1。序列擴(kuò)增、純化、均一化參照Rodrigues 等[16]描述。采用Iron Torrent測序平臺(tái)獲取土壤真菌宏基因組序列,利用QIIME軟件進(jìn)行序列分析[17]。數(shù)據(jù)預(yù)處理,采用Flash的軟件融合雙末端序列,通過各樣品標(biāo)簽序列對數(shù)據(jù)進(jìn)行區(qū)分并歸類,去除非靶區(qū)域序列及嵌合體[18]。采用Sliva將序列進(jìn)行物種分類,對每個(gè)樣本和每個(gè)物種單元分類進(jìn)行序列豐度計(jì)算構(gòu)建樣本和物種分類單元序列豐度矩陣[19]。根據(jù)序列相似度(97%)構(gòu)建操作分類單元(OTU)。通過多樣性分析,計(jì)算各種物種多樣性指數(shù),衡量樣本物種多樣性[19]。
1.4 數(shù)據(jù)分析 采用SPSS 11.0軟件,在P<0.05水平上分析人參根際土壤與森林土的差異。
2 結(jié)果
2.1 土壤理化指標(biāo) 與森林土相比,人參根際土壤理化性狀不同,見表2。與森林土相比,人參根際土壤pH下降3.4%~10.2%;土壤總氮及有效鉀含量顯著增高112%~135%,63.4%~189%。與對照相比,人參根際土壤有機(jī)質(zhì)及有效鉀含量差異均不顯著。
2.2 土壤真菌多樣性 12個(gè)土壤樣品中共獲得61 985條可分類的真菌序列,每個(gè)樣本中平均5 165條,數(shù)量范圍為2 832~8 747條,見表1。森林土、一年生、二年生及三年生人參根際土壤中個(gè)檢測到真菌OUT分別為:3 260,3 710,2 925,2 471;森林土與一年生,二年生及三年生人參根際土壤中檢測到共有的真菌OUT為863;森林土分別與一年生,二年生及三年生人參根際土壤中檢測到共有的真菌OUT為:1 783,1 561,1 394,見圖2。
人參根際土壤中真菌群落多樣性增加,見圖3。對森林土相比,人參根際土壤真菌多樣性指數(shù)分類多樣性,香農(nóng)指數(shù),Chao 1和群落種類顯著增加;隨著人參種植年限增加,真菌多樣性指數(shù)增加趨勢而下降。
2.3 土壤真菌組成 人參根際土壤真菌群落發(fā)生變化見圖4。與對照相比,在門水平人參根際土壤中Ascomycota和Glomeromycota的豐度分別增加了9.5%~22.2%和1.2%~2.4%;Basidiomycota,Blastocladiomycota 和Chytridiomycota豐度分別下降了6.9%~31.6%,27.4%~54.8%,0.7%~33.2%;一年生人參根際Neocallimastigomycota的豐度增加了15.1%,而二年生及三年生人參根際其豐度分別下降了22.1%,45.4%(圖4a)?;诜诸惥嚯x矩陣分析,人參根際土壤真菌結(jié)構(gòu)發(fā)生變化,且與種植年限相關(guān)(圖4b,c)。基于Unifrac距離矩陣分析,第一軸(總變異為20.76%)區(qū)分一、二年生人參根際真菌群落與森林土和三年生人參根際真菌群落;而第二軸(總變異為15.76%)區(qū)分三年生人參根際與森林土的真菌群落(圖4b)?;贐ray-Curtis距離矩陣分析,第一軸(總變異為17.79%)區(qū)分了人參根際及森林土真菌群落,第二軸(總變異為15.16%)區(qū)分了三年生人參根際真菌群落與一年生、二年生人參根際及森林土真菌群落(圖4c)。
人參連續(xù)種植導(dǎo)致科水平真菌群落豐度的變化,見圖5。與對照相比,在科水平上,人參根際土壤真菌群落Sordariomycetes,Alatospora,Eurotiomycetes,Leotiomycetes,Saccharomycetes,Mucorales,Pezizomycetes的豐度增加,分別增加了10.4%~33.7%,2.0%~32.1%,15.8%~44.0%,39.1%~41.2%,40.4%~46.7%,18.3%~76.9%,9.0%~38.2%;真菌群落Agaricomycetes和Dothideomycetes豐度分別下降了4.8%~33.8%;一年生及二年生人參根際土壤真菌群落Tremellomycetes豐度增加了8.9%~16.8%;一年生及三年生人參根際真菌群落Microbotryomycetes的豐度增加了56.2%~93.6%,而二年生人參根際其豐度下降了52.5%。
2.4 土壤理化性狀影響真菌群落的豐度 皮爾森相關(guān)分析表明,真菌群落的豐度與土壤理化性狀相關(guān),見表3。Dothideomycetes的豐度與土壤pH(r=0.712,P<0.05)及有效鉀含量(r=-0.746,P<0.05)顯著相關(guān);Sordariomycetes的豐度與土壤總氮含量顯著正相關(guān)(r=0.719,P<0.05);Alatospora的豐度與土壤pH(r=-0.669,P<0.05)及有效鉀含量(r=0.737,P<0.05)顯著相關(guān);Mucorales的豐度與土壤總氮(r=0.624,P<0.05)及有效鉀含量(r=0.781,P<0.05)顯著正相關(guān)。結(jié)果表明,土壤理化指標(biāo)影響人參根際土壤真菌群落的豐度。
3 討論
人參根際土壤真菌群落多樣性下降,隨著種植年限的增加,真菌多樣性指數(shù)下降。人參連續(xù)種植導(dǎo)致根際土壤真菌群落組成發(fā)生變化,在門的水平,豐度最大群落Ascomycota的豐度增加,而真菌群落Basidiomycota,Blastocladiomycota和Chytridiomycota(豐度<1%)的豐度下降;在科的水平,真菌群落(豐度>0.5%)Sordariomycetes,Alatospora,Eurotiomycetes,Leotiomycetes,Saccharomycetes,Mucorales和Pezizomycetes的豐度增加。真菌群落豐度的變化與土壤理化指標(biāo)相關(guān),pH與Dothideomycetes和Alatospora的豐度顯著相關(guān),有效鉀含量與Dothideomycetes,Alatospora,Mucorales的豐度顯著相關(guān),土壤總氮含量與Sordariomycetes,Mucorales的豐度顯著相關(guān),結(jié)果表明,土壤理化指標(biāo)影響人參根際土壤真菌群落的豐度。
土壤微生物多樣性及組成的變化打破了根際微生態(tài)系統(tǒng)功能,破壞土壤健康度,土傳病害增加,進(jìn)而影響作物的產(chǎn)量及品質(zhì)[20-22]。連續(xù)種植模式改變了土壤微生物多樣性及組成,影響了土壤的生產(chǎn)力[5,10]。研究表明,連作體系下,真菌多樣性及組成發(fā)生變化,且病原菌增加,益生菌減少[10,21]。三七連續(xù)種植體系下,死苗率與真菌多樣性顯著相關(guān),致病群落Fusarium oxysporum豐度增加[23]。因此,微生物多樣性及組成的變化是土壤微生態(tài)失衡的因素之一。
土壤微生物群落多樣性及組成的變化與作物類型、施肥等因素相關(guān)[24]。研究表明,氮肥影響了土壤微生物群落的組成,隨著氮肥濃度的提高,富養(yǎng)性的分類群落Proteobacteria和Bacteroidetes豐度增加[25],長期平衡施肥降低AMF真菌多樣性,改變AMF群落結(jié)構(gòu)[26]。與施用有機(jī)肥相比,施用生物有機(jī)肥增加有益微生物(Trihoderma,Hypoxylon,Tritirachium
,Paenibacillus,Bacillus,Haliangium,Streptomyces)的豐度[27]。研究表明,土壤微生物群落的結(jié)構(gòu)及豐度與土壤理化性狀相關(guān),Sordariomycete的豐度與有效磷含量相關(guān)[28]。土壤pH與真菌Helotiales(R2=0.53,P<0.01)、Hypocreales(R2=0.63,P<0.01)的豐度顯著相關(guān)[29]。與森林土相比,人參根際土壤pH下降,總氮、有效鉀含量顯著增加,且土壤理化指標(biāo)與真菌群落的豐度相關(guān)。結(jié)果表明,施肥是驅(qū)動(dòng)根際微生物群落變化的因素之一,優(yōu)化施肥體系是改善人參根際微生態(tài)的有效措施。此外,新參地資源的開發(fā),如利用傳統(tǒng)田地進(jìn)行休耕種植人參,可實(shí)現(xiàn)傳統(tǒng)作物與人參輪作,是人參種植的發(fā)展方向[30]。因此,強(qiáng)化連作障礙機(jī)制的研究結(jié)合新參地資源的開發(fā)是克服人參連作障礙的有效途徑。
[參考文獻(xiàn)]
[1]張連學(xué),陳長寶,王英平,等. 人參忌連作研究及其解決途徑[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2008(4):481.
[2]吳連舉,趙亞會(huì),關(guān)一鳴,等. 人參連作障礙原因及其防治途徑研究進(jìn)展[J]. 特產(chǎn)研究,2008(2):68.
[3]Yu J Q, Shou S Y, Qian Y R, et al. Autotoxic potential of cucurbit crops[J]. Plant Soil, 2000, 223(12):149.
[4]Singh B K, Munro S, Reid E, et al. Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods[J]. Eur J Soil Sci, 2006, 57(1):72.
[5]Nayyar A, Hamel C, Lafond G, et al. Soil microbial quality associated with yield reduction in continuous-pea[J]. Appl Soil Ecol, 2009, 43(1):115.
[6]Li C, Li X, Kong W, et al. Effect of monoculture soybean on soil microbial community in the Northeast China[J]. Plant Soil, 2009, 330(1):423.
[7]Stajich J E, Berbee M L, Blackwell M, et al. The fungi[J]. Curr Opin Chem Biol, 2009, 19(18):840.
[8]Singh P K,Singh M,Vyas D. Biocontrol of Fusarium wilt of chickpea using arbuscular mycorrhizal fungi and Rhizobium leguminosorum Biovar[J]. Caryologia, 2014, 63(4):349.
[9]Vor1skova′J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes[J]. ISME J, 2013, 7(3):477.
[10]Chen M, Li X, Yang Q, et al. Soil Eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected[J]. PLoS ONE, 2012, 7(7):e40659.
[11]Wu L K, Wang H B, Zhang Z X, et al. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil[J]. PLoS ONE, 2011, 6(5):9055.
[12]張敏, 謝運(yùn)球, 馮英梅, 等. 浸提用水對測定土壤pH值的影響[J]. 河南農(nóng)業(yè)科學(xué),2008(6):58.
[13]Rowell D L. Soil science: methods and applications[M]. Utrecht the Netherlands:Longman,1994: 573.
[14]Keeney D R, Nelson D W. Nitrogen-inorganic forms. Methods of soil analysis-part 2-chemical and microbiological properties[M]. Madison: Amer Soc Agronomy, 1982:595.
[15]Johannes R, Erland B, Philip C B, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. ISME J, 2010, 4(10):1340.
[16]Jorge L M R, Vivian H, Pellizarib, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities[J]. Proc Natl Acad Sci USA, 2013, 110(3):988.
[17]Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. BMC Bioinformatics, 2010, 26(2):266.
[18]Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Met, 2010, 7(5):335.
[19]Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucl Acid Res, 2013, 41:D590.
[20]Mazzola M, Manici L M. Apple replant disease: role of microbial ecology in cause and control[J]. Annu Rev Phytopathol, 2012, 50(1):45.
[21]Zhou X G, Wu F Z. Dynamics of the diversity of fungal and Fusarium, communities during continuous cropping of cucumber in the greenhouse[J]. FEMS Microbiol Ecol, 2012, 80(2):469.
[22]Dong L, Yao H, Li Q, et al. Investigation and integrated molecular diagnosis of root-knot nematodes in Panax notoginseng root in the field[J]. Eur J Plant Pathol, 2014, 137(4):667.
[23]Dong L, Xu J, Feng G, et al. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system[J]. Sci Rep, 2016, 6: 31802.
[24]Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiol Ecol, 2009, 68(1):1.
[25]Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. ISME J, 2012, 6(5): 1007.
[26]Lin X, Feng Y, Zhang H, et al. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing[J]. Environ Sci Technol, 2012, 46(11):5764.
[27]Qiu M, Zhang R, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biol Fertil Soils, 2012, 48: 816.
[28]Lauber C L, Strickland M S, Bradford M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biol Biochem, 2008, 40: 2415.
[29]Rousk J, Bth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. ISME J 2010, 1:12.
[30]沈亮, 徐江, 董林林, 等. 人參栽培種植體系及研究策略[J]. 中國中藥雜志,2015,40(17):3367.
[責(zé)任編輯 呂冬梅]