陳書秀 李曉捷 王偉偉 趙聚萍
摘 要:以多肋藻(Costaria costata)雌雄配子體為材料,研究了藍(lán)光、白光、紅光對(duì)配子體生長(zhǎng)發(fā)育的影響。結(jié)果表明:光質(zhì)對(duì)多肋藻配子體的生長(zhǎng)發(fā)育有顯著的影響(P<0.05),雌配子體在藍(lán)光條件下相對(duì)生長(zhǎng)率(5.62%)顯著高于紅光(3.37%),但與白光下的相對(duì)生長(zhǎng)率(4.94%)無(wú)顯著差異;雄配子體在白光下的相對(duì)生長(zhǎng)率(8.71%)最高,顯著高于紅光(6.73%),但與藍(lán)光下的相對(duì)生長(zhǎng)率(7.74%)無(wú)顯著差異。相同光質(zhì)條件下,雄配子體相對(duì)生長(zhǎng)率顯著高于雌配子體。整個(gè)培養(yǎng)周期過(guò)程中,紅光條件下,配子體均未發(fā)育。相同培養(yǎng)天數(shù)下,藍(lán)光組的發(fā)育率顯著高于白光組。隨著培養(yǎng)天數(shù)的增加,白光組和藍(lán)光組的發(fā)育率均有顯著的提高,白光組于第28天達(dá)到最大值21.13%,藍(lán)光組于第20天達(dá)到最大值67.73%。
關(guān)鍵詞:多肋藻(Costaria costata);配子體;生長(zhǎng);發(fā)育;光質(zhì)
多肋藻(Costaria costata)是一種一年生海洋藻類,主要分布在太平洋北部沿岸的淺海區(qū),在亞洲主要分布在日本北海道和朝鮮半島的沿海水域,并已在韓國(guó)和日本栽培[1-2]。多肋藻于1992年引入中國(guó),在華北海域進(jìn)行了育苗和養(yǎng)殖實(shí)驗(yàn)[3]。目前,大連和榮成沿海都在進(jìn)行小規(guī)模海上養(yǎng)殖[4-5]。多肋藻生長(zhǎng)繁殖速度快,在海洋環(huán)境恢復(fù)和海洋森林建設(shè)中具有重要的作用[6]。除了其對(duì)鮑魚和海膽等海洋動(dòng)物的餌料價(jià)值之外,C.costata還被認(rèn)為是海藻酸、海藻多糖和巖藻多糖的重要來(lái)源,廣泛用于食品加工行業(yè)、生物技術(shù)和醫(yī)藥領(lǐng)域[7-8]。因此,預(yù)計(jì)未來(lái)對(duì)多肋藻的需求將會(huì)增加。
目前,多肋藻育苗主要采用傳統(tǒng)的種菜采苗方式,即利用成熟的多肋藻葉狀體放散游孢子后發(fā)育成幼孢子體的方式進(jìn)行育苗培養(yǎng)。這種方法有一些缺點(diǎn),如耗時(shí)長(zhǎng)、受季節(jié)限制和常見(jiàn)性病害多發(fā)。利用配子體無(wú)性系直接發(fā)育成幼孢子體進(jìn)行育苗培育的方法,可使室內(nèi)培養(yǎng)時(shí)間縮短一半,生產(chǎn)成本降低一半。室內(nèi)培養(yǎng)時(shí)間的縮短,可以有效減少畸形和孢子分離疾病的發(fā)生[9-10]。對(duì)海帶目的許多物種培養(yǎng)研究表明,海藻配子體產(chǎn)生卵子和精子,涉及營(yíng)養(yǎng)細(xì)胞向繁殖細(xì)胞的轉(zhuǎn)化,營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng)是拮抗過(guò)程[11-12]。海帶配子體可以通過(guò)抑制誘導(dǎo)條件進(jìn)行無(wú)性繁殖,也可以通過(guò)提供適當(dāng)?shù)臈l件誘導(dǎo)產(chǎn)生生殖細(xì)胞。從營(yíng)養(yǎng)生長(zhǎng)到生殖發(fā)育的變化歸因于各種環(huán)境因素,包括溫度、光量、光質(zhì)、光周期和營(yíng)養(yǎng)素[13-15]等,其中光質(zhì)對(duì)海帶等大型褐藻的配子體生長(zhǎng)發(fā)育起著至關(guān)重要的作用。Shi等[16]研究發(fā)現(xiàn)藍(lán)光下海帶配子體生長(zhǎng)速度顯著高于紅光,且藍(lán)光是配子體的發(fā)育受精的必要條件之一。隋曉偉等[17]研究結(jié)果表明:藍(lán)光最利于海帶配子體生長(zhǎng)發(fā)育,紅光僅對(duì)配子體生長(zhǎng)有促進(jìn)作用。
多肋藻的生理生化、生長(zhǎng)發(fā)育及海水養(yǎng)殖方面已經(jīng)做了很多研究[18-23]。有關(guān)光質(zhì)對(duì)多肋藻配子體生長(zhǎng)發(fā)育的影響研究較少,付剛[24]研究發(fā)現(xiàn),光質(zhì)對(duì)多肋藻胚孢子的萌發(fā)無(wú)顯著影響,紅光可促進(jìn)雌配子體的營(yíng)養(yǎng)生長(zhǎng),藍(lán)光更利于配子體成熟發(fā)育。本研究在實(shí)驗(yàn)室中評(píng)估了光質(zhì)對(duì)多肋藻雌配子體生長(zhǎng)發(fā)育的影響,旨在優(yōu)化配子體發(fā)育條件,促進(jìn)配子體快速同步發(fā)育。
1 材料與方法
1.1 試驗(yàn)材料
將多肋藻雌雄配子體細(xì)胞團(tuán)進(jìn)行物理切割并用60 μm孔徑的篩絹過(guò)濾,獲得50~100 μm細(xì)胞段,制備成細(xì)胞懸濁液備用。
1.2 試驗(yàn)方法
1.2.1 生長(zhǎng)試驗(yàn) 取適量的雌、雄配子體懸濁液分別加入到培養(yǎng)皿中,放置在白光、藍(lán)光和紅光三種不同波長(zhǎng)的光線下培養(yǎng),其他條件為NO-3-N 4 mg/L、PO3-4-P 0.4 mg/L,光照強(qiáng)度40 μmol·m-2·s-1,溫度10 ℃,鹽度31‰,光照周期均為24L∶0D。每個(gè)光質(zhì)組設(shè)置3個(gè)平行。經(jīng)過(guò)30 d的培養(yǎng),拍照,采用ImageJ進(jìn)行數(shù)據(jù)統(tǒng)計(jì),根據(jù)初始配子體平均長(zhǎng)度(L0)和試驗(yàn)結(jié)束時(shí)配子體平均總長(zhǎng)度(L1)計(jì)算相對(duì)生長(zhǎng)速率(RGR,%·d-1)。相對(duì)生長(zhǎng)速率計(jì)算:RGR=100[ln(L1)-ln(L0)]/t,其中t為試驗(yàn)天數(shù),d。
1.2.2 發(fā)育試驗(yàn) 雌、雄配子體細(xì)胞懸濁液2∶1(體積比)進(jìn)行混合后,取適量加入到培養(yǎng)皿中,配子體細(xì)胞段附著于培養(yǎng)皿底部,每個(gè)100×視野中含有20~30個(gè)細(xì)胞段。發(fā)育條件設(shè)置白光、藍(lán)光和紅光3種不同波長(zhǎng)的光線,其他條件均為NO-3-N 4 mg/L、PO3-4-P 0.4 mg/L、C6H5FeO7-Fe 0.1 mg/L,光照強(qiáng)度30 μmol·m-2·s-1,溫度10 ℃,鹽度31‰,光照周期均為12L∶12D。每個(gè)光質(zhì)組設(shè)置3個(gè)平行。每3~4 d觀察拍照,統(tǒng)計(jì)卵囊形成及排卵的雌配子體和幼孢子體數(shù)量,計(jì)算配子體發(fā)育率。
1.3 數(shù)據(jù)處理
采用雙因素方差分析檢驗(yàn)光質(zhì)和性別差異對(duì)多肋藻配子體生長(zhǎng)的影響,并檢驗(yàn)光質(zhì)和培養(yǎng)天數(shù)對(duì)配子體發(fā)育的影響。相同性別和相同培養(yǎng)天數(shù)下進(jìn)行單因素方差分析并采用LSD進(jìn)行差異顯著性分析。顯著水平設(shè)為P<0.05。所有統(tǒng)計(jì)分析采用SPSS24.0軟件并用Excel軟件作圖。
2 結(jié)果
2.1 不同光質(zhì)對(duì)多肋藻配子體生長(zhǎng)的影響
光質(zhì)及性別差異對(duì)多肋藻配子體的生長(zhǎng)有顯著的影響(P<0.05),但兩者相互作用對(duì)配子體生長(zhǎng)的影響不顯著(P=0.192>0.05)。雌配子體在藍(lán)光條件下相對(duì)生長(zhǎng)率(5.62%)顯著高于紅光(3.37%),但與白光下的相對(duì)生長(zhǎng)率(4.94%)無(wú)顯著差異;雄配子體在白光下的相對(duì)生長(zhǎng)率(8.71%)最高,顯著高于紅光(6.73%),但與藍(lán)光下的相對(duì)生長(zhǎng)率(7.74%)無(wú)顯著差異(見(jiàn)表1和圖1)。相同光質(zhì)條件下,雄配子體相對(duì)生長(zhǎng)率顯著高于雌配子體(表1和圖1)。
2.2 不同光質(zhì)對(duì)多肋藻配子體發(fā)育的影響
在試驗(yàn)周期內(nèi),紅光組的多肋藻配子體僅營(yíng)養(yǎng)生長(zhǎng),不發(fā)育,無(wú)卵囊形成,外觀形態(tài)變化見(jiàn)圖2a-c。培養(yǎng)第10天,藍(lán)光條件下即出現(xiàn)卵囊及排卵現(xiàn)象(圖2de),第13天,白光組才開始出現(xiàn)排卵現(xiàn)象,藍(lán)光組已經(jīng)出現(xiàn)幼孢子體(圖2f)。第16天,藍(lán)光條件下,發(fā)育率達(dá)61.56%,其中小苗占30%以上,白光條件下的發(fā)育率僅為21.13%(圖3)。
方差分析結(jié)果表明,光質(zhì)、培養(yǎng)天數(shù)及兩者的相互作用對(duì)多肋藻配子體發(fā)育率有顯著的影響(P<0.001)。整個(gè)培養(yǎng)周期過(guò)程中,紅光條件下,配子體均未發(fā)育。表2多重比較結(jié)果顯示,相同培養(yǎng)天數(shù)下,藍(lán)光組的發(fā)育率顯著高于白光組。隨著培養(yǎng)天數(shù)的增加,白光組和藍(lán)光組的發(fā)育率均有顯著的提高,白光組于第28天達(dá)到最大值21.13%,藍(lán)光組于第20天達(dá)到最大值67.73%。
3 討論
由于海水地域性差異,導(dǎo)致了不同海域不同水深的光譜結(jié)構(gòu)不同,海藻長(zhǎng)期對(duì)環(huán)境的適應(yīng)與進(jìn)化,從而形成了不同的海藻色素和不同的光質(zhì)適應(yīng)機(jī)制[25-26]。大量研究表明,不同光質(zhì)(白、藍(lán)、紅、綠光)對(duì)藻類的光合效率、生長(zhǎng)發(fā)育以及生化代謝等均可產(chǎn)生顯著的影響。例如,López-Figueroa等[27]研究發(fā)現(xiàn),在紫菜(Porphyra umbilicalis)中,葉綠素的積累和藻藍(lán)蛋白的合成主要是由紅光引起的,藻紅蛋白的合成主要受綠光的刺激。藍(lán)光可促進(jìn)硬石莼(Ulva rigida)、長(zhǎng)珊瑚藻和海頭紅(Plocamium cartilagineum)葉綠素的積累速率。Saavedra等[28]研究發(fā)現(xiàn),角毛藻(Chaetoceros sp.)在藍(lán)光下的生長(zhǎng)速度和葉綠素含量顯著高于白光。Gong等[29]研究發(fā)現(xiàn)藍(lán)光可提高解石莼(Ulva lactuca)的相對(duì)生長(zhǎng)率,而紅光會(huì)降低解石莼的相對(duì)生長(zhǎng)率。Bird等[30]研究發(fā)現(xiàn),藍(lán)光可促進(jìn)真江蘺(Gracilaria vermiculophylla)的氨基酸合成。Kang等[31]研究結(jié)果表明,紅光能夠提高長(zhǎng)莖葡萄蕨藻(Caulerpa lentillifera)生長(zhǎng)速率。劉洪艷等[32]研究也發(fā)現(xiàn)綠光培養(yǎng)條件下紫球藻(Porphyridium cruentum)生物產(chǎn)量、藻膽素、可溶性總蛋白的含量最高,而紅光條件下生長(zhǎng)最緩慢。Godínez-Ortega等[33]研究發(fā)現(xiàn)綠光促進(jìn)海膜(Halymenia floresii)的生長(zhǎng)和葉綠素a、α-胡蘿卜素和葉黃素的合成,藍(lán)光促進(jìn)藻藍(lán)蛋白合成。隋曉偉等[17]研究發(fā)現(xiàn),藍(lán)光和綠光可促進(jìn)海帶配子體生長(zhǎng)。本試驗(yàn)結(jié)果表明,配子體在紅光條件下相對(duì)生長(zhǎng)率顯著低于藍(lán)光和白光,藍(lán)光和白光條件下相對(duì)生長(zhǎng)率無(wú)顯著差異;相同光質(zhì)條件下,雄配子體相對(duì)生長(zhǎng)率顯著高于雌配子體。
有些海藻在不同生活史階段對(duì)光質(zhì)的響應(yīng)也存在差異,例如,小球藻(Chlorella) 突變體處于休眠細(xì)胞階段時(shí),藍(lán)光可促進(jìn)對(duì)氨基酸的吸收;處于生長(zhǎng)階段時(shí),藍(lán)光卻對(duì)氨基酸的吸收起到抑制作用[34]。Wang等[35-36]研究了不同光質(zhì)對(duì)海帶(Saccharina japonica)早期發(fā)育的影響,結(jié)果表明,光質(zhì)對(duì)游動(dòng)孢子的附著和萌發(fā)影響不大,藍(lán)光可促進(jìn)卵母細(xì)胞形成、幼孢子體的生長(zhǎng)和細(xì)胞分裂。Lüning等[37]研究發(fā)現(xiàn)糖海帶Saccharina latissima配子發(fā)育需要藍(lán)光,并提供了通過(guò)抑制藍(lán)光而使配子體無(wú)性生長(zhǎng)的方法。Drueh等[38]測(cè)定了13種海帶孢子在無(wú)藍(lán)光條件下的生殖反應(yīng)。他們發(fā)現(xiàn)大多數(shù)物種在沒(méi)有藍(lán)光的條件下配子體不會(huì)發(fā)育,但是3種潮間帶物種在有或沒(méi)有藍(lán)光的情況下配子體均可發(fā)育。本試驗(yàn)結(jié)果表明,與白光相比,藍(lán)光促進(jìn)了多肋藻配子體向孢子體的發(fā)育。這與付剛[24]的研究結(jié)果一致。
參考文獻(xiàn):
[1] SELIVANOVA O N, ZHIGSDLOVA G G, HANSEN G I. Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the Far-Eastern seas of Russia on the basis of molecular-phylogenetic data[J]. Russian Journal of Marine Biology, 2007, 33:278-289.
[2] SOHN C H. Developments on two newly cultivated species Capsosiphon fulvescens and Costaria Costata in Korea[J]. Journal of Phycology,2003,39:53-54.
[3] 張澤宇,陳樹科,蔣暉.Costaria costata的室內(nèi)培養(yǎng)與栽培試驗(yàn)[J].大連水產(chǎn)學(xué)院學(xué)報(bào),1992(Z1):39-47.
[4] 李國(guó)梁,汪文俊,李寶賢,等.基于MaxEnt模型和ArcGIS預(yù)測(cè)多肋藻在中國(guó)海域的適生分布特征[J].中國(guó)水產(chǎn)科學(xué),2021,28(12):1588-1601.
[5] 梁廣津,潘金華,張壯志,等.多肋藻夏苗培育及養(yǎng)殖技術(shù)[J].河北漁業(yè), 2017 (6): 36-39+43.
[6] KANG J K, PHAM B N, LEE C G, et al. Biosorption of Cd2+, Cu2+, Ni2+, Pb2+ by four diferent macroalgae species (Costaria costata, Hizikia fusiformis, Gracilaria verrucosa, and Codium fragile)[J]. International Journal of Environmental Science and Technology, 2023,20:10113-10122.
[7] ERMAKOVA S, SOKOLOVA R, KIM S M, et al. Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and anticancer activity[J]. Applied Biochemistry and Biotechnology, 2011,164:841-850.
[8] LIU N N, WU X, FU X T, et al. Characterization of polysaccharides extracted from a cultivated brown alga Costaria costata during the harvest period[J]. Journal of ocean university of China,2018,17:1209-1217.
[9] LI X J, ZHANG Z Z, QU S C, et al. Improving seedless kelp (Saccharina japonica) during its domestication by hybridizing gametophytes and seedling-raising from sporophytes[J].Scientific Report,2016(6):21255.
[10] LI D P, ZHOU Z G, LIU H H, et al. A new method of Laminaria japonica strain selection and sporeling raising by the use of gametophyte clones[J]. Hydrobiologia, 1999,398:473-476.
[11] BOLTON J J, LEVITT G J, Light and temperature requirementsfor growth and reproduction in gametophytes of Ecklonia maxima (Alariaceae: Laminariales) [J].Marine Biology,1985,87:131-135.
[12] CARNEY L T, EDWARDS M S. Role of nutrient fluctuations and delayed development in amerophyte reproduction by Macrocystis pyrifera (Phaeophyceae) in southern California[J]. Journal of Phycology,2010,46:987-996.
[13] MARTINS N, TANTTU H, PEARSON G A, et a1. Interactions of daylength, temperature and nutrients affect thresholds for life stage transitions in the kelp Laminaria digitata(Phaeophyceae)[J]. Botanica Marina, 2017, 60(2): 109-121.
[14] MORELISSEN B,DUDLEY B D,GEANGE S W.Gametophyte reproduction and development of Undaria pinnatifida under varied nutrient and irradiance conditions[J].Journal of Experimental Marine Biology and Ecology,2013,448:197-206.
[15] IWAI H,F(xiàn)UKUSHIMA M,MOTOMURA T.Effect of iron complexes with seawater extractable organic matter on oogenesis in gametophytes of a brown macroalga (Saccharina japonica)[J]. Journal of Applied Phycology, 2015,27(4):1583-1591.
[16] SHI H Z,BRESSAN R.RNA extraction [J].Methods in Molecular Biology,2006,323:345-348.
[17] 隋曉偉,任偉,閆文華,等.光質(zhì)對(duì)海帶配子體生長(zhǎng)發(fā)育影響的研究[J].海洋科學(xué),2011,35(4):33-36.
[18] FU G, LIU J D, WANG G G, et al. Early development of Costaria costata (C. Agardh) Saunders and cultivation trials[J].Chinese Journal of Oceanology and Limnology,2010,28(4):731-737.
[19] 孫娟,潘金華,張壯志,等.溫度和光照強(qiáng)度對(duì)多肋藻(Costaria costata)配子體生長(zhǎng)影響研究[J].漁業(yè)研究,2019, 41(1):11-17.
[20] 賽珊,趙楠,羅世菊,等.多肋藻雌配子體種質(zhì)保存和擴(kuò)培的溫光條件研究[J].水產(chǎn)養(yǎng)殖,2021, 42(5):24-28.
[21] 李國(guó)梁,汪文俊,李寶賢,等.光強(qiáng)對(duì)多肋藻小孢子體生長(zhǎng)及抗氧化生理的影響[J].中國(guó)水產(chǎn)科學(xué),2022, 29(12):1778-1787.
[22] 李國(guó)梁,汪文俊,李寶賢,等.溫度對(duì)多肋藻小孢子體生長(zhǎng)及抗氧化生理的影響[J].中國(guó)水產(chǎn)科學(xué),2022, 29(9):1300-1311.
[23] BORLONGAN I A, MATASUMOTO K, NAKAZAKI Y, et al. Photosynthetic activity of two life history stages of Costaria costata (Laminariales, Phaeophyceae) in response to PAR and temperature gradient[J].Phycologia,2018,57 (2):159-168.
[24] 付剛.多肋藻(Costaria costata)生理生態(tài)學(xué)研究[D].青島:中國(guó)海洋大學(xué),2009.
[25] 任毛飛,毛桂玲,劉善振,等.光質(zhì)對(duì)植物生長(zhǎng)發(fā)育、光合作用和碳氮代謝的影響研究進(jìn)展[J].植物生理學(xué)報(bào),2023, 59( 7):1211-1228.
[26] RüDIGER W,LPEZ-FIGUEROA F.Photoreceptors in algae [J].Photochemistry and Photobiology, 1992, 55(6): 949-954.
[27] L PEZ-FIGUEROA F,NIELL F X.Effects of light quality on chlorophyll and biliprotein accumulation in seaweeds [J]. Marine Biology,1990,104(2):321-327.
[28] SAAVEDRA M D P S,VOLTOLINA D.The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions[J].Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1994,107(1):39-44.
[29] GONG J Y,LIU Z W,ZOU D H.Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca ( Chlorophyta) cultured under fluorescent light and different LED light[J].Journal of Applied Phycology,2020,32(5):3265-3272.
[30] BIRD K T,DAWES C J,ROMEO J T.Light quality effects on carbon metabolism and allocation in Gracilaria verrucosa[J].Marine Biology,1981,64(2):219-223.
[31] KANG L K,HUANG Y J,LIM W T et al.Growth, pigment content, antioxidant activity and phytoene desaturase gene expression in Caulerpa lentillifera grown under different combinations of blue and red light-emitting diodes[J].Journal of Applied Phycology,2020,32:1971-1982.
[32] 劉洪艷,潘伶俐,施定基.不同光質(zhì)對(duì)紫球藻生長(zhǎng)及藻膽素含量的影響[J].天津科技大學(xué)學(xué)報(bào), 2007,22(1):26-28.
[33] GODINEZ-ORTEGA J L,SNOEIJS P,ROBLEDO D,et al.Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities[J].Journal of Applied Phycology,2008,20(3):253-260.
[34] KAMIYA A,SAITOH T.Blue-light-control of the uptake of amino acids and of ammonia in Chlorella mutants[J].Physiologia Plantarum,2002,116(2):248-254.
[35] WANG W J,SUN T,WANG F J.Effect of blue light on early sporophyte development of Saccharina japonica (Phaeophyta)[J].Marine Biology,2010,157(8):1811-1817.
[36] WANG W J,SUN X T,WANG G C,et al.Effect of blue light on indoor seedling culture of Saccharina japonica (Phaeophyta)[J].Journal of Applied Phycology,2010,22(6):737-744.
[37] LNING K,DRING M J.Reproduction, growth and photosynthesis of gametophytes of Laminaria saccharina grown in blue and red light[J].Marine Biology,1975, 29(3):195-200.
[38] DRUEHL L D,BOAL R.Manipulations of the Laminarialean life-cycle and its consequences for kombu mariculture[M]//LEVRIG T.International Seaweed Symposium (Xth),Proceedings, Gteborg, Sweden,1981: 575-580.
Effects of different light quality on the growth and development of gametophyte of Costaria costata
CHEN Shuxiu,LI Xiaojie,Wang Weiwei,ZHAO Juping
(Shandong Oriental Ocean Group Co.Ltd., National Algae and Sea Cucumber Engineering Technology Research Center, Algae in Shandong Province Key Laboratory of Genetic Breeding and Cultivation Technology, Yantai 264003, China
)
Abstract:The effects of blue light, white light and red light on the growth and development of female and male gametophytes of Costaria costata were studied. The results showed that the RGR (relative growth rate) of female gametophyte under red light (3.37%) was significantly lower than that under blue light (5.62%), the RGR of male gametophyte under white light (8.71%) was higher than that under red light (6.73%), but there was no significant difference with that under blue light (7.74%). Under the same light quality, the RGR of female gametophyte was significantly lower than that of male gametophyte. The gametophytes did not develop under red light during the whole culture period. The development rate of blue light group was significantly higher than that of white light group under the same culture days. With the increase of culture days, the growth rate of white-light group and blue-light group increased significantly. The maximum value of white-light group was 21.13% on the 28th day, and that of blue-light group was 67.73% on the 20th day.
Key words:Costaria costata; gametophyte; growth; development; light quality
(收稿日期:2024-04-24)