国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

短橫軸截割機(jī)器人直墻拱形巷道自動(dòng)成形控制方法

2024-06-28 09:55:40馬宏偉王賽賽王川偉薛力猛張恒孫思雅

馬宏偉 王賽賽 王川偉 薛力猛 張恒 孫思雅

摘?要:針對(duì)掘進(jìn)機(jī)在直墻拱形巷道掘進(jìn)過程中存在定位難、截割效率低、成形質(zhì)量差等問題,提出一種短橫軸截割機(jī)器人及其自動(dòng)成形控制方法。首先設(shè)計(jì)了串聯(lián)式短橫軸截割機(jī)器人結(jié)構(gòu),構(gòu)建了短橫軸截割機(jī)器人運(yùn)動(dòng)學(xué)模型,建立了截割臂升降油缸、滑移油缸及回轉(zhuǎn)油缸伸縮量與截割頭末端位姿的數(shù)學(xué)關(guān)系,提出了短橫軸截割機(jī)器人直墻拱形巷道自動(dòng)成形控制方法;其次研究分析了短橫軸截割機(jī)器人截割頭包絡(luò)空間與直墻半圓拱形巷道空間耦合關(guān)系,確定了截割過程中截割軌跡關(guān)鍵點(diǎn)位置,提出了基于截割軌跡關(guān)鍵點(diǎn)的“弓”型截割軌跡規(guī)劃方法;然后根據(jù)建立的短橫軸截割機(jī)器人運(yùn)動(dòng)學(xué)模型,求解截割頭在跟蹤截割軌跡的過程中運(yùn)動(dòng)控制量和截割、修幫、掃底3個(gè)任務(wù)各個(gè)關(guān)節(jié)控制時(shí)序;最后以模糊PID為例,建立了短橫軸截割機(jī)器人自動(dòng)成形控制方法,利用Adams軟件對(duì)短橫軸截割機(jī)器人進(jìn)行截割運(yùn)動(dòng)仿真試驗(yàn)。結(jié)果表明:利用“弓”型截割軌跡規(guī)劃方法能夠完成直墻拱形巷道的截割軌跡規(guī)劃,控制截割頭對(duì)截割軌道進(jìn)行跟蹤控制,實(shí)現(xiàn)了直墻拱形巷道斷面的自動(dòng)成形截割,截割成形的巷道最大欠挖量為48 mm,最大超挖量為21 mm,滿足煤礦巷道成形質(zhì)量要求。研究得出短橫軸截割機(jī)器人可在沿巷道中線不左右移機(jī)的情況下,高效率、高質(zhì)量地完成直墻拱形巷道斷面自動(dòng)成形截割任務(wù)。

關(guān)鍵詞:定形截割;截割機(jī)器人;拱形巷道;軌跡規(guī)劃;模糊PID控制

中圖分類號(hào):TD 421

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1672-9315(2024)03-0418-12

DOI:10.13800/j.cnki.xakjdxxb.2024.0302開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

Automatic forming control method of straight-wall arched

roadway for short transverse axis cutting robot

MA Hongwei1,2,WANG Saisai1,2,WANG Chuanwei1,2,XUE Limeng1,2,ZHANG Heng1,2,SUN Siya3

(1.College of Mechanical Engineering,Xian University of Science and Technology,Xian 710054,China;

2.Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xian 710054,China;

3.College of Electrical and Control Engineering,Xian University of Science and Technology,Xian 710054,China)

Abstract:

A short horizontal axis cutting robot and its automatic forming control method are proposed to address the problems of difficult positioning,low cutting efficiency,and poor forming quality of tunneling machines during the excavation process of straight wall arched tunnels.Firstly,a series type short horizontal axis cutting robot structure was designed,and a kinematic model of the short horizontal axis cutting robot was constructed.The mathematical relationship between the extension and contraction of the cutting arm lifting oil cylinder,sliding oil cylinder,and rotary oil cylinder and the cutting head posture was established,and an automatic forming control method for straight wall arched tunnels of the short horizontal axis cutting robot was proposed;

Secondly,

the coupling relationship between the envelope space of the short horizontal axis cutting robots cutting head and the space of the straight wall semi-circular arch roadway was studied and analyzed.The key points of the cutting trajectory during the cutting process were determined,and a “bow” shaped cutting trajectory planning method based on the key points of the cutting trajectory was proposed;

Thirdly,

based on the established kinematic model of the short horizontal axis cutting robot,solve the motion control variables of the cutting head during the tracking and cutting trajectory process,as well as the control timing of each joint in the three tasks of cutting,trimming,and bottom sweeping;Finally,taking fuzzy PID as an example,a control method for automatic forming and cutting of a short horizontal axis cutting robot was established,and the cutting motion simulation experiment of the short horizontal axis cutting robot was conducted using Adams software.The results show that the “bow” shaped cutting trajectory planning method can complete the cutting trajectory planning of straight wall arched tunnels.Control the cutting head to track and control the cutting trajectory,the automatic forming cutting of the straight wall arched tunnel section is achieved.The maximum under excavation amount of the completed tunnel is 48 mm,and the maximum over excavation amount is 21 mm,which meets the quality requirements of coal mine tunnel forming.The study found that the short horizontal axis cutting robot can efficiently and high-quality complete the automatic forming and cutting task of straight wall arched tunnel section without moving the machine left and right along the centerline of the tunnel.

Key words:set cutting;cutting robot;arched roadway;trajectory planning;fuzzy PID control

0?引?言由于直墻拱形巷道圍巖穩(wěn)定性和設(shè)備通過性好,因此常被應(yīng)用于地質(zhì)較軟、埋深較深的煤層,但目前還沒有相應(yīng)裝備可實(shí)現(xiàn)高效、高質(zhì)量的成形截割。根據(jù)《煤礦機(jī)器人重點(diǎn)研發(fā)目錄》《關(guān)于加快煤礦智能化發(fā)展的指導(dǎo)意見》等文件[1-4],亟待研發(fā)一種掘進(jìn)機(jī)器人可實(shí)現(xiàn)

直墻拱形巷道

斷面高效成形截割方法。現(xiàn)有的裝備中,全寬橫軸掘進(jìn)機(jī),其控制簡單、截割效率高,但只適用于矩形斷面的成形截割[5];縱軸掘進(jìn)機(jī)適應(yīng)性強(qiáng),可應(yīng)用于任意形狀巷道斷面的成形截割,但存在左右移機(jī)、定位難等問題,控制要求高,截割效率低;短橫軸掘進(jìn)機(jī)截割效率較高,但也存在左右移機(jī)、定位難等問題,導(dǎo)致巷道斷面成形效率低。為保證截割效率,巷道斷面的成形質(zhì)量,文中在短橫軸掘進(jìn)機(jī)截割方式的基礎(chǔ)上,提出一種掘進(jìn)機(jī)不左右移機(jī)的情況下完成直墻拱形巷道自動(dòng)截割控制方法,可實(shí)現(xiàn)直墻拱形巷道的高效成形截割。近年來,國內(nèi)外對(duì)煤礦巷道掘進(jìn)智能化的研究不斷深入,對(duì)橫軸、縱軸式掘進(jìn)機(jī)的自適應(yīng)截割已經(jīng)有了較深入的研究,如張旭輝等提出一種懸臂式掘進(jìn)機(jī)自主調(diào)速截割系統(tǒng),采用模糊PID控制驅(qū)動(dòng)截割頭變速截割煤壁,實(shí)現(xiàn)矩形巷道斷面的成形截割[6];王蘇彧等提出一種縱軸式掘進(jìn)機(jī)自動(dòng)截割斷面邊界控制誤差分析方法,并研究了一種截割軌跡規(guī)劃及邊界控制方法[7-8];王東杰等提出一種基于多傳感器信息的掘進(jìn)機(jī)截割臂自適應(yīng)截割控制策略,使用基于遺傳算法優(yōu)化的模糊PID控制器,實(shí)現(xiàn)截割臂擺速的高效自適應(yīng)調(diào)控[9];王蘇彧等提出一種懸臂式掘進(jìn)機(jī)斷面成型軌跡多目標(biāo)優(yōu)化方法,使用多目標(biāo)粒子群算法與FDMOPSO算法對(duì)截割軌跡多目標(biāo)優(yōu)化模型進(jìn)行求解,求出復(fù)雜巷道的最優(yōu)軌跡[10];WU,XU等提出懸臂式自主截割方法與大斷面煤巷懸臂式掘進(jìn)機(jī)二次自主截割路徑規(guī)劃與控制方法研究[11-12];對(duì)于截割頭位姿的確定,均需要研究機(jī)器人的運(yùn)動(dòng)學(xué),如王鵬江等基于ADAMS仿真對(duì)掘進(jìn)機(jī)截割過程中機(jī)身位姿變化進(jìn)行分析[13];張旭輝等提出了一種基于多點(diǎn)固定的外參標(biāo)定方法,該方法有效提高了截割頭擺角的檢測精度[14];楊文娟等提出一種基于激光束和紅外光斑特征的懸臂式掘進(jìn)機(jī)機(jī)身及截割頭位姿視覺測量系統(tǒng),實(shí)現(xiàn)了掘進(jìn)機(jī)機(jī)身及截割頭位姿自動(dòng)、準(zhǔn)確、實(shí)時(shí)測量要求[15]。綜上所述,現(xiàn)有的巷道成形截割控制主要集中在矩形巷道斷面,而對(duì)直墻拱形巷道斷面的自動(dòng)成形方法及短橫軸智能截割控制的研究相對(duì)較少。文中在短橫軸煤礦智能掘進(jìn)機(jī)器人系統(tǒng)的基礎(chǔ)上,針對(duì)直墻拱形巷道的自動(dòng)化截割需求,以短橫軸截割機(jī)器人為研究對(duì)象,提出一種短橫軸截割機(jī)器人結(jié)構(gòu),并制定直墻拱形巷道自動(dòng)成形截割控制方法。首先,以短橫軸截割機(jī)器人本體結(jié)構(gòu)特點(diǎn)為基礎(chǔ),建立短橫軸截割機(jī)器人的運(yùn)動(dòng)學(xué)模型,確定截割臂各關(guān)節(jié)變量與截割頭位姿變化關(guān)系,掌握以短橫軸截割機(jī)器人的運(yùn)動(dòng)性能;然后,分析截割頭工作空間與直墻拱形巷道尺寸的對(duì)應(yīng)關(guān)系,確定截割直墻拱形巷道的截割軌跡;最后,搭建軌跡跟蹤控制模型,實(shí)現(xiàn)直墻拱形巷道的自動(dòng)成形控制。

1?短橫軸截割機(jī)器人

1.1?短橫軸煤礦智能掘進(jìn)機(jī)器人系統(tǒng)組成為實(shí)現(xiàn)煤礦直墻拱形巷道快速掘進(jìn),馬宏偉團(tuán)隊(duì)提出一種短橫軸煤礦智能掘進(jìn)機(jī)器人系統(tǒng)[16],主要由短橫軸截割機(jī)器人、鉆錨機(jī)器人Ι和鉆錨機(jī)器人Π、運(yùn)輸及通風(fēng)除塵系統(tǒng)和電液控平臺(tái)等組成,如圖1所示。短橫軸截割機(jī)器人位于巷道中線,負(fù)責(zé)巷道斷面的成形截割任務(wù);鉆錨機(jī)器人Ⅰ與鉆錨機(jī)器人Ⅱ位于短橫軸截割機(jī)器人后方,負(fù)責(zé)完成永久支護(hù)任務(wù);運(yùn)輸及通風(fēng)除塵系統(tǒng)

負(fù)責(zé)運(yùn)輸與通風(fēng)任務(wù);電液控平臺(tái)負(fù)責(zé)總體的控制。

1.2?短橫軸截割機(jī)器人結(jié)構(gòu)短橫軸截割機(jī)器人位于短橫軸煤礦智能掘進(jìn)機(jī)器人系統(tǒng)的最前端,負(fù)責(zé)巷道斷面的成形截割任務(wù)。短橫軸截割機(jī)器人由截割頭、截割臂、水平轉(zhuǎn)臺(tái)、滑臺(tái)、掘進(jìn)機(jī)底架、鏟板以及帶有位移傳感器的升降油缸、回轉(zhuǎn)油缸和滑移油缸等部分組成,如圖2所示;截割臂具有前后滑移、左右旋轉(zhuǎn)及垂直擺動(dòng)等功能,可完成直墻拱形巷道截割、修幫及掃底等成形截割任務(wù)。在巷道掘進(jìn)過程中,短橫軸截割機(jī)器人位于巷道中線,通過滑移油缸、回轉(zhuǎn)油缸、升降油缸的聯(lián)合控制,實(shí)現(xiàn)截割臂前后滑移、水平旋轉(zhuǎn)和垂直擺動(dòng)的復(fù)合運(yùn)動(dòng),完成巷道斷面的定形截割。截割機(jī)器人的主要參數(shù)見表1。

2?短橫軸截割機(jī)器人運(yùn)動(dòng)學(xué)模型

2.1?機(jī)器人正運(yùn)動(dòng)學(xué)模型短橫軸截割機(jī)器人屬于開鏈運(yùn)動(dòng)學(xué)系統(tǒng),

截割頭截割巷道斷面的運(yùn)動(dòng)主要依靠滑臺(tái)的前后移動(dòng)、水平轉(zhuǎn)臺(tái)的左右轉(zhuǎn)動(dòng)、截割臂的垂直擺動(dòng)及截割頭的旋轉(zhuǎn)。根據(jù)串聯(lián)機(jī)器人運(yùn)動(dòng)學(xué)改進(jìn)D-H

方法[17-19],建立短橫軸截割機(jī)器人運(yùn)動(dòng)學(xué)模型,運(yùn)動(dòng)學(xué)坐標(biāo)系模型如圖3所示,其中短橫軸截割機(jī)器人坐標(biāo)系為O0X0Y0Z0,滑臺(tái)坐標(biāo)系為O1X1Y1Z1,水平轉(zhuǎn)臺(tái)坐標(biāo)系為O2X2Y2Z2,截割臂坐標(biāo)系為O3X3Y3Z3,截割頭中心點(diǎn)坐標(biāo)系為O4X4Y4Z4。

短橫軸截割機(jī)器人的運(yùn)動(dòng)結(jié)構(gòu)參數(shù)見表2。其中,a0為沿X0軸的平移量,α0為繞X0軸的轉(zhuǎn)動(dòng)量,α0=0,d0為沿Z0軸的平移量,d0=0,θ0為繞Z0軸的轉(zhuǎn)動(dòng)量,θ0=90°;a1為沿X1軸的平移量,α1為繞X1軸的轉(zhuǎn)動(dòng)量,α1=90°,d1為沿Z1軸的平移量,d1=0,θ1為繞Z1軸的轉(zhuǎn)動(dòng)量,θ1=90°;a2為沿X2軸的平移量,α2為繞X2軸的轉(zhuǎn)動(dòng)量,α2=90°,d2為沿Z2軸的平移量,d2=0,θ2為繞Z2軸的轉(zhuǎn)動(dòng)量,θ2=0;a3為沿X3軸的平移量,α3為繞X3軸的轉(zhuǎn)動(dòng)量,α3=0,d3為沿Z3軸的平移量,d3=0,θ3為繞Z3軸的轉(zhuǎn)動(dòng)量,θ3=0。

根據(jù)改進(jìn)D-H

矩陣原理和結(jié)構(gòu)參數(shù)可得兩

相鄰坐標(biāo)系的坐標(biāo)變換公式如下

ii+1T=Rxi,ai

Dxi,αi

Rxi,θi,

Dxi,di

(1)

式中?Rxi,ai為沿Xi軸方向移動(dòng)ai的平移矩陣;

Dxi,ai為繞Xi軸旋轉(zhuǎn)αi的旋轉(zhuǎn)矩陣;Rzi,θi為繞Zi軸

旋轉(zhuǎn)θi的旋轉(zhuǎn)矩陣;Dzi,di為沿Zi軸方向移動(dòng)di的平移矩陣。變換矩陣為

ii+1

T=

cosθi-sinθi0ai

cosθisinαi

sinθicosαi-sinαidicosαi

sinθisinαi

cosθisinαicosαidicosαi

0001

(2)

將表2中的參數(shù)代入式(2),可得相鄰兩連桿的齊次變換矩陣如下

01T

=

0-10a0

1000

001d0

0001

(3)

12T

=

cosθ1-sinθ100

001-d1

sinθ1cosθ100

0001

(4)

23T

=

cosθ2-sinθ20a2

00-10

sinθ2cosθ200

0001

(5)

34T

=

cosθ3-sinθ30a3

sinθ3cosθ300

0010

0001

(6)

將相臨兩連桿的齊次變換矩陣依次相乘,得到機(jī)器人的正運(yùn)動(dòng)學(xué)方程如下

04T

=

c2s3+c3s2c2c3-s2s3

0a0+d1+a2s2

c1c2c3-c1c2s3

-c1c2s3-c1c3s2s1

a2c1+a2c1c2

c2c3s1-s1s2s3

-c2s1s3-c3s1s2-c2

d0+a2s1+a3c2s2

0001

=

nxoxaxpx

nyoyaypy

nzozazpz

0001

(7)

根據(jù)以上的齊次變換矩陣運(yùn)算,得到截割機(jī)器人機(jī)械臂正運(yùn)動(dòng)學(xué)矩陣,由式(7)可知短橫軸截割機(jī)器人截割頭中心點(diǎn)相對(duì)巷道空間坐標(biāo)系的位置坐標(biāo)為

P=[pxpy ?px]T。

2.2?機(jī)器人運(yùn)動(dòng)學(xué)逆解根據(jù)給定截割臂末端位置與姿態(tài),求得截割機(jī)器人所有關(guān)節(jié)的關(guān)節(jié)變量[20-22]。根據(jù)齊次變換矩陣

01T

,得到其逆矩陣如下

01T-1

=

0100

-100a0

001-d0

0001

(8)

等式(7)兩邊同時(shí)左乘01T-1,化簡可得式(9)如下。

c1c2c3-c1s2s3-c1c2s3-c1c3s2s1

a2c1+a2c1c2

-c2s3-s2s3s2s3-c2c30-d1-a3s2

c2c3s3-s1s2s3-c2s1s3-c3s1c2-c1a2

s1+a2c2s1

0001

=

nyoyaypy

-nx-ox-axa0-px

nz0zazpz-d0

0001

(9)

利用等式兩端所對(duì)應(yīng)的元素相等,將除此關(guān)

節(jié)的其余變量消去,最終得到各關(guān)節(jié)變量的解如下

d0=pz-a2s1-a3c2s1

θ1=arccos

py

a2+px-d1-a0

θ2=arcsin

px-d1-a0

a3

θ3=0

(10)

3?拱形巷道斷面成形截割軌跡規(guī)劃

3.1?巷道與截割頭尺寸拱形巷道截面形狀是由矩形與三心拱型弧線組成[23-24],如圖4所示。拱形巷道的掘進(jìn)高為

Hh,拱高為Fh,掘進(jìn)寬為Bh,根據(jù)拱高與掘進(jìn)寬度,繪制輔助線條確定三心拱中的3個(gè)圓心Oh1、Oh2、Oh3,其中拱頂半徑為Rh,拱端半徑為rh。短橫軸截割機(jī)器人的截割頭形狀為兩球頭對(duì)稱分布,如圖5所示。截割頭的直徑為Dj,半徑為dj1,截割頭的寬度為Lj1,連接平面長Lj2,基圓半徑為dj2,截割頭的弧形由三段圓弧組成[25-26],分別為Rj1、Rj2、Rj3。拱形巷道與截割頭的尺寸見表3。

3.2?定形截割軌跡規(guī)劃將整個(gè)截割過程分為3個(gè)過程,分別是截割、修幫和掃底。

截割過程是巷道掘進(jìn)的主要工作,其目的是將巷道斷面內(nèi)的大量煤巖從斷面上剝落,以最大的截面覆蓋率與截割效率為目標(biāo)規(guī)劃截割軌跡。分析截割頭外形尺寸與巷道斷面尺寸的關(guān)系:巷道的截割深度為E=800 mm;巷道高度Hh與截割頭的最大半徑dj1的比值n為巷道矩形截面的最大水平截割次數(shù),n=4;掘進(jìn)寬度Bh減去截割頭寬度Lj1為最大水平截割距離l1;掘進(jìn)高Hh與n的比值為垂直截割距離h1;當(dāng)截割頭中心的垂直高度為4h1+dj1,并且右截割頭與巷道拱頂相切,此時(shí)截割頭中心點(diǎn)的位置為巷道弧形截面處水平截割右極限點(diǎn),根據(jù)對(duì)稱原理求得左極限點(diǎn),左右極限點(diǎn)之間距離為巷道弧形截面處的水平截割距離l2;當(dāng)介個(gè)頭中心點(diǎn)處于巷道中線且左右截割頭均與巷道拱頂接觸時(shí),截割頭中心點(diǎn)位置為截割軌跡最高點(diǎn),此點(diǎn)距離巷道頂點(diǎn)為h2。

根據(jù)所求截割頭外形尺寸與巷道斷面尺寸的關(guān)系,選取截割頭中心點(diǎn)的截割軌跡關(guān)鍵點(diǎn),依次連接關(guān)鍵點(diǎn),完成巷道掘進(jìn)過程的“弓”型截割軌跡規(guī)劃,截割軌跡如圖6所示。具體步驟如下:首先,確定截割頭位于巷道左下角的關(guān)鍵點(diǎn)1;然后,根據(jù)最大水平截割距離l1,確定右下角的關(guān)鍵點(diǎn)2;其次,根據(jù)最優(yōu)垂直截割距離h1,確定第3處關(guān)鍵點(diǎn)位置。以此類推,將掘進(jìn)過程中的11處關(guān)鍵點(diǎn)依次確定,按順序連接即可完成掘進(jìn)過程中巷道“弓”型截割軌跡規(guī)劃。

修幫過程是對(duì)已掘進(jìn)巷道的表面進(jìn)行精確修整,減少巷道斷面邊界的粗糙度,提高掘進(jìn)機(jī)前進(jìn)效率。在截割頭修幫的過程中,截割頭與煤壁巷道的接觸面為半圓形,如圖7所示,其中C1為沿掘進(jìn)方向修型尺寸,C2為垂直方向修型尺寸。由于C1大于C2,在考慮修型效率的條下,選擇沿掘進(jìn)方向的修型方式,截割頭每次沿掘進(jìn)方向前后移動(dòng)的尺寸為l3,即點(diǎn)12到點(diǎn)13的距離(點(diǎn)12坐標(biāo)為[-1 540,5 150,590],點(diǎn)13的坐標(biāo)為[-1 540,4 350,590]),l3=800 mm,與截割深度相同。

根據(jù)巷道輪廓周長,用周長除以C1計(jì)算需要修型的次數(shù),確定修幫軌跡中第12至第59關(guān)鍵點(diǎn)中的48個(gè)關(guān)鍵點(diǎn),依次連接關(guān)鍵點(diǎn),完成巷道修幫過程的“弓”型截割軌跡規(guī)劃,如圖8所示。具體步驟如下:首先確定第12關(guān)鍵點(diǎn)的位置,根據(jù)掘進(jìn)深度,確定修幫深度,從而計(jì)算處第13關(guān)鍵點(diǎn)位置;然后根據(jù)C1測量所得的最大修型尺寸,計(jì)算出第14關(guān)鍵點(diǎn)位置;最后以此類推,將掘進(jìn)過程48處關(guān)鍵點(diǎn)依次確定,按順序連接即可完成修幫過程的截割軌跡。

掃底過程是對(duì)已掘進(jìn)巷道的底板進(jìn)行精確修整,確保巷道底部精確成形,機(jī)器人系統(tǒng)能順利前進(jìn)。同理,確定掃底過程中第59至第66中的8個(gè)關(guān)鍵

點(diǎn),依次連接掃地過程中的8處關(guān)鍵點(diǎn),如圖9所示。

3.3?截割機(jī)器人關(guān)節(jié)控制時(shí)序根據(jù)截割、修幫和掃底截割軌跡規(guī)劃的結(jié)果,利用Matlab機(jī)械臂逆解的方法求解各關(guān)節(jié)時(shí)序變化關(guān)系:首先,利用連續(xù)小線段插補(bǔ)原理[27

-28],將定型截割軌跡分成有限多小線段,設(shè)每條線段為軌跡vi,則所有軌跡集A={v1,v2,v3,…,vn-1,vn},分割后的每段軌跡為截割頭中心點(diǎn)的運(yùn)動(dòng)軌跡;然后,根據(jù)r.ikine函數(shù)求得截割頭中心處于每段軌跡終點(diǎn)時(shí)各關(guān)節(jié)的關(guān)節(jié)量;最后,將每一步的關(guān)節(jié)量導(dǎo)出,按順序排列,此時(shí)將會(huì)得到整個(gè)

截割過程中,截割臂各關(guān)節(jié)控制時(shí)序,如圖10所示。

從圖10可以看出,滑臺(tái)的位移范圍在0~1 300 mm,因此,滑臺(tái)的最小行程是1 300 mm;滑臺(tái)在掃底與修幫的過程中,存在大范圍的滑移運(yùn)動(dòng),但在修幫與掃底過程中,截割煤巖的量少,主要認(rèn)為是修形,因此可以適當(dāng)提高滑移速度?;剞D(zhuǎn)臺(tái)的極限轉(zhuǎn)角范圍在-20°~20°;其中在掘進(jìn)過程中存在大范圍擺臂運(yùn)動(dòng),又因?yàn)榫蜻M(jìn)運(yùn)動(dòng)是截割過程的主要運(yùn)動(dòng),且煤巖硬度分布不均勻。因此,在回轉(zhuǎn)臺(tái)運(yùn)動(dòng)控制時(shí)應(yīng)監(jiān)測回轉(zhuǎn)油缸壓力變化,防止過載損壞,即使調(diào)整水平截割擺速。截割臂垂直擺動(dòng)的極限范圍在-25°~25°,在各階段的變化都比較平穩(wěn),均為階段性變換。

3.4?油缸伸縮量與截割臂位姿關(guān)系根據(jù)所求的截割機(jī)器人各關(guān)節(jié)變量時(shí)序集,可知在截割過程各關(guān)節(jié)的轉(zhuǎn)動(dòng)量。由于各關(guān)節(jié)轉(zhuǎn)動(dòng)量是由各油缸的伸縮量決定,因此,可通過控制油缸的伸縮量來滿足關(guān)節(jié)的轉(zhuǎn)動(dòng)量。建立關(guān)節(jié)轉(zhuǎn)動(dòng)量與油缸伸縮量的數(shù)學(xué)關(guān)系,求解各關(guān)節(jié)變量對(duì)應(yīng)的油缸伸縮量[29]。各油缸的變化參數(shù)如圖11~13所示。

從圖11可以看出,點(diǎn)O1為滑臺(tái)中心;點(diǎn)Ml,Mr分別為滑移油缸與掘進(jìn)機(jī)底架的左右鏈接點(diǎn);點(diǎn)Nl,Nr為滑移油缸與滑臺(tái)的左右鏈接點(diǎn)。其中SYl,SYr分別為左右滑移油缸的總長度。

從圖12可以看出,點(diǎn)O2為轉(zhuǎn)臺(tái)中心;點(diǎn)Pl,Pr分別為回轉(zhuǎn)油缸與滑臺(tái)的左右鏈接點(diǎn);點(diǎn)Ql,Qr分別為回轉(zhuǎn)油缸與轉(zhuǎn)臺(tái)的左右鏈接點(diǎn)。其中LPl,LPr分別為點(diǎn)Pl、Pr到點(diǎn)O2的長度;LQl,LQr分別為點(diǎn)Ql、Qr到點(diǎn)O2的長度;SZl,SZr分別為左右回轉(zhuǎn)油缸的總長度,角度ψl為標(biāo)準(zhǔn)狀態(tài)下的∠PlQlO2,同理ψr為∠PrQrO2。

從圖13可以看出,點(diǎn)O3為垂直擺動(dòng)中心;點(diǎn)J為升降油缸與轉(zhuǎn)臺(tái)的鏈接點(diǎn);點(diǎn)K為升降油缸與截割臂的鏈接點(diǎn)。其中LJO為點(diǎn)J到點(diǎn)O3的長度;LKO為點(diǎn)K到點(diǎn)O3的長度;SS為升降油缸的總長度,角度Ψ為標(biāo)準(zhǔn)狀態(tài)下的∠JO3K。

油缸伸縮量與關(guān)節(jié)變化量的關(guān)系式如下

ΔSYI=

ΔSYr=SY-SY′=d0

ΔSZL=|SZL-SZL′|

SZL=L2Pl+L2Ql

-2LPl·LOl·cos

(ψL-θ1)

ΔSZR=|SZR-SZR′|

SZR=L2Pr+L2Qr

-2LPr·LOr·cos

(ψR(shí)-θ1)

ΔSS=|SS-SS′|

SS=L2KO+L2JO

-2LKO·LJO·cos

(ψ-θ1)

(11)

式中

ΔSYl,

ΔSYr,

ΔSZL,

ΔSZl,

ΔSS

為油缸伸縮量;

SYl′

等參數(shù)表示油缸伸縮變化后的總長度,mm。

4?自動(dòng)成形截割控制方法

4.1?自動(dòng)成形截割控制模型短橫軸截割機(jī)器自動(dòng)成形截割的控制思路

為:首先完成整體截割軌跡規(guī)劃;然后利用連續(xù)小線段插補(bǔ)原理將截割軌跡劃分為有限多小段軌跡;最后控制截割頭中心點(diǎn)按順序擬合每小段截割軌跡,截割頭完成所有小段軌跡的擬合即完成自動(dòng)成形截割。截割頭中心點(diǎn)位置由各關(guān)節(jié)量決定,各關(guān)節(jié)量由各組油缸伸縮量決定,因此,可通過控制各組油缸伸縮量來完成截割頭中心點(diǎn)的定位,控制各組油缸的伸縮實(shí)現(xiàn)對(duì)目標(biāo)巷道的精確截割。

為了驗(yàn)證短橫軸截割機(jī)器人自動(dòng)成形截割的控制方法,以模糊PID[30-31]為例設(shè)計(jì)截割控制策略,控制框如圖14所示。設(shè)置截割頭的目標(biāo)位置

P=[px?py?px]T,根據(jù)數(shù)學(xué)關(guān)系式求解各組油缸的期望伸縮量

S=[SY?SZL?SZR?SS]T;令各組油缸的實(shí)際伸縮量

Sp=[SYp?SZLp?SZRp?SSp]T,將各組油缸期望伸縮量減去實(shí)際伸縮量的差值設(shè)為偏差e,設(shè)偏差變化率為ec;根據(jù)制定的模糊規(guī)則輸出對(duì)應(yīng)的PID修正參數(shù)ΔKP、ΔKI、ΔKD,對(duì)PID控制增益參數(shù)進(jìn)行實(shí)時(shí)優(yōu)化及調(diào)整,克服PID控制增益參數(shù)不可調(diào)整的缺點(diǎn),實(shí)現(xiàn)油缸伸縮量的精確控制。

模糊PID控制原理是根據(jù)PID的3個(gè)參數(shù)與偏差e和偏差變化率ec之間的模糊關(guān)系,在截割過程中不斷檢測e與ec,根據(jù)模糊控制規(guī)則對(duì)3個(gè)參數(shù)進(jìn)行實(shí)時(shí)調(diào)整,實(shí)現(xiàn)PID自適應(yīng)控制。根據(jù)不同伸縮量偏差求解輸入量的量化因子,將精確值轉(zhuǎn)化為模糊值。

F(e)=

6e

Fsmax-Fsmin

F(Δe)=

6Δe

2(Fsmax-Fsmin)

(12)

式中?F(e)為伸縮量偏差模糊值;F(Δe)為伸縮量偏差變化量模糊值;Fsmax為最大設(shè)定伸縮量;Fsmin為最小設(shè)定伸縮量。

4.2?仿真試驗(yàn)及驗(yàn)證利用Adams軟件建立截割機(jī)器人虛擬樣機(jī)模型[32-33],對(duì)短橫軸節(jié)割機(jī)器人各關(guān)節(jié)進(jìn)行約束,各零件之間的約束關(guān)系見表5。

利用Adans軟件建立的虛擬樣機(jī)進(jìn)行仿真,得出截割空間包絡(luò)圖,

如圖16所示。截割頭的截割包絡(luò)空間基本實(shí)現(xiàn)目標(biāo)巷道的截割,并保持邊界在一定的誤差范圍內(nèi)。從圖16中可以看出在A、B、C 3個(gè)區(qū)域,由于截割頭外形原因,產(chǎn)生欠挖情況。其中A區(qū)的空白尺寸為三角形,此時(shí)A區(qū)的截割空白呈現(xiàn)出長約625 mm、高約50 mm的三角形;B、C兩區(qū)產(chǎn)生的原因是由于弧形截割頭截割失效產(chǎn)生的,其與掘進(jìn)機(jī)的底面外形相吻合,不影響掘進(jìn)機(jī)的前進(jìn),因此可忽略不考慮。

利用Adams仿真軟件測算功能,計(jì)算截割頭超挖量與欠挖量,如圖17所示。虛線為理論邊界量,紅色線為截割實(shí)際邊界距離理論邊界的距離,正值為超挖量,負(fù)值為欠挖量。

從圖17可以看出,最大欠挖量在巷道頂板中間拱形處為48 mm,其余超挖量均在21 mm以內(nèi),滿足煤礦巷道成形質(zhì)量誤差為±50 mm的要求。

5?結(jié)?論

1)提出一種以短橫軸截割機(jī)器人為主的智能掘進(jìn)機(jī)器人系統(tǒng)及其自動(dòng)成形控制方法,實(shí)現(xiàn)了截割機(jī)器人對(duì)直墻拱形巷道斷面高效率、高質(zhì)量的成形截割。 2)提出了巷道成形截割關(guān)鍵點(diǎn)“弓”型截割軌跡規(guī)劃方法,實(shí)現(xiàn)了截割機(jī)器人對(duì)直墻拱形巷道精準(zhǔn)高效截割。3)以模糊PID為例,建立了短橫軸截割機(jī)器人自動(dòng)成形截割控制方法。在直墻拱形巷道斷面的自動(dòng)成形截割控制過程中,最大欠挖量為48 mm,最大超挖量為21 mm,滿足煤礦巷道成形質(zhì)量要求。

參考文獻(xiàn)(References):

[1]

王國法,王虹,任懷偉,等.智慧煤礦2025情景目標(biāo)和發(fā)展路徑[J].煤炭學(xué)報(bào),2018,43(2):295-305.WANG Guofa,WANG Hong,REN Huaiwei,et al.2025 scenarios and development path of intelligent coal mine[J].

Journal of China Coal Society,2018,43(2):95-305.

[2]王國法,劉峰,孟祥軍,等.煤礦智能化(初級(jí)階段)研究與實(shí)踐[J].煤炭科學(xué)技術(shù),2019,47(8):1-36.

WANG Guofa,LIU Feng,MENG Xiangjun,et al.Research and practice on intelligent coal mine construction(primary stage)[J].Coal Science and Technology,2019,47(8):1-36.

[3]王國法,杜毅博,徐亞軍,等.中國煤炭開采技術(shù)及裝備50年發(fā)展與創(chuàng)新實(shí)踐——紀(jì)念《煤炭科學(xué)技術(shù)》創(chuàng)刊50周年[J].煤炭科學(xué)技術(shù),2023,51(1):1-18.

WANG Guofa,DU Yibo,XU Yajun,et al.Development and innovation practice of China coal mining technology and equipment for 50 years:Commemorate the 50th anniversary of the publication of Coal Science and Technology[J].Coal Science and Technology,2023,51(1):1-18.

[4]王國法,張德生.煤炭智能化綜采技術(shù)創(chuàng)新實(shí)踐與發(fā)展展望[J].中國礦業(yè)大學(xué)學(xué)報(bào),2018,47(3):459-467.WANG Guofa,ZHANG Desheng.Innovation practice and development prospect of intelligent fully mechanized technology for coal mining[J].Journal of China University of Mining & Technology,2018,47(3):459-467.

[5]薛力猛,馬宏偉,王川偉,等.護(hù)盾式智能掘進(jìn)系統(tǒng)截割機(jī)器人截割能力研究[J].西安科技大學(xué)學(xué)報(bào),2023,43(4):779-786.XUE Limeng,MA Hongwei,WANG Chuanwei,et al.Cutting ability of cutting robot in shield intelligent tunneling system[J].Joumal of Xian University of Science and Technology.2023,43(4):779-786.

[6]張旭輝,石碩,楊紅強(qiáng),等.懸臂式掘進(jìn)機(jī)自主調(diào)速截割控制系統(tǒng)[J].工礦自動(dòng)化,2023,49(1):80-89.

ZHANG Xuhui,SHI Shuo,YANG Hongqiang,et al.Boom-type roadheader autonomous speed regulation cutting control system[J].Journal of Mine Automation,2023,49(1):80-89.

[7]王蘇彧,田劼,吳淼.縱軸式掘進(jìn)機(jī)截割軌跡規(guī)劃及邊界控制方法研究[J].煤炭科學(xué)技術(shù),2016,44(4):89-94,118.WANG Suyu,TIAN Jie,

WU Miao.Study on cutting trace planning of longitudinal roadheader and boundary control method[J].Coal Science and Technology,2016,44(4):89-94,118.

[8]王蘇彧,田劼,吳淼.縱軸式掘進(jìn)機(jī)自動(dòng)截割斷面邊界控制誤差分析[J].工礦自動(dòng)化,2016,42(5):14-18.WANG Suyu,TIAN Jie,WU Miao.Analysis of automatic cutting section boundary control error for longitudinal roadheader[J].Journal of Mine Automation,2016,42(5):14-18.

[9]王東杰,王鵬江,李悅,等.掘進(jìn)機(jī)截割臂自適應(yīng)截割控制策略研究[J].中國機(jī)械工程,2022,33(20):2492-2501.

WANG Dongjie,WANG Pengjiang,LI Yue,et al.Research on adaptive cutting control strategy of roadheader cutting arms[J].China Mechanical Engineering,2022,33(20):2492-2501.

[10]王蘇彧,馬登成,任澤,等.懸臂式掘進(jìn)機(jī)斷面成型軌跡多目標(biāo)優(yōu)化方法研究[J].儀器儀表學(xué)報(bào),2021,41(8):183-192.WANG Suyu,MA Dengcheng,REN Ze,et al.A multi-objective optimization method for cantilever roadheader section forming trajectory[J].Chinese Journal of Scientific Instrument,2021,41(8):183-192.

[11]WU J J,XU Z Y,F(xiàn)ANG X Q,et al.Research on path planning and control method for secondary autonomous cutting of cantilever roadheader in a large-section coal roadway[J].Sustainability,2022,15(1):560-560.

[12]XU Z Y,LIANG M F,F(xiàn)ANG X Q,et al.Research on autonomous cutting method of cantilever roadheader[J].Energies,2022,15(17):6190-6190.

[13]王鵬江,宗凱,張彬,等.基于ADAMS仿真的懸臂式掘進(jìn)機(jī)截割過程機(jī)身位姿變化分析[J].煤炭技術(shù),2018,37(6):250-252.WANG Pengjiang,ZONG Kai,ZHANG Bin,et al.Boom-type road-header cutting process ana-lysis of bodys position and attitude change based on ADAMS simulation[J].Coal Technology,2018,37(6):250-252.

[14]張旭輝,謝楠,張超,等.懸臂式掘進(jìn)機(jī)截割頭位姿視覺測量系統(tǒng)改進(jìn)[J].工礦自動(dòng)化,2021,47(7):1-7.ZHANG Xuhui,XIE Nan,ZHANG Chao,et al.Improvement of vision measurement system for cutting head position of boom-type roadheader[J].Journal of Mine Automation,2021,47(7):1-7.

[15]楊文娟,張旭輝,馬宏偉,等.懸臂式掘進(jìn)機(jī)機(jī)身及截割頭位姿視覺測量系統(tǒng)研究[J].煤炭科學(xué)技術(shù),2019,47(6):50-57.YANG Wenjuan,ZHANG Xuhui,MA Hongwei,et al.Research on position and posture measurement system of body and cutting head for boom-type roadheader based on machine vision[J].Coal Science and Technology,2019,47(6):50-57.

[16]馬宏偉,王鵬,王世斌,等.煤礦掘進(jìn)機(jī)器人系統(tǒng)智能并行協(xié)同控制方法[J].煤炭學(xué)報(bào),2021,46(7):2057-2067.MA Hongwei,WANG Peng,WANG Shibin,et al.Intelligent parallel cooperative control method of coal mine excavation robot system[J].Journal of China Coal Society,2021,46(7):2057-2067.

[17]馬宏偉,王鵬,張旭輝,等.煤礦巷道智能掘進(jìn)機(jī)器人系統(tǒng)關(guān)鍵技術(shù)研究[J].西安科技大學(xué)學(xué)報(bào),2020,40(5):751-759.MA Hongwei,WANG Peng,ZHANG Xuhui,et al.Research on key technology of intelligent tunneling robotic system in coal mine[J].Journal of Xian University of Science and Technology,2020,40(5):751-759.

[18]郭發(fā)勇,梅濤,趙江海.D-H法建立連桿坐標(biāo)系存在的問題及改進(jìn)[J].中國機(jī)械工程,2014,25(20):2710-2714.GUO Fayong,MEI Tao,ZHAO Jianghai.Problems and improvement of D-H method for establishing connecting rod coordinate system[J].

Mechanical Engineering,2014,25(20):2710-2714.

[19]PU Y,LIU J Q,GUO W.Kinematics modeling and analysis of TBM disc cutter based on D-H matrix[J].Materials Science Forum,2011,697-698:692-696.

[20]陳支,鄒樹梁,唐德文,等.D-H坐標(biāo)系下挖掘機(jī)工作裝置運(yùn)動(dòng)學(xué)建模與仿真[J].機(jī)械設(shè)計(jì)與制造,2014(11):188-190,195.

CHEN Zhi,ZOU Shuliang,TANG Dewen,et al.The modeling and simulating research for the excavator working device in D-H coordinates[J].Machinery Design & Manufacture,2014(11):188-190,195.

[21]吳若麟,蔣林,張宏偉,等.可重構(gòu)液壓自伺服機(jī)器人關(guān)節(jié)D-H參數(shù)庫建立與運(yùn)動(dòng)學(xué)分析[J].機(jī)床與液壓,2015,43(21):1-7,49.WU Ruolin,JIANG Lin,ZHANG Hongwei,et al.D-H Parameter library establishment and the kinematics an-alysis for reconfigurable hydraulic self servo robot joint[J].Machine Tool & Hydraulics,2015,43(21):1-7,49.

[22]Feifei C,Hehua J,Kaimeng W,et al.An analytical approach based on Dixon resultant for the inverse kinema-tics of 6R robot manipulators with offset wrists[J].Communications in Nonlinear Science and Numerical Simulation,2023:127.

[23]Hongtang C,Haijun M,Hongli J,et al.Kinematic modeling of 3P-2R welding robot based on D-H parameters[J].Journal of Physics:Conference Series,2022,2218(1).

[24]關(guān)之飄.三心拱巷道斷面的改進(jìn)[J].中國錳業(yè),1995(3):10-13,9.GUAN Zhipiao.Improvement of the section of the three-heart arch roadway[J].Chinas Manganese Indudtry,1995(3):10-13,9.

[25]方立宇,黃建農(nóng),董志峰.EBH300A型橫軸懸臂式掘進(jìn)機(jī)三維建模與設(shè)計(jì)[J].煤礦機(jī)械,2015,36(6):245-246.

FANG Liyu,HUANG Jiannong,DONG Zhifeng.3D mo-deling and design of EBH300A transverse axis roadheader[J].Coal Mine Machinery,2015,36(6):245-246.

[26]黃建農(nóng),白龍,董志峰.EBH300A型掘進(jìn)機(jī)虛擬樣機(jī)及截齒運(yùn)動(dòng)仿真[J].機(jī)械傳動(dòng),2015,39(5):120-123.HUANG Jiannong,BAI Long,

DONG Zhifeng.Cutting tooth kinematic simulation and virtual prototype of EBH300A roadheader[J].Journal of Mechanical Transmission,2015,39(5):120-123.

[27]王樹峰,孟新宇,杜毅龍.連續(xù)軌跡段平滑過渡的前瞻插補(bǔ)算法[J].現(xiàn)代制造工程,2023(6):64-70.WANG Shufeng,MENG Xinyu,DU Yilong.Forward interpolation algorithm for smooth transition ofcontinuous trajectory segments[J].Modern Manufacturing Engineering,2023(6):64-70.

[28]

陳琳,黃旭豐,劉夢,等.綜合多約束條件優(yōu)化連續(xù)軌跡前瞻算法[J].機(jī)械工程學(xué)報(bào),2019,55(13):151

-159.

CHEN Lin,HUANG Xufeng,LIU Meng,et al.Optimized continuous trajectory look-ahead algorithm with comprehensive multi-constraints[J].Journal of mechanical engineering,2019,55(13):151-159.

[29]毛清華,張旭輝,馬宏偉,等.多傳感器信息的懸臂式掘進(jìn)機(jī)空間位姿監(jiān)測系統(tǒng)研究[J].煤炭科學(xué)技術(shù),2018,46(12):41-47.

MAO Qinghua,ZHANG Xuhui,MA Hongwei,et al.Study on spatial position and posture monitoring system of boom-type roadheader based on multi sensor information[J].Coal Science and Technology,2018,46(12):41-47.

[30]劉暢,李宇星,覃敏.基于三維地應(yīng)力實(shí)測的巷道穩(wěn)定性優(yōu)化研究[J].地下空間與工程學(xué)報(bào),2018,14(5):1372-1380.LIU Chang,LI Yuxing,

QIN Min.Study on drift stability optimization based on 3D geo-stress measurement[J].Chinese Journal of Underground Space and Engineering,2018,14(5):1372-1380.

[31]孫兆丹,李若冰,魏愛玲.模糊PID技術(shù)在給煤機(jī)自適應(yīng)控制系統(tǒng)中的應(yīng)用[J].煤炭技術(shù),2023,42(8):226-228.

SUN Zhaodan,LI Ruobing,WEI Ailing.Application of fuzzy PID technology in adaptive control system of coal feeder[J].Coal Technology,2023,42(8):226-228.

[32]姜俊英,周展,曹現(xiàn)剛,等.煤礦巷道懸線巡檢機(jī)器人結(jié)構(gòu)設(shè)計(jì)及仿真[J].工礦自動(dòng)化,2018,44(5):76-81.JIANG Junying,ZHOU Zhan,CAO Xiangang,et al.Structure design of suspension line inspection robot in coal mine roadway and its simulation[J].Industry and Mine Automation,2018,44(5):76-81.

[33]王鵬江,宗凱,張彬,等.基于ADAMS仿真的懸臂式掘進(jìn)機(jī)截割過程機(jī)身位姿變化分析[J].煤炭技術(shù),2018,37(6):250-252.

WANG Pengjiang,ZONG Kai,ZHANG Bin,et al.Boom-type roadheader cutting process analysis of bodys position and attitude change based on ADAMS simulation[J].Coal Technology,2018,37(6):250-252.

(責(zé)任編輯:高佳)

青岛市| 勃利县| 喀什市| 广西| 当雄县| 康乐县| 康定县| 新密市| 乌拉特后旗| 兴和县| 绥江县| 颍上县| 资阳市| 武川县| 龙海市| 海南省| 甘孜| 万全县| 铅山县| 乐亭县| 榆社县| 锦州市| 辽中县| 林口县| 福清市| 十堰市| 五河县| 牙克石市| 凉山| 京山县| 晋城| 壤塘县| 龙海市| 乐东| 常宁市| 海兴县| 潞西市| 包头市| 长垣县| 恩平市| 得荣县|