摘要: 針對(duì)某水電站消能區(qū)狹窄、左岸水電站尾水渠易受到影響的問(wèn)題,為了將水舌導(dǎo)向消力池中央,進(jìn)行了挑流導(dǎo)向方案和面流擴(kuò)散方案體型優(yōu)選,最終推薦體型為面流擴(kuò)散式消能工,并采用模型試驗(yàn)和數(shù)值模擬相結(jié)合的方法對(duì)原設(shè)計(jì)體型和推薦體型的流態(tài)、底板時(shí)均壓強(qiáng)、脈動(dòng)壓強(qiáng)、流速分布、沖刷特性和消能率進(jìn)行了對(duì)比研究.結(jié)果表明:原設(shè)計(jì)窄縫方案消能效果良好,但水舌主流集中在左右岸兩側(cè),造成了兩岸局部沖刷;而面流擴(kuò)散式方案使下泄水流形成自由面流流態(tài),并快速擴(kuò)散至整個(gè)河道,消能區(qū)擴(kuò)大,有效地降低了底板時(shí)均壓強(qiáng)、脈動(dòng)壓強(qiáng)、臨底流速,且流速和壓強(qiáng)分布更加均勻,使得下游河道的沖刷坑深度減小了34%,沖刷范圍減小了35%,保障了左岸水電站的安全運(yùn)行,推薦方案可為類似工程提供參考.
關(guān)鍵詞: 泄洪底孔;消能工體型;面流消能;沖刷特性
中圖分類號(hào): S277.9 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2024)04-0403-07
DOI:10.3969/j.issn.1674-8530.23.0096
張曜,尹進(jìn)步,吳西杰,等.某水電站泄洪底孔消能工體型優(yōu)化[J].排灌機(jī)械工程學(xué)報(bào),2024,42(4):403-409.
ZHANG Yao, YIN Jinbu, WU Xijie, et al. Shape optimization of energy dissipation structure in flood discharge bottom orifice of hydropower station[J].Journal of drainage and irrigation machinery engineering(JDIME),2024,42(4):403-409.(in Chinese)
Shape optimization of energy dissipation structure
in flood discharge bottom orifice of hydropower station
ZHANG Yao1, YIN Jinbu1*, WU Xijie1, WU Wei1, GONG Gang2
(1. College of Water Resources and Architectural Engineering, Northwest Agricultural and Forestry University, Yangling, Shaanxi 712100, China; 2. PowerChina Guiyang Engineering Corporation Limited, Guiyang, Guizhou 550081, China)
Abstract: In view of the problem that the energy dissipation area of a hydropower station was narrow and the tailrace canal of the left bank power station was easily affected, according to the idea of guiding the water tongue to the center of the stilling basin, the shape of the flip-flow guidance scheme and the surface flow diffusion scheme was modified. Finally, the recommended shape was the surface flow diffusion energy dissipater. The flow pattern, time-averaged pressure, pulsating pressure, velocity distribution, scour characteristics and energy dissipation rate of the original design shape and the recommended shape were compared and studied by means of model test and numerical simulation.The results show that the energy dissipation effect of the original narrow slit scheme is good, but the mainstream of the water tongue is concentrated on both sides of the left and right banks, resulting in local scour on both sides. The surface flow diffusion scheme allows the discharge of water to form a free surface flow pattern, and rapidly diffuses to the whole river channel. The energy dissipation area is expanded, which effectively reduces the time-averaged pressure, pulsating pressure and bottom velocity of the bottom plate, with the velocity and pressure distribution becoming more uniform. The scour pit depth of the downstream river channel is reduced by 34%, and the scour range is reduced by 35%, which ensures the safe operation of the left bank power station. The recommended scheme can provide reference for similar projects.
Key words: flood discharge bottom orifice;energy dissipation structure;surface flow dissipation;scour characteristics
泄洪底孔與泄洪表孔通常一起承擔(dān)大型混凝土壩工程的泄洪消能任務(wù),因其常處于壩身底部,常在水庫(kù)運(yùn)行中承擔(dān)放空、排沙、導(dǎo)流等多方面的功能,具有高水頭、高流速等特點(diǎn)[1-2].傳統(tǒng)泄洪消能形式主要分為挑流消能、底流消能和面流消能[3].對(duì)于泄洪底孔來(lái)說(shuō),大多采用挑流消能的泄洪消能形式,如官地、光照、安康等工程[4-6]中,其底孔或中孔采用扭曲鼻坎挑流消能形式,使水舌在縱向和橫向上形成一定程度的擴(kuò)散,減緩了下游河道的沖刷情況,并兼具導(dǎo)向的作用.如錦屏一級(jí)、隔河巖、三河口等工程[7-11],其深孔或中孔采用了窄縫鼻坎挑流消能形式,該形式通過(guò)邊墻的收縮使水流在豎向和縱向上大幅拉伸形成扇形水舌,增大入水面積,大大提高了消能效果,顯著減小了下游沖刷坑深度;也有少數(shù)工程如亭子口[12]等,其底孔采用了跌坎底流消能工的新型消能方式,達(dá)到了霧化小、消力池臨底流速和脈動(dòng)壓強(qiáng)低的良好消能效果.采用面流消能的典型工程如富春江、西津、龔嘴等都是在溢流表孔中使用面流消能工,而有關(guān)泄洪底孔采用面流消能工的報(bào)道較少.劉沛清[13]提出在拱壩中采用表孔挑跌流、中孔面流的聯(lián)合消能形式,使中孔水流主流在水墊表層擴(kuò)散,能有效發(fā)揮中孔水流對(duì)表孔水流的頂托作用,但并未對(duì)此做詳細(xì)介紹.
學(xué)者們對(duì)泄洪底孔消能工體型進(jìn)行了深入研究,例如李乃穩(wěn)等[14]通過(guò)模型試驗(yàn)方法對(duì)比研究了不同體型參數(shù)的表孔寬尾墩、深孔窄縫聯(lián)合消能工體型,并提出了水流無(wú)碰撞消能方式.李國(guó)棟等[15]采用數(shù)值模擬方法研究了某水電站表孔、底孔泄洪流態(tài)、流速、壓強(qiáng)、沖刷等水力特性,并對(duì)其消能工體型進(jìn)行了優(yōu)化.王京等[16]基于模型試驗(yàn)對(duì)某工程泄洪排沙底孔不同運(yùn)行方案的沖刷情況進(jìn)行了研究,并調(diào)整了運(yùn)行方式.羅永欽[17]基于某泄洪底孔對(duì)原型觀測(cè)、模型試驗(yàn)及數(shù)值模擬這3種不同方法的適宜性進(jìn)行了對(duì)比研究.
綜上所述,在文中的工程設(shè)計(jì)階段,有必要結(jié)合類似工程資料并針對(duì)本工程自身特點(diǎn),對(duì)泄洪底孔不同消能工體型進(jìn)行深入對(duì)比研究.
1 工程概況
某水電站為碾壓混凝土重力壩,最大壩高136.00 m,泄水建筑物由5孔溢流表孔及2孔泄洪底孔組成.泄洪底孔進(jìn)口孔口尺寸為6.5 m×9.5 m(寬×高),布置于溢流表孔兩側(cè),底板高程3 464.0 m,由進(jìn)口段、有壓洞身段、出口明流段組成.圖1為泄洪底孔原設(shè)計(jì)體型,其中進(jìn)口為喇叭型入口,長(zhǎng)4.8 m;有壓洞身段長(zhǎng)42.35 m,末端設(shè)置1∶10的壓坡,長(zhǎng)10.0 m;明流段跌坎高度為3.0 m,后接坡比1∶2的斜坡,在明流段末端兩側(cè)邊墻設(shè)有“X”型貼角窄縫,長(zhǎng)6.0 m,寬1.5 m,收縮比為0.54,窄縫頂部和底部高度均為4.0 m,直線段高8.6 m.
消力池底板高程3 419.0 m,消力池長(zhǎng)70.0 m,寬95.0 m,厚6.0 m,兩側(cè)設(shè)有5.0 m厚的邊墻,使表孔、底孔消能區(qū)隔開(kāi),尾部設(shè)消能尾坎,長(zhǎng)25.0 m,頂高程3 429.0 m,尾坎表面坡度1∶2.尾坎后消力池護(hù)坦段長(zhǎng)37.5 m,海漫段長(zhǎng)84.0 m,表面坡度1∶4.
2 研究方法
2.1 模型試驗(yàn)
物理模型為正態(tài)整體模型,按照重力相似準(zhǔn)則1∶80比尺布置,即糙率比尺為2.076 0,根據(jù)原型建筑物糙率0.014 0換算得到模型糙率為0.006 7,所以樞紐建筑物采用有機(jī)玻璃制作,糙率約為0.007 0,滿足阻力相似準(zhǔn)則.根據(jù)覆蓋層抗沖流速,用伊茲巴什公式計(jì)算得出,下游河道動(dòng)床模型沖刷料選取的粒徑為0.5~2.0 mm.采用矩形量水堰測(cè)量流量,測(cè)壓管測(cè)量時(shí)均壓強(qiáng),并用成都泰斯特脈動(dòng)壓強(qiáng)傳感器及配套采集軟件測(cè)量脈動(dòng)壓強(qiáng),采樣頻率為64 Hz,測(cè)點(diǎn)布置在消力池中軸線處.
2.2 數(shù)值模擬
基于Flow-3D軟件進(jìn)行數(shù)值模擬,采用RNG k-ε雙方程紊流模型對(duì)泄洪底孔及樞紐部分建筑物進(jìn)行了整體三維數(shù)值模擬,控制方程詳見(jiàn)文獻(xiàn)[18].
模擬按照原型尺寸1∶1建立幾何模型,模擬范圍從壩前庫(kù)區(qū)30 m至下游海漫末端,包括大壩兩側(cè)底孔、表孔溢流面,消力池,尾坎,護(hù)坦和海漫,全長(zhǎng)331 m,寬138 m.采用1 m的正交結(jié)構(gòu)化網(wǎng)格劃分整個(gè)計(jì)算區(qū)域,并在底孔跌坎前3.7 m處至下游表孔消力池末端使用嵌套網(wǎng)格進(jìn)行局部加密,嵌套網(wǎng)格采用了0.25,0.50,0.80,1.00 m這4種網(wǎng)格進(jìn)行網(wǎng)格無(wú)關(guān)性檢驗(yàn),如圖2所示,圖中L2為水舌外緣挑距,S為網(wǎng)格尺寸大小.0.25 m與0.50 m網(wǎng)格外緣挑距差距已不大,最終綜合考慮計(jì)算精度和時(shí)間,嵌套網(wǎng)格采用0.50 m網(wǎng)格,網(wǎng)格總數(shù)約為2 600萬(wàn).
計(jì)算區(qū)域上、下游分別給定壓力水位條件;左右兩側(cè)和底部為無(wú)滑移壁面條件;頂部為壓力邊界并給定流體體積分?jǐn)?shù)為0.為減少計(jì)算時(shí)間,在上、下游均設(shè)置了初始水體.計(jì)算工況為兩底孔全開(kāi),上游水位3 528.0 m,下游水位3 452.0 m,兩孔泄量3 302.0 m3/s.
2.3 數(shù)值模擬結(jié)果驗(yàn)證
為確保數(shù)值模擬結(jié)果的準(zhǔn)確性,將試驗(yàn)所測(cè)得的挑流水舌內(nèi)外緣挑距和底孔底板中軸線上的時(shí)均壓強(qiáng)與模擬結(jié)果進(jìn)行對(duì)比.如表1和圖3所示,表中L1為內(nèi)緣挑距.圖3中P為時(shí)均壓強(qiáng).挑距和時(shí)均壓強(qiáng)的試驗(yàn)值與模擬值的誤差e都在5.00%以內(nèi),吻合較好,說(shuō)明數(shù)值模擬計(jì)算結(jié)果可靠.
3 體型優(yōu)化
3.1 原設(shè)計(jì)體型問(wèn)題
原設(shè)計(jì)體型采用跌坎式窄縫消能工,流態(tài)如圖4所示,水流從有壓段流出后在跌坎處射出,在空中進(jìn)入窄縫段后利用窄縫收縮作用形成橫向收縮、縱向拉開(kāi)的扇形水舌,窄縫頂部和底部的斜三角體也有效緩解了水舌內(nèi)外緣不穩(wěn)定和水翅問(wèn)題.窄縫水舌縱向拉開(kāi)距離達(dá)到了86 m,入水面積大大增加,分散了入水時(shí)的能量,充分利用了水舌與水墊的旋滾剪切作用,實(shí)現(xiàn)了水流的高效消能.
圖5為原設(shè)計(jì)體型下游河道沖刷圖.由于窄縫水舌縱向挑距過(guò)遠(yuǎn),海漫末端左右兩岸岸邊流速較大,約為7 m/s,導(dǎo)致在樁號(hào)0+300.00 m到0+470.00 m間河道中產(chǎn)生局部沖刷,形成了最大沖坑深度約10 m的沖刷坑,沖坑底高程約為3 430.0 m,雖然沖坑深度并未觸及河床基巖面,但沖刷范圍靠近左岸電站尾水渠,影響其穩(wěn)定性,對(duì)電站正常運(yùn)行造成不良影響,因此需要對(duì)泄洪底孔消能工體型進(jìn)行優(yōu)化.
3.2 體型優(yōu)化
3.2.1 挑流導(dǎo)向方案
針對(duì)原設(shè)計(jì)體型的沖刷問(wèn)題,對(duì)泄洪底孔出口消能工體型進(jìn)行修改,采用非對(duì)稱窄縫或扭曲挑坎體型,將底孔挑射水流向下游中軸線進(jìn)行導(dǎo)向,從而使下游沖刷范圍遠(yuǎn)離左岸尾水渠.
非對(duì)稱窄縫體型將底孔內(nèi)外側(cè)窄縫貼角寬度分別設(shè)置為1.75 m和1.25 m,但根據(jù)試驗(yàn)觀察,由于下泄水流流速太高,水舌僅是稍向中央偏移5.0 m,導(dǎo)向不夠明顯.而關(guān)于扭曲挑坎方案,文中參考了其他類似工程資料,在相同的運(yùn)行水頭74 m、相似的孔口尺寸5.0 m×7.0 m,兩孔泄量更小的情況下,扭曲挑坎的挑流水舌橫向最遠(yuǎn)挑距84.0 m,縱向最遠(yuǎn)挑距132.7 m.而本工程下游消能區(qū)僅有138.0 m寬,較為狹窄,難以提供給扭曲挑坎足夠的空間形成橫向擴(kuò)散,故放棄扭曲挑坎方案.
3.2.2 面流擴(kuò)散方案
在挑流導(dǎo)向方案難以實(shí)現(xiàn)的情況下,基于本工程下游常年為豐水河道,且需要解決沖刷問(wèn)題的情況,考慮采用面流消能.根據(jù)延長(zhǎng)泄洪底孔泄槽段長(zhǎng)度,以降低出口挑坎的高程,減小挑坎與下游水墊的高差,再通過(guò)去掉泄槽內(nèi)側(cè)邊墻并加設(shè)導(dǎo)墻將水流朝下游中軸線導(dǎo)向的思路,提出了面流擴(kuò)散式的推薦體型.該體型有壓段與原設(shè)計(jì)體型相同,跌坎高度降低為2 m,泄槽段為1∶10.0和1∶2.5的斜坡并用R=57 m圓弧相接,泄槽末端增加R=15 m的圓弧挑坎以緩沖下泄水流,使得水流能在泄槽段向消力池中央擴(kuò)散.相較于原設(shè)計(jì)體型表孔、底孔消能區(qū)分區(qū)設(shè)置,為使底孔擴(kuò)散效果良好,推薦選擇去掉消力池邊墻并延長(zhǎng)尾坎,利用表孔、底孔共用消力池的形式,其體型參數(shù)如圖6所示.
4 結(jié)果分析
4.1 流態(tài)分析
圖7為推薦體型流態(tài)圖.水流進(jìn)入圓弧挑坎前,受底板和外側(cè)邊墻的約束作用,水流向消力池中央擴(kuò)散.擴(kuò)散后的水流在圓弧挑坎段進(jìn)入下游水墊,由于挑坎內(nèi)上部水流沖擊擠壓作用,在挑坎后出現(xiàn)局部凹面后受下游水墊的頂托,水股向上彎曲,水面爬高,形成涌浪,水流表面劇烈紊動(dòng),呈扇形乳白色破碎狀.兩側(cè)擴(kuò)散水流匯集到中軸線后,對(duì)沖作用使得水面局部壅高,而兩側(cè)水流主流繼續(xù)向下游擴(kuò)散,呈涌浪狀.從入水點(diǎn)開(kāi)始至海漫末端,水流表面紊動(dòng)劇烈,水氣劇烈混摻,形成了長(zhǎng)約130 m的消能區(qū),流速得以降低,匯入下游.
右側(cè)底孔中軸線剖面流線圖如圖8所示,圖中x為水流方向坐標(biāo),z為高度方向坐標(biāo).圓弧挑坎將下泄的高速水流導(dǎo)入下游水墊的表面,并逐漸向下游擴(kuò)散,同時(shí)因?yàn)橄掠嗡桓哂谔艨材┒烁叨?,在護(hù)坦段和海漫段上方形成長(zhǎng)距離底部旋滾,消耗下泄能量,呈自由面流流態(tài),也是從消能觀點(diǎn)出發(fā)最有利的面流流態(tài)之一.常規(guī)自由面流流態(tài)底部旋滾區(qū)緊接壩后,而本工程挑坎末端與下游消力池尾坎距離較短,空間不足,受消力池尾坎隔擋作用,底部旋滾區(qū)延后至尾坎末端與海漫段中間,底部旋滾區(qū)得以延長(zhǎng),使得水舌主流維持在水墊表面,至海漫段中部才擴(kuò)散至水流底部,大大降低了護(hù)坦段和海漫段的臨底流速.
4.2 壓力分析
原設(shè)計(jì)體型和推薦體型底板時(shí)均壓強(qiáng)P分布如圖9所示,圖中y為橫向坐標(biāo).原設(shè)計(jì)體型底孔水舌縱向拉開(kāi)后入水,從橫向看,消能區(qū)集中在左右岸兩側(cè),且對(duì)底板有一定的沖擊作用,底板時(shí)均壓強(qiáng)最大值分布在兩側(cè),為32.00 m壓強(qiáng)水頭.而推薦體型從縱向看,呈自由面流流態(tài),水流主流并未擴(kuò)散至底板,故水流對(duì)底板基本無(wú)沖擊作用;從橫向看,擴(kuò)散坎使得水流擴(kuò)散至整個(gè)消力池,故底板時(shí)均壓強(qiáng)分布更為均勻,最大時(shí)均壓強(qiáng)出現(xiàn)在護(hù)坦段與海漫段連接處中軸線位置,約為29.50 m壓強(qiáng)水頭.推薦體型與原設(shè)計(jì)體型相比,底板時(shí)均壓強(qiáng)有所降低,在底板上的分布也更為平均,最大時(shí)均壓強(qiáng)約降低了7.8%.
脈動(dòng)壓強(qiáng)均方根是衡量消力池底板安全穩(wěn)定性的重要指標(biāo).如圖10所示,圖中σP為脈動(dòng)壓強(qiáng)均方根水頭,推薦體型較原設(shè)計(jì)體型脈動(dòng)壓強(qiáng)均方根水頭有所減小,除測(cè)點(diǎn)4外均降低了約10.0%,與底板時(shí)均壓強(qiáng)分布保持一致.且2個(gè)體型的脈動(dòng)壓強(qiáng)均方根均較小,低于安全閾值5.00 m水頭,說(shuō)明消力池底板不會(huì)受到過(guò)大的脈動(dòng)壓強(qiáng),底板安全得以保障.
4.3 流速分析
原設(shè)計(jì)體型是窄縫挑流消能工,推薦體型是面流擴(kuò)散消能工,兩者的流速v分布差異十分明顯.如圖11所示,原設(shè)計(jì)體型水舌入水后,受到水墊的緩沖作用,流速迅速降低,至底板處流速約為14.00 m/s,水流進(jìn)入海漫段后流速進(jìn)一步降低,末端流速約為7.00 m/s.而推薦體型水流進(jìn)入下游水墊后,主流保持在水墊表面,未擴(kuò)散至底部,消力池臨底流速約為1.00 m/s,護(hù)坦段水流表面流速較大,約為18.00 m/s,而臨底流速僅為3.00 m/s,海漫段流速逐漸降低,末端流速約為4.00 m/s.
與原設(shè)計(jì)體型相比,推薦體型的面流消能使得臨底流速大大降低,擴(kuò)散消能使得消能區(qū)得以分散,流速分布更為均勻,海漫末端左右兩岸流速降低,兩者對(duì)減輕下游兩側(cè)沖刷有極大的作用.
4.4 沖刷分析
推薦體型下游河道沖刷情況如圖12所示,在樁號(hào)0+300.00 m~0+410.00 m出現(xiàn)局部沖淤,最大沖坑出現(xiàn)在中軸線附近,沖坑底高程約為3 433.4 m,沖坑深度為6.6 m.沖刷情況:原設(shè)計(jì)體型和推薦體型的最大沖坑深度分別為10.0,6.6 m;原設(shè)計(jì)體型和推薦體型的縱向沖刷范圍分別為170,110 m.相較于原設(shè)計(jì)體型,推薦體型的最大沖坑深度減少了約34%.縱向上沖刷范圍減少了約35%.分析其原因,原設(shè)計(jì)體型窄縫水舌挑距過(guò)遠(yuǎn),水流至海漫末端時(shí)兩側(cè)斷面平均流速較大,而推薦體型部分水流導(dǎo)向消力池中央,形成橫向擴(kuò)散,海漫末端兩側(cè)斷面平均流速明顯降低.所以相比于原設(shè)計(jì)體型,推薦體型有效減少了下游河道沖刷深度,且使得沖刷范圍遠(yuǎn)離了左岸電站尾水渠的位置,確保了尾水渠水流的穩(wěn)定性,進(jìn)一步保障了電站的安全運(yùn)行.
4.5 消能率分析
消能率是判斷消能效果高低的關(guān)鍵水力參數(shù)之一.根據(jù)能量守恒定律,選取上游水庫(kù)為1#斷面,并忽略行進(jìn)流速,選取下游海漫末端前約30 m水流穩(wěn)定處為2#斷面,選取基準(zhǔn)面為上游庫(kù)區(qū)底板.
2個(gè)體型在2#斷面的平均流速分別為1.59 m/s和1.25 m/s,較為接近,消能率均約為62%,消能效果良好.但2個(gè)體型消能方式的不同,造就了不同的壓強(qiáng)分布和流速分布,最終形成不同的下游河道沖淤結(jié)果.
5 結(jié) 論
采用模型試驗(yàn)和數(shù)值模擬相結(jié)合的方法,對(duì)某水電站泄洪底孔原設(shè)計(jì)體型和推薦體型的水力特性進(jìn)行了深入對(duì)比研究,得出以下結(jié)論:
1) 原設(shè)計(jì)體型窄縫水舌挑距過(guò)遠(yuǎn),且消能區(qū)集中在兩側(cè),使得海漫末端左右兩岸流速過(guò)大,下游河道兩側(cè)發(fā)生局部沖刷,沖刷坑位于左岸電站尾水渠,影響了左岸電站的安全運(yùn)行.
2) 推薦體型采用面流擴(kuò)散式消能工,使下泄水流消能區(qū)拓寬至整個(gè)河道,且主流集中在下游表層,使得壓強(qiáng)、流速分布更為均勻,顯著減小了臨底流速和海漫末端兩岸斷面平均流速,使得下游最大沖坑深度減小了約34%,縱向沖刷范圍減小了約35%,并使沖刷范圍遠(yuǎn)離左岸電站,保障了電站的安全運(yùn)行.
參考文獻(xiàn)(References)
[1] 王孝群,練繼建,杜帥群,等.泄洪洞洞頂余幅與補(bǔ)氣洞通氣平衡特性分析[J].水利水電科技進(jìn)展,2022,42(6):33-38.
WANG Xiaoqun, LIAN Jijian, DU Shuaiqun, et al. Ventilation equilibrium between tunnel freeboard and air duct area of a spillway tunnel[J]. Advances in science and technology of water resources, 2022,42(6):33-38.(in Chinese)
[2] 麻自學(xué), 宋海霞, 張威. 某水電站泄洪沖砂閘基礎(chǔ)滲流分析[J]. 水利水電技術(shù)(中英文), 2022, 53(S1): 139-143.
MA Zixue, SONG Haixia, ZHANG Wei. Analysis of the foundation seepage of the floodgates of a dam[J]. Water resources and hydropower engineering, 2022, 53(S1): 139- 143.(in Chinese)
[3] 洪振國(guó),茍勤章,李海華.水利工程溢洪道底流消能水力特性分析[J].排灌機(jī)械工程學(xué)報(bào),2022,40(3):258-263.
HONG Zhenguo, GOU Qinzhang, LI Haihua. Analysis of hydraulic characteristics of spillway underflow energy dissipation in hydraulic engineering [J]. Journal of drainage and irrigation machinery engineering, 2022,40(3):258-263.(in Chinese)
[4] 楊光偉.官地水電站泄洪消能研究及布置設(shè)計(jì)[J].水電站設(shè)計(jì),2013,29(2):1-4.
YANG Guangwei. Study on flood discharge and energy dissipation and layout design of Guandi Hydropower Station [J]. Design of hydroelectric power station, 2013,29(2):1-4.(in Chinese)
[5] 龍起煌,陳能平.光照水電站樞紐建筑物布置及優(yōu)化[J].貴州水力發(fā)電,2008,22(5):20-24.
LONG Qihuang, CHEN Nengping. The layout and optimization of the hub building of the hydropower station [J].Guizhou water power, 2008,22(5):20-24.(in Chinese)
[6] 于忠政,劉永川,謝省宗,等.安康水電站泄洪消能新技術(shù)的研究與應(yīng)用[J].水力發(fā)電,1990(11):32-36.
YU Zhongzheng, LIU Yongchuan, XIE Shengzong, et al. Research and application of new technology for flood discharge and energy dissipation of Ankang Hydropower Station [J]. Water power, 1990(11):32-36.(in Chinese)
[7] 張曉哲,李乃穩(wěn),李龍國(guó),等.窄縫挑坎在高拱壩深孔中的初步應(yīng)用研究[J].水利水電技術(shù),2012,43(6):23-27.
ZHANG Xiaozhe, LI Naiwen, LI Longguo, et al. Preliminary application of slit-type flip bucket to bottom outlet high arch dam [J].Water resources and hydro-power engineering, 2012,43(6):23-27.(in Chinese)
[8] 高儀生,金寶芬.隔河巖樞紐泄洪消能試驗(yàn)研究[J].長(zhǎng)江科學(xué)院院報(bào),1993,10(4):17-24.
GAO Yisheng, JIN Baofen. Experimental study on flood release and energy dissipation for Geheyan project [J]. Journal of Yangtze River Scientific Research Institute, 1993,10(4):17-24.(in Chinese)
[9] 劉斌.三河口水利樞紐泄洪消能工體型優(yōu)化試驗(yàn)研究[J].水資源與水工程學(xué)報(bào),2016,27(3):181-186.
LIU Bin. Experiment on shape optimization of energy dissipation for Sanhekou water control project [J]. Journal of water resources and water engineering, 2016,27(3):181-186.(in Chinese)
[10] 張才溢,傅蜀燕,歐斌,等. 基于APSO和TWSVM的特高拱壩變形預(yù)測(cè)模型[J]. 水利水電科技進(jìn)展,2023,43(4):46-50.
ZHANG Caiyi, FU Shuyan, OU Bin,et al.Deformation prediction model of ultra-high arch dams based on APSO and TWSVM[J]. Advances in science and technology of water resources, 2023,43(4):46-50. (in Chinese)
[11] 劉偉琪,陳波,葛盼猛,等.基于聚類分區(qū)和 MO-LSSVR 的高拱壩變形預(yù)測(cè)模型[J]. 水利水電科技進(jìn)展,2023,43(2):102-108.
LIU Weiqi,CHEN Bo,GE Panmeng,et al. Deformation prediction model of a high arch dam based on clustering and MO - LSSVR[J]. Advances in science and techno-logy of water resources, 2023,43(2):102-108. (in Chinese)
[12] 職承杰,洪啟田,薛維成,等.亭子口水利樞紐底孔泄洪消能體型設(shè)計(jì)研究[J].人民長(zhǎng)江,2011,42(15):18-20.
ZHI Chengjie, HONG Qitian, XUE Weicheng, et al. Research on shape design of energy dissipation structure for bottom outlets of Tingzikou hydro-project [J].Yangtze River, 2011,42(15):18-20.(in Chinese)
[13] 劉沛清.高拱壩泄洪布置形式與消能防沖設(shè)計(jì)中的若干問(wèn)題探討[J].長(zhǎng)江科學(xué)院院報(bào),1999,16(5):17-21.
LIU Peiqing. Inquiry upon some problems on flood relief layout and dissipation energy design in high arch dam [J]. Journal of Yangtze River Scientific Research Institute, 1999,16(5):17-21.(in Chinese)
[14] 李乃穩(wěn),許唯臨,周茂林,等.高拱壩壩身表孔和深孔水流無(wú)碰撞泄洪消能試驗(yàn)研究[J].水利學(xué)報(bào),2008,39(8):927-933.
LI Naiwen, XU Weilin, ZHOU Maolin, et al. Experimental study on energy dissipation of flood discharge in high arch dams without impact of jets in air [J]. Journal of hydraulic engineering, 2008,39(8):927-933.(in Chinese)
[15] 李國(guó)棟,李珊珊,牛爭(zhēng)鳴.表孔、底孔聯(lián)合泄洪流場(chǎng)數(shù)值模擬與沖刷趨勢(shì)分析[J].四川大學(xué)學(xué)報(bào)(工程科學(xué)版),2016,48(3):26-34.
LI Guodong, LI Shanshan, NIU Zhengming. Numerical simulation of surface outlet and bottom outlet joint flood discharge energy dissipation and scour trend analysis [J]. Journal of Sichuan University (engineering science edition), 2016,48(3):26-34.(in Chinese)
[16] 王京,孫雙科,汪星,等.某重力壩工程泄洪排沙底孔的運(yùn)行方式研究[J].中國(guó)水利水電科學(xué)研究院學(xué)報(bào),2020,18(6):455-461.
WANG Jing, SUN Shuangke, WANG Xing, et al. Study on the operation mode of the bottom orifices for the discharge of flood and sediments in a gravity dam project [J]. Journal of China Institute of Water Resources and Hydropower Research, 2020,18(6):455-461.(in Chinese)
[17] 羅永欽.高水頭泄洪底孔水力學(xué)研究方法適宜性分析[J].水科學(xué)進(jìn)展,2015,26(2):265-270.
LUO Yongqin. Adaptability analysis of hydraulics research method on the bottom outlet of flood discharge with high water head [J]. Advances in water science, 2015,26(2):265-270.(in Chinese)
[18] 高飛飛,李曉慶,高強(qiáng).新型梯形量水堰水力特性試驗(yàn)及數(shù)值模擬[J].排灌機(jī)械工程學(xué)報(bào),2022,40(11):1104-1111.
GAO Feifei, LI Xiaoqing, GAO Qiang. Experiment and numerical simulation on hydraulic characteristics of novel trapezoidal measuring weir [J]. Journal of drai-nage and irrigation machinery engineering, 2022,40(11):1104-1111.(in Chinese)
(責(zé)任編輯 朱漪云)
收稿日期: 2023-05-22; 修回日期: 2023-09-17; 網(wǎng)絡(luò)出版時(shí)間: 2024-04-11
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240408.1417.012
基金項(xiàng)目: 國(guó)家自然科學(xué)基金資助項(xiàng)目(51279170)
第一作者簡(jiǎn)介: 張曜(1999—),男,四川成都人,碩士研究生(718510825@qq.com),主要從事工程水力學(xué)研究.
通信作者簡(jiǎn)介: 尹進(jìn)步(1968—),男,陜西禮泉人,正高級(jí)工程師(xbsyjb@nwsuaf.edu.cn),主要從事工程水力學(xué)研究.