張珍珍 劉一妍 舒悅 劉滋煜 王鈺 王佳露 顏學(xué)兵
作者簡介:張珍珍(1992.11-),女,安徽阜南人,碩士,住院醫(yī)師,主要從事消化疾病的研究
通訊作者:顏學(xué)兵(1967.11-),男,江蘇徐州人,博士,主任醫(yī)師,主要從事消化及感染性疾病的研究
摘要:目的? 運(yùn)用生物信息學(xué)方法預(yù)測人類miR-155-5p靶基因,進(jìn)一步探索其在肝細(xì)胞癌(HCC)中的功能。方法? 通過starBase數(shù)據(jù)庫篩選出hsa-miR-155-5p靶基因,DAVID和Reactome數(shù)據(jù)庫進(jìn)行功能富集分析。蛋白-蛋白相互作用網(wǎng)絡(luò)分析靶基因之間的相互關(guān)系,cytohubba插件獲得關(guān)鍵基因。Kaplan-Meier生存分析進(jìn)一步篩選關(guān)鍵基因,ssGSEA 算法分析HCC免疫浸潤情況,Spearman相關(guān)系數(shù)分析關(guān)鍵基因與免疫浸潤的相關(guān)性。結(jié)果? 共篩選出1493個hsa-miR-155-5p靶基因;靶基因GO富集分析集中于調(diào)控轉(zhuǎn)錄、蛋白質(zhì)分解代謝過程、細(xì)胞周期的調(diào)節(jié);KEGG生物通路主要富集于AMPK信號通路、PI3K-Akt信號通路和FoxO信號通路、以及子宮內(nèi)膜癌、胰腺癌和肝細(xì)胞癌等疾病通路。利用蛋白互作網(wǎng)絡(luò)共獲得30個關(guān)鍵基因,與HCC信號通路基因取交集獲得GSK3B、PTEN、PIK3R1、EGFR、CCND1、SMAD2、PIK3CA、RPS6KB1、KRAS、SOS1 等10個關(guān)鍵基因。生存分析顯示,PTEN高表達(dá)的HCC患者的預(yù)后優(yōu)于低表達(dá)患者。PTEN表達(dá)量與中央記憶T細(xì)胞、輔助T細(xì)胞的免疫浸潤均呈現(xiàn)較強(qiáng)的正相關(guān)性。結(jié)論? hsa-miR-155-5p通過下游靶基因PTEN調(diào)控中央記憶T細(xì)胞、輔助T細(xì)胞,進(jìn)而影響HCC免疫浸潤微環(huán)境,或可為HCC發(fā)生機(jī)制和臨床治療的探索提供幫助。
關(guān)鍵詞:肝細(xì)胞癌;hsa-miR-155-5p;生物信息學(xué);PTEN;中央記憶T細(xì)胞;輔助T細(xì)胞
中圖分類號:R735.7? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼:B? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DOI:10.3969/j.issn.1006-1959.2024.09.002
文章編號:1006-1959(2024)09-0007-09
Effect of hsa-miR-155-5p on the Immune Microenvironment of Hepatocellular Carcinoma
by Regulating Central Memory T Cells Helper T Cells Through PTEN
Based on the Bioinformatics Method
ZHANG Zhen-zhen1,LIU Yi-yan1,SHU Yue2,LIU Zi-yu1,WANG Yu1,WANG Jia-lu1,YAN Xue-bing1
(1.Department of Infection and Hepatology,East Hospital Affiliated Hospital of Xuzhou Medical University,
Xuzhou 221000,Jiangsu,China;
2.Department of Neurosurgery,the Third Affiliated Hospital of Kunming Medical University,Kunming 650500,Yunnan,China)
Abstract:Objective? To predict the target genes of human miR-155-5p by bioinformatics methods, and to further explore its function in hepatocellular carcinoma (HCC).Methods? The target genes of hsa-miR-155-5p were screened by starBase database, and functional enrichment analysis was performed by DAVID and Reactome databases. Protein-protein interaction network was used to analyze the relationship between target genes, and cytohubba plug-in was used to obtain key genes. Kaplan-Meier survival analysis was used to further screen key genes, ssGSEA algorithm was used to analyze the immune infiltration of HCC, and Spearman correlation coefficient was used to analyze the correlation between key genes and immune infiltration.Results? A total of 1493 hsa-miR-155-5p target genes were screened. GO enrichment analysis of target genes focused on the regulation of transcription, protein catabolic process and cell cycle regulation. The KEGG biological pathway was mainly enriched in AMPK signaling pathway, PI3K-Akt signaling pathway and FoxO signaling pathway, as well as endometrial cancer, pancreatic cancer and hepatocellular carcinoma. A total of 30 key genes were obtained by protein interaction network, and 10 key genes such as GSK3B, PTEN, PIK3R1, EGFR, CCND1, SMAD2, PIK3CA, RPS6KB1, KRAS and SOS1 were obtained by intersection with Hepatocellular carcinoma signaling pathway genes. Survival analysis showed that the prognosis of HCC patients with high expression of PTEN was better than that of patients with low expression. The expression of PTEN was positively correlated with the immune infiltration of central memory T cells and helper T cells.Conclusion? hsa-miR-155-5p regulates central memory T cells and helper T cells through the downstream target gene PTEN, thereby affecting the immune infiltration microenvironment of HCC, which may provide help for the exploration of HCC pathogenesis and clinical treatment.
Key words:Hepatocellular carcinoma;hsa-miR-155-5p;Bioinformatics;PTEN;Central memory T cells;Helper T cells
原發(fā)性肝癌(primary liver cancer, PLC)是世界范圍內(nèi)常見的惡性腫瘤之一,發(fā)病率在惡性腫瘤中排名第6,腫瘤致死病因排第3位[1],我國原發(fā)性肝癌的發(fā)病率嚴(yán)重威脅我國人民的生命和健康。原發(fā)性肝癌主要包括肝細(xì)胞癌(hepatocellular carcinoma, HCC)、肝內(nèi)膽管癌(intrahepatic cholangiocarcinoma, ICC)和混合型肝細(xì)胞癌-膽管癌(combined hepatocellular-cholangiocarcinoma, cHCC-CCA)3種不同病理學(xué)類型[2],三者在發(fā)病機(jī)制、生物學(xué)行為、病理組織學(xué)、治療方法以及預(yù)后等方面差異較大。本文中的“肝癌”僅指HCC。核微小RNA(microRNA, miRNA)是一種長度為19~25個核苷酸的短鏈、內(nèi)源性、非編碼RNA,與mRNA的3端的非翻譯區(qū)(untranslated region, UTR)結(jié)合后,通過促進(jìn)mRNA降解或抑制翻譯降低靶基因蛋白表達(dá)并調(diào)控受體細(xì)胞的表型及功能[3]。此前很多研究表明[4-6],miRNA不僅參與人體的正常生命活動,還參與多種生物學(xué)功能,也與HCC患者的臨床病理特征相關(guān),如細(xì)胞分化、增殖、凋亡、血管生成以及細(xì)胞周期等。有研究發(fā)現(xiàn)hsa-miR-155在肝細(xì)胞癌組織中存在過表達(dá),且高水平的hsa-miR-155為HCC患者預(yù)后差的獨(dú)立危險因素[7];另有研究發(fā)現(xiàn)[8],與癌旁組織相比,hsa-miR-155-5p在人HCC組織中表達(dá)水平顯著升高,且在Ⅲ期和Ⅳ期的HCC組織中的表達(dá)水平明顯高于Ⅰ期和Ⅱ期HCC組織。據(jù)報道[9],作為長鏈非編碼RNA(lncRNA),JPX通過hsa-miR-155-5p抑制XIST表達(dá),從而抑制HCC進(jìn)展;值得注意的是,hsa-miR-155-5p可促進(jìn)HCC生長。因此,研究hsa-miR-155-5p在HCC中的作用機(jī)制有很大的價值,并為肝細(xì)胞癌的個性化治療進(jìn)一步提升準(zhǔn)確性。本文通過生物信息學(xué)方法預(yù)測與HCC相關(guān)hsa-miR-155-5p的靶基因,并探討靶基因在腫瘤免疫微環(huán)境中的調(diào)控作用,以期為后續(xù)研究HCC發(fā)生發(fā)展及免疫治療提供新思路。
1資料與方法
1.1 hsa-miR-155-5p的靶基因預(yù)測? 使用PubMed數(shù)據(jù)庫(https://pubmed.ncbi.nlm.nih.gov/pubmed)查詢hsa-miR-155-5p相關(guān)文獻(xiàn),通過檢索發(fā)現(xiàn)該miRNA參與人類多種疾病及腫瘤的發(fā)生發(fā)展。選擇starBase數(shù)據(jù)庫(https://starbase.sysu.edu.cn/)對hsa-miR-155-5p的靶基因mRNA進(jìn)行預(yù)測。篩選條件為:Program≥2、CLIP_Data≥0、Low stringency。去重后,獲得hsa-miR-155-5p靶基因集。
1.2功能富集分析? 通過DAVID(https://david.ncifcrf.gov/)對預(yù)測的靶基因集進(jìn)行基因本體(gene ontology, GO)和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genome, KEGG)功能富集分析。GO分析包括細(xì)胞組分(cellular component, CC)、分子功能(molecular function, MF)和生物學(xué)過程(biological process, BP)3個部分。同時利用Reactome(https://reactome.org/)數(shù)據(jù)庫對靶基因進(jìn)行通路分析。以P<0.05為差異有統(tǒng)計學(xué)意義。
1.3蛋白互作分析? 利用STRING(version 11.5;https://cn.string-db.org/)數(shù)據(jù)庫將靶基因組導(dǎo)入后完成蛋白-蛋白互相作用(protein-protein interaction, PPI)網(wǎng)絡(luò)分析[10],將結(jié)果以tsv的格式輸出。并導(dǎo)入cytoscape(version v3.9.1)繪制PPI網(wǎng)絡(luò)圖進(jìn)行可視化分析,以連接度(degree)作為參數(shù)標(biāo)準(zhǔn)。利用cytohubba插件對PPI網(wǎng)絡(luò)進(jìn)行連接度分析,并初步篩選出排名前30位的關(guān)鍵基因。圓形節(jié)點(diǎn)表示靶基因,其中紅色節(jié)點(diǎn)表示前30關(guān)鍵基因;線代表兩個節(jié)點(diǎn)(靶基因)之間的相互作用。
1.4篩選HCC相關(guān)的關(guān)鍵基因? 為篩選出與HCC相關(guān)的關(guān)鍵基因,將cytohubba插件獲得的關(guān)鍵基因與經(jīng)KEGG通路分析獲得的參與肝細(xì)胞癌的發(fā)生的基因集取交集,并繪制Venn圖,進(jìn)一步篩選出關(guān)鍵基因。
1.5生存分析? 利用癌癥基因組圖譜(TCGA)數(shù)據(jù)庫中表達(dá)譜和臨床信息,分析關(guān)鍵基因的生存預(yù)后,最終篩選出表達(dá)與生存預(yù)后相符合的下游關(guān)鍵基因。P<0.05被認(rèn)為差異有統(tǒng)計學(xué)意義。
1.6免疫浸潤分析? 為了計算關(guān)鍵基因表達(dá)與免疫細(xì)胞浸潤程度的相關(guān)性,采用R語言[11]通過Spearman相關(guān)和ssGSEA算法分析HCC樣本中免疫細(xì)胞的成份,計算免疫細(xì)胞的免疫浸潤程度與關(guān)鍵基因表達(dá)水平的關(guān)系。
2結(jié)果
2.1 hsa-miR-155-5p在不同疾病中的表達(dá)情況? 通過PubMed對hsa-miR-155-5p進(jìn)行檢索發(fā)現(xiàn),hsa-miR-155-5p在乳腺癌[12]、肝細(xì)胞癌[8]、慢性粒系白血病及慢性髓系白血病[13]等疾病中表達(dá)上調(diào),在胃癌[14]、口腔扁平苔蘚[15]等疾病中表達(dá)下調(diào),另外還參與了骨質(zhì)疏松[16]、感染性休克[17]、糖尿病腎病[18]、類風(fēng)濕關(guān)節(jié)炎[19]等過程。據(jù)文獻(xiàn)報道,miR-155-5p參與肝細(xì)胞癌的發(fā)生發(fā)展[20]。因此miR-155-5p可能為研究HCC發(fā)生機(jī)制和個性化治療提供依據(jù)。研究流程圖見圖1。
2.2 hsa-miR-155-5p的靶基因預(yù)測? 為了探索hsa-miR-155-5p潛在的下游靶點(diǎn),通過starBase數(shù)據(jù)庫進(jìn)行分析和預(yù)測靶基因。該數(shù)據(jù)庫的7種算法中至少2種算法同時預(yù)測基因與hsa-miR-155-5p靶向結(jié)合,去除重復(fù)基因后,共得到RNF160、STXBP5、EGFR、GSK3B、PTEN、PIK3R1、DPY19L1等1493個靶基因。
2.3 hsa-miR-155-5p靶基因的GO、KEGG和Reactome富集分析? 利用DAVID數(shù)據(jù)庫對預(yù)測的靶基因集進(jìn)行GO、KEGG及Reactome富集分析。GO功能富集分析顯示,在生物學(xué)過程的方面,hsa-miR-155-5p靶基因主要富集在調(diào)控轉(zhuǎn)錄、蛋白質(zhì)分解代謝過程的調(diào)節(jié);分子功能主要富集于蛋白結(jié)合、DNA結(jié)合等(P<0.05)(圖2)。KEGG信號通路富集分析結(jié)果顯示,hsa-miR-155-5p靶基因主要富集于肝細(xì)胞癌疾病通路(P<0.05)(圖3)。Reactome通路分析表明,hsa-miR-155-5p靶基因主要富集在通用轉(zhuǎn)錄途徑、RNA聚合酶Ⅱ轉(zhuǎn)錄過程等通路(表1)。
2.4蛋白相互作用網(wǎng)絡(luò)? 利用STRING數(shù)據(jù)庫,獲得PPI網(wǎng)絡(luò),將結(jié)果以tsv格式導(dǎo)入cytoscape軟件,分析蛋白-蛋白互作網(wǎng)絡(luò)圖。以PPI評分>0.9為閾值條件,利用Cytohubba插件篩選出連接度排名前30位的關(guān)鍵基因(圖4),作為hsa-miR-155-5p下游有價值的靶點(diǎn)。
2.5 HCC相關(guān)關(guān)鍵基因的獲取? 從KEGG信號通路可知Hepatocellular carcinoma信號通路包含27個靶基因,利用cytohubba插件獲得的前30位關(guān)鍵基因與KEGG富集通路中Hepatocellular carcinoma信號通路的基因做交集,得到10個共同關(guān)鍵基因:GSK3B、PTEN、PIK3R1、EGFR、CCND1、SMAD2、PIK3CA、RPS6KB1、KRAS、SOS1(圖5)。因此,可推斷hsa-miR-155-5p參與肝細(xì)胞癌的發(fā)生發(fā)展過程與該10個關(guān)鍵基因有密切關(guān)系。
2.6 hsa-miR-155-5p下游關(guān)鍵基因PTEN的表達(dá)? miRNA通過抑制下游靶基因的表達(dá),從而發(fā)揮調(diào)控功能,因此miRNA與靶基因表達(dá)水平作用相反。文獻(xiàn)報道hsa-miR-155-5p在HCC中高表達(dá),因此下游靶基因低表達(dá),是一個改善預(yù)后的基因。從TCGA數(shù)據(jù)庫下載臨床信息和基因表達(dá)情況,應(yīng)用Kaplan-Meier分析對hsa-miR-155-5p下游關(guān)鍵基因GSK3B、PTEN、PIK3R1、EGFR、CCND1、SMAD2、PIK3CA、RPS6KB1、KRAS、SOS1等高、低表達(dá)組疾病特異性生存期。進(jìn)行差異分析發(fā)現(xiàn),高表達(dá)CCND1、PIK3R1、PTEN等的疾病特異性生存期優(yōu)于低表達(dá)組(P<0.05)(圖6)。其中已經(jīng)有實驗性研究報道CCND1[21]、PIK3R1[22]在HCC患者中表達(dá)上調(diào);PTEN是一種主要的腫瘤抑制基因,在多種腫瘤中有其缺失、突變、基因沉默或表達(dá)下調(diào)的報道[23],肝癌中PTEN表達(dá)水平低于癌旁組織[24],因此進(jìn)一步推斷PTEN表達(dá)水平與HCC患者預(yù)后相關(guān)。
2.7 PTEN表達(dá)量與HCC中免疫細(xì)胞的相關(guān)性? 免疫微環(huán)境被發(fā)現(xiàn)在腫瘤的發(fā)生發(fā)展過程中有重要的作用。為探索PTEN在腫瘤微環(huán)境中的功能,通過ssGSEA 算法和Spearman相關(guān)性分析PTEN的表達(dá)與肝細(xì)胞癌微環(huán)境的免疫細(xì)胞浸潤之間的關(guān)系(圖7A),結(jié)果顯示PTEN 表達(dá)水平分別與中央記憶T細(xì)胞(r=0.263)(圖7B)、輔助T細(xì)胞(r=0.229)(圖7C)均呈正相關(guān)性。這說明PTEN可能參與免疫微環(huán)境中中央記憶T細(xì)胞和輔助T細(xì)胞的調(diào)控。
3討論
HCC是世界范圍內(nèi)主要的原發(fā)性肝癌,惡性程度高。作為一種高度侵襲性疾病,患者術(shù)后5年的生存率僅為30%~40%[25]。因其起病隱匿,往往確診時已達(dá)到晚期,致其療效和預(yù)后均不佳[26]。其中,HCC患者預(yù)后不良的主要原因之一是高復(fù)發(fā)率[27],所以肝癌病死率仍一直居高不下。因此研究該病的分子機(jī)制對其進(jìn)行早期干預(yù)和治療的選擇有重要意義。
miRNA是基因表達(dá)的多功能轉(zhuǎn)錄后調(diào)節(jié)因子,能夠與靶 mRNA 3端非翻譯區(qū)互補(bǔ),進(jìn)而降解或阻止該 mRNA 翻譯出蛋白質(zhì),實現(xiàn)轉(zhuǎn)錄后水平的基因表達(dá)調(diào)控[28]。miRNA在調(diào)控基因表達(dá)方面起著非常重要的作用,通過負(fù)向調(diào)控mRNA的表達(dá)而發(fā)揮生物學(xué)功能[3]。目前很多文獻(xiàn)報道m(xù)iRNA參與肝細(xì)胞癌的發(fā)生發(fā)展過程[29]。其中miRNA-155是多功能miRNA分子,由B細(xì)胞整合簇加工產(chǎn)生,在多種生理病理過程中發(fā)揮重要作用;其參與調(diào)控造血細(xì)胞和免疫細(xì)胞的發(fā)育分化[30,31],尤其是在腫瘤發(fā)生過程中[32]。miRNA-155是與機(jī)體炎癥反應(yīng)、免疫平衡相關(guān)的促癌基因,可作為HCC患者預(yù)后的獨(dú)立預(yù)測因子[7]。有實驗研究[33]采用real-time PCR比較20只HCC大鼠、28例HCC患者組織及其匹配的癌旁組織和HCC細(xì)胞系中miR-155-5p的表達(dá)水平,結(jié)果顯示在HCC中miR-155-5p的表達(dá)遠(yuǎn)高于癌旁組織。據(jù)報道[34],作為lncRNA一員的 LINC01189,其過表達(dá)抑制HCC的增殖和對5-Fu的耐藥;過表達(dá)miR-155-5p可逆轉(zhuǎn)LINC01189對HCC的抑制作用。這些研究均顯示miR-155-5p可能在腫瘤的發(fā)生發(fā)展過程及預(yù)后中發(fā)揮著至關(guān)重要的作用。其中在實體腫瘤中,免疫細(xì)胞浸潤是腫瘤微環(huán)境相關(guān)致癌機(jī)制中的關(guān)鍵因素[35]。因此通過生物信息學(xué)技術(shù),預(yù)測 hsa-miR-155-5p 靶基因,進(jìn)而調(diào)控HCC免疫微環(huán)境,對指導(dǎo)后續(xù)深入的研究具有重要理論意義。
本研究選用starBase數(shù)據(jù)庫,通過不同計算方法篩選hsa-miR-155-5p的靶基因。利用富集分析發(fā)現(xiàn)篩選的靶基因不僅在RNA聚合酶Ⅱ啟動子的調(diào)節(jié)、基因轉(zhuǎn)錄等生物過程中發(fā)揮作用,且參與AMPK信號通路、PI3K-Akt信號通路、FoxO信號通路。研究報道[36],組蛋白去乙?;?1(HDAC11)介導(dǎo)多種免疫功能和代謝,HDAC11的缺失從而激活A(yù)MPK信號通路并抑制糖酵解通路,進(jìn)而抑制HCC發(fā)生發(fā)展。據(jù)報道[8],miR-155-5p通過靶基因激活PI3K/Akt通路促進(jìn)HCC的體內(nèi)腫瘤發(fā)生。
將預(yù)測的靶基因集導(dǎo)入STRING在線數(shù)據(jù)庫后獲得PPI網(wǎng)絡(luò)。通過Cytoscape軟件中cytohubba插件獲得GSK3B、FOXO3、YES1、YWHAZ、KRAS等30個關(guān)鍵基因。其中部分關(guān)鍵基因已被證實與肝細(xì)胞癌相關(guān)。利用cytohubba插件獲得的前30個關(guān)鍵基因與KEGG富集通路中與HCC發(fā)生相關(guān)的靶基因取交集獲得GSK3B、PTEN、PIK3R1、EGFR、CCND1、SMAD2、PIK3CA、RPS6KB1、KRAS、SOS1。同時,推測hsa-miR-155-5p在肝細(xì)胞癌中的作用可能與這10個靶基因的調(diào)控密切相關(guān),其中高表達(dá)CCND1、PIK3R1、PTEN的患者總體生存率優(yōu)于低表達(dá)組。但已有實驗性研究報道CCND1[21]、PIK3R1[22]在HCC患者中表達(dá)上調(diào)。PTEN是一種主要的腫瘤抑制基因,在調(diào)節(jié)腫瘤細(xì)胞進(jìn)展中起重要作用。自PTEN被發(fā)現(xiàn)后,多項研究揭示其作為腫瘤抑制因子的功能[37,38]。此外也可抑制PI3K/Akt/mTOR軸,減少腫瘤生長、轉(zhuǎn)移和耐藥。據(jù)相關(guān)臨床和小鼠研究報道[39],PTEN的部分缺失可導(dǎo)致腫瘤進(jìn)展,PTEN在癌癥中減少細(xì)胞進(jìn)展的功能是基于其對PI3K/Akt/mTOR信號的調(diào)節(jié)作用。
由于肝動脈和門靜脈的血液中含有多種內(nèi)源性抗原和自身抗原,肝臟微環(huán)境通常傾向于免疫耐受狀態(tài)[40],由于HCC的病因通常與肝硬化和乙型或丙型肝炎有關(guān),因此HCC是在慢性炎癥的背景下發(fā)生發(fā)展的[41-43]。腫瘤免疫治療是目前發(fā)展最快的腫瘤治療方法之一,但是實體腫瘤的免疫治療方法依然存在困難,其關(guān)鍵在于實體腫瘤缺乏有效的T細(xì)胞浸潤。T細(xì)胞全稱為T淋巴細(xì)胞,來源于骨髓中的淋巴樣祖細(xì)胞,在胸腺中分化、發(fā)育、成熟[44]。T細(xì)胞是具有高度異質(zhì)性的細(xì)胞群,可以根據(jù)功能或活化階段分為不同的亞群。其中中央記憶T細(xì)胞作為T細(xì)胞亞群之一,存在于淋巴結(jié)、淋巴組織和脾臟。有自我更新、分化和長久存活能力的功能,具有超級的抗腫瘤能力[45]。有研究發(fā)現(xiàn)[46],在肝臟腫瘤組織中聚集一群中央記憶T細(xì)胞,利用多色免疫熒光染色發(fā)現(xiàn)這群細(xì)胞主要富集于HCC患者早期三級淋巴結(jié)構(gòu)。有文獻(xiàn)報道[47],Th1/Th2失衡可能與多種腫瘤的患者不良預(yù)后相關(guān),且過高水平的Th2細(xì)胞是肝癌轉(zhuǎn)移復(fù)發(fā)的危險性因素[48]。本研究通過TCGA數(shù)據(jù)庫,利用ssGSEA 算法分析以及Spearman相關(guān)系數(shù)進(jìn)一步分析PTEN表達(dá)量與HCC中多種免疫細(xì)胞的占比情況,其中包括中中央記憶T細(xì)胞、細(xì)胞毒T細(xì)胞、B cells、樹突狀細(xì)胞、輔助T細(xì)胞、NK cells、嗜酸性粒細(xì)胞、CD8+T淋巴細(xì)胞、Th2 cells、Th17 cells等。結(jié)果提示PTEN的表達(dá)水平與中央記憶T細(xì)胞、輔助T細(xì)胞、NK cells、嗜酸性粒細(xì)胞等免疫細(xì)胞呈正相關(guān),特別是中央記憶T細(xì)胞和輔助T細(xì)胞。但與B cells、細(xì)胞毒T細(xì)胞、樹突狀細(xì)胞等免疫細(xì)胞呈負(fù)相關(guān)。這提示PTEN可能調(diào)控HCC微環(huán)境中的中央記憶T細(xì)胞和輔助T細(xì)胞的功能。T細(xì)胞是特異性抗腫瘤免疫的關(guān)鍵之一[49],其復(fù)制潛能和分化狀態(tài)也是抗腫瘤活性的重要調(diào)節(jié)[50],許多免疫治療技術(shù)著重改變T淋巴細(xì)胞的活性發(fā)揮抗腫瘤作用[50,51]。因此,通過hsa-miR-155-5p可以調(diào)控HCC中PTEN的表達(dá)水平進(jìn)而影響免疫細(xì)胞浸潤水平,進(jìn)一步影響HCC微環(huán)境中T細(xì)胞的活性,發(fā)揮抗腫瘤的作用。
綜上所述,hsa-miR-155-5p通過PTEN調(diào)控中央記憶T細(xì)胞、輔助T細(xì)胞影響肝細(xì)胞癌免疫微環(huán)境。
參考文獻(xiàn):
[1]Sung H,F(xiàn)erlay J,Siegel RL,et al.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J].CA Cancer J Clin,2021,71(3):209-249.
[2]Gao YX,Yang TW,Yin JM,et al.Progress and prospects of biomarkers in primary liver cancer (Review)[J].Int J Oncol,2020,57(1):54-66.
[3]Hill M,Tran N.miRNA interplay:mechanisms and consequences in cancer[J].Dis Model Mech,2021,14(4):dmm047662.
[4]Shu J,Kren BT,Xia Z,et al.Genomewide microRNA down-regulation as a negative feedback mechanism in the early phases of liver regeneration[J].Hepatology,2011,54(2):609-619.
[5]Chen X,Murad M,Cui YY,et al.miRNA regulation of liver growth after 50% partial hepatectomy and small size grafts in rats[J].Transplantation,2011,91(3):293-299.
[6]Yan-Nan B,Zhao-Yan Y,Li-Xi L,et al.MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN[J].Biochem Biophys Res Commun,2014,443(3):802-807.
[7]Ning S,Liu H,Gao B,et al.miR-155, miR-96 and miR-99a as potential diagnostic and prognostic tools for the clinical management of hepatocellular carcinoma[J].Oncol Lett,2019,18(3):3381-3387.
[8]Fu X,Wen H,Jing L,et al.MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway[J].Cancer Sci,2017,108(4):620-631.
[9]Lin XQ,Huang ZM,Chen X,et al.XIST Induced by JPX Suppresses Hepatocellular Carcinoma by Sponging miR-155-5p[J].Yonsei Med J,2018,59(7):816-826.
[10]Szklarczyk D,Gable AL,Nastou KC,et al.The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J].Nucleic Acids Res,2021,49(D1):D605-D612.
[11]Li B,Severson E,Pignon JC,et al.Comprehensive analyses of tumor immunity: implications for cancer immunotherapy[J].Genome Biol,2016,17(1):174.
[12]Pasculli B,Barbano R,F(xiàn)ontana A,et al.Hsa-miR-155-5p Up-Regulation in Breast Cancer and Its Relevance for Treatment With Poly[ADP-Ribose] Polymerase 1 (PARP-1) Inhibitors[J].Front Oncol,2020,10:1415.
[13]Soltani I,Bahia W,F(xiàn)arrah A,et al.Potential functions of hsa-miR-155-5p and core genes in chronic myeloid leukemia and emerging role in human cancer:A joint bioinformatics analysis[J].Genomics,2021,113(4):1647-1658.
[14]Li S,Zhang T,Zhou X,et al.The tumor suppressor role of miR-155-5p in gastric cancer[J].Oncol Lett,2018,16(2):2709-2714.
[15]Cheng J,Zhang Y,Yang J,et al.MiR-155-5p modulates inflammatory phenotype of activated oral lichen-planus-associated-fibroblasts by targeting SOCS1[J].Mol Biol Rep,2022,49(8):7783-7792.
[16]Wu YZ,Huang HT,Cheng TL,et al.Application of microRNA in Human Osteoporosis and Fragility Fracture: A Systemic Review of Literatures[J].Int J Mol Sci,2021,22(10):5232.
[17]Petejova N,Martinek A,Zadrazil J,et al.Acute Kidney Injury in Septic Patients Treated by Selected Nephrotoxic Antibiotic Agents-Pathophysiology and Biomarkers-A Review[J].Int J Mol Sci,2020,21(19):7115.
[18]Bai X,Luo Q,Tan K,et al.Diagnostic value of VDBP and miR-155-5p in diabetic nephropathy and the correlation with urinary microalbumin[J].Exp Ther Med,2020,20(5):86.
[19]Wang J,Zhao Q.LncRNA LINC-PINT increases SOCS1 expression by sponging miR-155-5p to inhibit the activation of ERK signaling pathway in rheumatoid arthritis synovial fibroblasts induced by TNF-α[J].Int Immunopharmacol,2020,84:106497.
[20]Wang J,Che J.CircTP63 promotes hepatocellular carcinoma progression by sponging miR-155-5p and upregulating ZBTB18[J].Cancer Cell Int,2021,21(1):156.
[21]Wu SY,Lan SH,Liu HS.Degradative autophagy selectively regulates CCND1 (cyclin D1) and MIR224, two oncogenic factors involved in hepatocellular carcinoma tumorigenesis[J].Autophagy,2019,15(4):729-730.
[22]Ai X,Xiang L,Huang Z,et al.Overexpression of PIK3R1 promotes hepatocellular carcinoma progression[J].Biol Res,2018,51(1):52.
[23]Li J,Yen C,Liaw D,et al.PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer[J].Science,1997,275(5308):1943-1947.
[24]Mi D,Yi J,Liu E,et al.Relationship between PTEN and VEGF expression and clinicopathological characteristics in HCC[J].J Huazhong Univ Sci Technolog Med Sci,2006,26(6):682-685.
[25]Zhu AX,Duda DG,Sahani DV,et al.HCC and angiogenesis: possible targets and future directions[J].Nat Rev Clin Oncol,2011,8(5):292-301.
[26]Wang W,Wei C.Advances in the early diagnosis of hepatocellular carcinoma[J].Genes Dis,2020,7(3):308-319.
[27]Yilma M,Saxena V,Mehta N.Models to Predict Development or Recurence of Hepatocellular Carcinoma (HCC) in Patients with Advanced Hepatic Fibrosis[J].Curr Gastroenterol Rep,2022,24(1):1-9.
[28]Bartel DP.Metazoan MicroRNAs[J].Cell,2018,173(1):20-51.
[29]Oura K,Morishita A,Masaki T.Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma-A Review[J].Int J Mol Sci,2020,21(21):8362.
[30]Xu WD,F(xiàn)eng SY,Huang AF.Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review[J].Inflamm Res,2022,71(12):1501-1517.
[31]Elton TS,Selemon H,Elton SM,et al.Regulation of the MIR155 host gene in physiological and pathological processes[J].Gene,2013,532(1):1-12.
[32]Higgs G,Slack F.The multiple roles of microRNA-155 in oncogenesis[J].J Clin Bioinforma,2013,3(1):17.
[33]Chen G,Wang D,Zhao X,et al.miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling[J].Cancer Cell Int,2017,17:118.
[34]Yao Y,Shu F,Wang F,et al.Long noncoding RNA LINC01189 is associated with HCV-hepatocellular carcinoma and regulates cancer cell proliferation and chemoresistance through hsa-miR-155-5p[J].Ann Hepatol,2021,22:100269.
[35]Najafi M,Hashemi Goradel N,F(xiàn)arhood B,et al.Macrophage polarity in cancer: A review[J].J Cell Biochem,2019,120(3):2756-2765.
[36]Bi L,Ren Y,F(xiàn)eng M,et al.HDAC11 Regulates Glycolysis through the LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness[J].Cancer Res,2021,81(8):2015-2028.
[37]Simpson L,Parsons R.PTEN: life as a tumor suppressor[J].Exp Cell Res,2001,264(1):29-41.
[38]Worby CA,Dixon JE.PTEN[J].Annu Rev Biochem,2014,83:641-669.
[39]Alimonti A,Carracedo A,Clohessy JG,et al.Subtle variations in Pten dose determine cancer susceptibility[J].Nat Genet,2010,42(5):454-458.
[40]Doherty DG.Immunity, tolerance and autoimmunity in the liver: A comprehensive review[J].J Autoimmun,2016,66:60-75.
[41]Gnyawali B,Pusateri A,Nickerson A,et al.Epidemiologic and socioeconomic factors impacting hepatitis B virus and related hepatocellular carcinoma[J].World J Gastroenterol,2022,28(29):3793-3802.
[42]Huang DQ,Mathurin P,Cortez-Pinto H,et al.Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors[J].Nat Rev Gastroenterol Hepatol,2023,20(1):37-49.
[43]Stella L,Santopaolo F,Gasbarrini A,et al.Viral hepatitis and hepatocellular carcinoma: From molecular pathways to the role of clinical surveillance and antiviral treatment[J].World J Gastroenterol,2022,28(21):2251-2281.
[44]Beier KC,Kallinich T,Hamelmann E.Master switches of T-cell activation and differentiation[J].Eur Respir J,2007,29(4):804-812.
[45]Klebanoff CA,Gattinoni L,Restifo NP.Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy?[J].J Immunother,2012,35(9):651-660.
[46]Lu Y,Yang A,Quan C,et al.A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma[J].Nat Commun,2022,13(1):4594.
[47]Sakaguchi E,Kayano K,Segawa M,et al.Th1/Th2 imbalance in HCV-related liver cirrhosis[J].Nihon Rinsho,2001,59(7):1259-1263.
[48]Budhu A,F(xiàn)orgues M,Ye QH,et al.Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment[J].Cancer Cell,2006,10(2):99-111.
[49]Scheper W,Kelderman S,F(xiàn)anchi LF,et al.Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers[J].Nat Med,2019,25(1):89-94.
[50]Gattinoni L,Zhong XS,Palmer DC,et al.Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells[J].Nat Med,2009,15(7):808-813.
[51]Rosenberg SA.Raising the bar:the curative potential of human cancer immunotherapy[J].Sci Transl Med,2012,4(127):127ps8.
收稿日期:2023-05-30;修回日期:2023-06-26
編輯/成森