石維維 薛秋梅
摘 要:為了研究一類二階迭代函數(shù)方程的C1有界光滑解在C1上確界距離下對(duì)已知函數(shù)的Lipschitz依賴性,對(duì)已知函數(shù)的導(dǎo)數(shù)施加了Lipschitz條件,并引入新的度量,此度量代表原函數(shù)與導(dǎo)函數(shù)之間的關(guān)系。根據(jù)給出Lipschitz依賴性推導(dǎo)過程的相關(guān)引理,對(duì)其進(jìn)行了證明,并運(yùn)用引理計(jì)算迭代函數(shù)方程光滑解之間的距離,從而得出對(duì)已知函數(shù)的Lipschitz依賴性。
關(guān)鍵詞:一類二階迭代函數(shù)方程;連續(xù)函數(shù);光滑解;Lipschitz依賴性
中圖分類號(hào):O175? ? ?文獻(xiàn)標(biāo)識(shí)碼:A? ? ?文章編號(hào):1674-0033(2024)02-0017-05
引用格式:石維維,薛秋梅.一類二階迭代函數(shù)方程有界光滑解的Lipschitz依賴性[J].商洛學(xué)院學(xué)報(bào),2024,38(2):17-21.
Lipschitz Dependence of Bounded Smooth Solutions
for a Class of Second Order Iterative
Function Equations
SHI Wei-wei, XUE Qiu-mei
(College of Mathematical Sciences, Chongqing Normal University, Shapingba? 401331, Chongqing)
Abstract: In order to study the Lipschitz dependence of C1 bounded smooth solutions of a class of second-order iterated functional equations on known functions at a definite bounded distance on C1, a Lipschitz condition is imposed on the derivatives of the known functions and a new metric is introduced, which represents the relationship between the original function and the derivative function. The Lipschitz dependence on the known function is proved on the basis of the relevant lemmas giving the derivation of the Lipschitz dependence, and the lemmas are applied to compute the distance between smooth solutions of the iterated functional equation.
Key words: a class of second order iterative functional equation; continuous function; smooth solution; Lipschitz dependency
讓?: I→I是區(qū)間I上的自映射,它的n階迭代是由?n(x)=?(?n-1(x))和?0(x)=x歸納定義的。當(dāng)涉及未知映射迭代的泛函方程時(shí),稱它為迭代方程,它的一般形式是F(?(x),?2(x),…,?n(x))=g(x),其中F,g是已知函數(shù),因此二階迭代函數(shù)方程基本形式為F(?(x),?2(x))=g(x)。迭代方程在許多數(shù)學(xué)問題上應(yīng)用廣泛,如迭代根問題、不變曲線問題和Feigenbaum周期中的重整化問題。N.Brillouet-Belluot[1]提出了關(guān)于二階迭代方程:
?2(x)=?(x+a)-x(1)
相關(guān)解情況的討論。隨后K.Baron[2]發(fā)現(xiàn)方程式(1)是由多元變量方程:
x+?(y+?(x))=y+?(x+?(y))
簡(jiǎn)化而來,且證明方程式(1)當(dāng)a=0時(shí),對(duì)應(yīng)方程?2(x)=?(x)-x無連續(xù)解;當(dāng)a≠0時(shí),對(duì)應(yīng)方程?2(x)=?(x+a)-x也無連續(xù)解。N.Br等[3]考慮了式(1)的一般形式之一,即
?2(x)=λ?(x+a)+μx(2)
其中λ,a,μ∈<\\Slb-g-ysc-7\本地磁盤 (e)\yp\雜志\商洛學(xué)院學(xué)報(bào)\2023-6\許思詩R.tif>,aλ≠0。證明了當(dāng)|λ|>max{2,
2}且1+2|μ|<|λ|≤2在給定的任何緊致區(qū)間上,式(2)存在利普系希茨解。當(dāng)0≤μ<1,λ≥2(1-μ)時(shí),構(gòu)造了式(2)在有界區(qū)間上的連續(xù)解。Zeng Y等[4]證明了當(dāng)λ=1,μ≤-1時(shí),式(2)在R上不存在連續(xù)解。當(dāng)|λ|∈(2,+∞),μ∈
-
,或|λ|∈(1,2),μ∈(1-|λ|,|λ|- 1)時(shí),式(2)在R上有連續(xù)解。文獻(xiàn)[1-4]中都得到了λ,a,μ滿足不同關(guān)系時(shí)方程式(2)解的情況,本文不再考慮方程解的情況,而是將λ,a,μ推廣為函數(shù)f,h,g,