顏炳文 陳密 劉海燕
摘要: 考慮一個(gè)以模糊厭惡再保險(xiǎn)公司為領(lǐng)導(dǎo)者, 模糊中立保險(xiǎn)公司為追隨者的Stackelberg隨機(jī)微分博弈問題. 通過求解拓展的HJB(Hamilton-Jacobi-Bellman)方程組, 給出時(shí)間一致性均值-方差準(zhǔn)則下的魯棒最優(yōu)投資-再保險(xiǎn)策略以及相應(yīng)的值函數(shù). 最后, 通過數(shù)值例子和敏感性分析說明最優(yōu)策略與主要參數(shù)之間的關(guān)系.
關(guān)鍵詞: 比例再保險(xiǎn); 常系數(shù)方差彈性模型; Stackelberg微分博弈; 時(shí)間一致性均值-方差框架; 模糊厭惡
中圖分類號(hào): O211.6文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1671-5489(2024)02-0273-12
Robust Optimal Investment-Reinsurance Problemsunder? Stackelberg? Differential Game
YAN Bingwen1, CHEN Mi1,2, LIU Haiyan1,2
(1. School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, China;2. Fujian Provincial Key Laboratory of Mathematical Analysis and Applications, Fuzhou 350117, China)
Abstract: We considered a Stackelberg stochastic differential game problem with an ambiguity-averse reinsurance company as the leader and an ambiguity-neutral insurance company? as the follower. By solving the extended HJB (Hamilton-Jacobi-Bellman) equation systems, we gave the robust optimal investment-reinsurance strategies and the corresponding value function under the time-consistent mean-variance criterion. Finally, we gave some numerical examples and sensitivity analyses to illustrate the relationship between the optimal strategies and the main parameters.
Keywords: proportion reinsurance; constant? coefficient variance elasticity model; Stackelberg differential game; time-consistent mean-variance framework; ambiguity aversion
保險(xiǎn)公司為獲取更大的收益和轉(zhuǎn)移部分風(fēng)險(xiǎn), 通常選擇將盈余投資金融市場和與再保險(xiǎn)公司簽訂再保險(xiǎn)合同使價(jià)值目標(biāo)達(dá)到最大化. 通過隨機(jī)控制理論研究保險(xiǎn)公司的最優(yōu)投資-再保險(xiǎn)問題已成為精算領(lǐng)域的熱門課題之一, 對(duì)不同目標(biāo)下的投資和再保險(xiǎn)優(yōu)化問題研究目前已有很多成果[1-8].
現(xiàn)有保險(xiǎn)精算研究大多數(shù)只基于保險(xiǎn)公司的角度研究最優(yōu)投資-再保險(xiǎn)問題, 但再保險(xiǎn)合同的擬定涉及保險(xiǎn)公司和再保險(xiǎn)公司雙方的利益, 再保險(xiǎn)公司對(duì)再保險(xiǎn)合同的態(tài)度也有不可忽視的作用. 因此, 再保險(xiǎn)公司的安全負(fù)荷不應(yīng)只簡單地設(shè)定為一個(gè)常數(shù), 而應(yīng)該是一個(gè)隨機(jī)再保費(fèi)策略η(t). 文獻(xiàn)[9]在指數(shù)效用最大化準(zhǔn)則下提出了Stackelberg微分再保險(xiǎn)博弈模型, 即再保險(xiǎn)公司作為博弈的領(lǐng)導(dǎo)者率先行動(dòng), 保險(xiǎn)公司作為追隨者做出反應(yīng). 文獻(xiàn)[10]研究了時(shí)間一致性均值-方差框架下的最優(yōu)再保險(xiǎn)和保費(fèi)策略, 采用在Stackelberg博弈中嵌入子Nash均衡博弈的思想處理時(shí)間不一致的最優(yōu)再保險(xiǎn)問題.
現(xiàn)實(shí)生活中, 保險(xiǎn)公司可能比再保險(xiǎn)公司有更多關(guān)于索賠過程的信息, 再保險(xiǎn)公司無法判斷保險(xiǎn)索賠的真實(shí)性, 對(duì)再保險(xiǎn)合同產(chǎn)生模糊厭惡的態(tài)度. 因此, 在設(shè)計(jì)再保險(xiǎn)合同時(shí)應(yīng)考慮信息不對(duì)稱導(dǎo)致的模型不確定性影響. 目前, 模型不確定性已經(jīng)得到了廣泛的認(rèn)可和應(yīng)用[11-13], 其中文獻(xiàn)[11]提出的魯棒隨機(jī)控制理論是解決模型不確定性問題的最常用方法.
本文在時(shí)間一致的均值-方差準(zhǔn)則下, 構(gòu)建以模糊厭惡再保險(xiǎn)公司為領(lǐng)導(dǎo)者, 模糊中立保險(xiǎn)公司為追隨者的Stackelberg微分博弈框架, 同時(shí)考慮保險(xiǎn)公司的競爭心理, 保險(xiǎn)索賠過程采用擴(kuò)散近似風(fēng)險(xiǎn)模型, 保費(fèi)和再保費(fèi)均使用期望值保費(fèi)準(zhǔn)則厘定. 與文獻(xiàn)[9]不同, 本文中保險(xiǎn)公司和再保險(xiǎn)公司對(duì)索賠過程信息和各自的終端盈余持不同的態(tài)度. 不同于文獻(xiàn)[14], 本文假設(shè)保險(xiǎn)公司和再保險(xiǎn)公司均可投資于風(fēng)險(xiǎn)資產(chǎn)和無風(fēng)險(xiǎn)資產(chǎn), 風(fēng)險(xiǎn)資產(chǎn)價(jià)格由隨機(jī)波動(dòng)率常系數(shù)方差彈性(CEV)模型刻畫, 通過求解拓展的HJB(Hamilton-Jacobi-Bellman)方程組,? 給出模糊中立保險(xiǎn)公司和模糊厭惡再保險(xiǎn)公司的魯棒均衡最優(yōu)投資-再保險(xiǎn)策略和相應(yīng)的均衡值函數(shù).
1 模型構(gòu)建
3 數(shù)值分析
下面用一些數(shù)值實(shí)例分析主要參數(shù)對(duì)定理2中推導(dǎo)出的均衡投資-再保險(xiǎn)策略的影響, 并對(duì)結(jié)果進(jìn)行說明. 除特別說明外, 假設(shè)各參數(shù)μ=5, σ=5, r0=0.1, r=0.2, s=2, σ1=0.6, β=1.1, θ=0.25, η1=0.2, η2=1.2, =0.5, m1=0.1, m2=0.2, k=0.4, T=8. 由于η*(t)在O1和O3中為常數(shù), 所以本文只考慮最優(yōu)策略在O2中對(duì)主要參數(shù)的敏感性結(jié)果.
3.1 最優(yōu)再保險(xiǎn)策略的敏感性分析
設(shè)m1,m2分別是保險(xiǎn)公司和再保險(xiǎn)公司的風(fēng)險(xiǎn)厭惡參數(shù), 表示各自的風(fēng)險(xiǎn)偏好, 如圖1和圖2所示, 隨著m1的增加, 保險(xiǎn)公司愿意將更多的保險(xiǎn)風(fēng)險(xiǎn)轉(zhuǎn)移給再保險(xiǎn)公司, 自留率q減小, 再保險(xiǎn)公司作為Stcakelberg微分博弈的領(lǐng)導(dǎo)者, 擁有加價(jià)權(quán), 當(dāng)預(yù)期再保險(xiǎn)業(yè)務(wù)增加時(shí)提高再保險(xiǎn)價(jià)格; 當(dāng)m2增大時(shí), 再保險(xiǎn)公司更傾向于增加再保險(xiǎn)保費(fèi), 保險(xiǎn)公司不得不承擔(dān)更多的保險(xiǎn)風(fēng)險(xiǎn).
最優(yōu)再保險(xiǎn)策略q*(t)和η*(t)隨的變化曲線如圖3所示. 由圖3可見, 隨著再保險(xiǎn)公司的模糊厭惡水平增加, 對(duì)保險(xiǎn)公司提供的保險(xiǎn)索賠信息越不信任, 越悲觀, 更傾向于提高再保險(xiǎn)保費(fèi)以防范模型的不確定性, 保險(xiǎn)公司減少購買再保險(xiǎn)比例, 自留水平增加.
最優(yōu)再保險(xiǎn)策略q*(t)和η*(t)隨k的變化曲線如圖4所示. 由圖4可見, 隨著敏感性參數(shù)k的增加, 保險(xiǎn)公司更關(guān)注再保險(xiǎn)公司的財(cái)富盈余, 為縮小與再保險(xiǎn)公司之間的盈余差距, 愿意冒更多的風(fēng)險(xiǎn)獲取保險(xiǎn)合同的價(jià)值, 保險(xiǎn)自留比例增加, 再保險(xiǎn)公司不得不降低再保險(xiǎn)價(jià)格吸引保險(xiǎn)公司購買再保險(xiǎn).
3.2 最優(yōu)投資策略的敏感性分析
下面主要研究保險(xiǎn)公司和再保險(xiǎn)公司的最優(yōu)投資策略a*1(t)和a*2(t)與風(fēng)險(xiǎn)規(guī)避參數(shù)、 風(fēng)險(xiǎn)資產(chǎn)的彈性參數(shù)和保險(xiǎn)公司的敏感性參數(shù)之間的關(guān)系. 最優(yōu)投資策略a*1(t)隨m1和k的變化曲線如圖5所示,? 最優(yōu)投資策略a*1(t)和a*2(t)隨m2的變化曲線如圖6所示.
由圖5和圖6可見, a*1(t)是關(guān)于m1和m2的遞減函數(shù), 并與k成正向關(guān)系, a*2(t)隨著m2的增大而減小, 當(dāng)保險(xiǎn)公司和再保險(xiǎn)公司各自的風(fēng)險(xiǎn)厭惡系數(shù)增大時(shí), 更傾向于選擇無風(fēng)險(xiǎn)的銀行存款, 從而減少風(fēng)險(xiǎn)資產(chǎn)的投資來規(guī)避風(fēng)險(xiǎn). 隨著保險(xiǎn)公司的敏感性參數(shù)k增大, 競爭心理更強(qiáng)烈的保險(xiǎn)公司愿意將更多資金投資于風(fēng)險(xiǎn)資產(chǎn), 為自身創(chuàng)造更多獲取財(cái)富的機(jī)會(huì).
參考文獻(xiàn)
[1]BIAN B J, CHEN X F, XU Z Q. Utility Maximization under Trading Constraints with Discontinuous Utility [J]. SIAM Journal on Financial Mathematics, 2019, 10(1): 243-260.
[2]CHEN M, YUEN K C, WANG W Y. Optimal Reinsurance and Dividends with Transaction Costs and Taxes under Thinning Structure [J]. Scandinavian Actuarial Journal, 2021, 2021(3): 198-217.
[3]LIANG X Q, LIANG Z B, YOUNG V R. Optimal Reinsurance under the Mean-Variance Premium Principle to Minimize the Probability of Ruin [J]. Insurance: Mathematics and Economics, 2020, 92: 128-146.
[4]ZHANG C B, LIANG Z B. Optimal Time-Consistent Reinsurance and Investment Strategies for a Jump-Diffusion Financial Market without Cash [J]. The North American Journal of Economics and Finance, 2022, 59: 101578-1-101578-17.
[5]CHEN M, YUEN K C. Optimal Dividend and Reinsurance in the Presence of Two Reinsurers [J]. Journal of Applied Probability, 2016, 53(2): 554-571.
[6]JIANG X, YUEN K C, CHEN M. Optimal Investment and Reinsurance with Premium Control [J]. Journal of Industrial and Management Optimization, 2020, 16(6): 2781-2797.
[7]楊鵬, 劉琦. 均值方差準(zhǔn)則下時(shí)間一致的再保險(xiǎn)和投資策略選擇 [J]. 東北師大學(xué)報(bào)(自然科學(xué)版), 2017, 49(4): 25-31. (YANG P, LIU Q. Time-Consistent Reinsurance and Investment Strategy Selection under Mean-Variance Criterion [J]. Journal of Northeast Normal University (Natural Science Edition),? 2017, 49(4): 25-31.)
[8]楊鵬, 惠小健. Vasicek利率下基于隨機(jī)微分博弈的最優(yōu)再保險(xiǎn)和投資 [J]. 東北師大學(xué)報(bào)(自然科學(xué)版), 2017, 49(2): 34-40. (YANG P, XI X J. Optimal Reinsurance and Investment Based on Stochastic Differential Games with Vasicek Interest Rate [J]. Journal of Northeast Normal University (Natural Science Edition), 2017, 49(2): 34-40.)
[9]CHEN L, SHEN Y. On a New Paradigm of Optimal Reinsurance: A Stochastic Stackelberg Differential Game between an Insurer and a Reinsurer [J]. ASTIN Bulletin: The Journal of the IAA, 2018, 48(2): 905-960.
[10]CHEN L, SHEN Y. Stochastic Stackelberg Differential Reinsurance Games under Time-Inconsistent Mean-Variance Framework [J]. Insurance: Mathematics and Economics, 2019, 88: 120-137.
[11]ANDERSON E W, HANSEN L P, SARGENT T J. A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection [J]. Journal of the European Economic Association, 2003, 1(1): 68-123.
[12]HUANG Y, OUYANG Y, TANG L X, et al. Robust Optimal Investment and Reinsurance Problem for the Product of the Insurers and the Reinsurers Utilities [J]. Journal of Computational and Applied Mathematics, 2018, 344: 532-552.
[13]ZHANG W L, MENG H. Robust Optimal Investment-Reinsurance Strategies with the Preferred Reinsurance Level of Reinsurer [J]. AIMS Mathematics, 2022, 7(6): 10024-10051.
[14]YUAN Y, LIANG Z B, HAN X. Robust Reinsurance Contract with Asymmetric Information in a Stochastic Stackelberg Differential Game [J]. Scandinavian Actuarial Journal, 2022, 2022(4): 328-355.
[15]ZHAO H, WENG C G, SHEN Y, et al. Time-Consistent Investment-Reinsurance Strategies towards Joint Interests of the Insurer and the Reinsurer under CEV Models [J]. Science China: Mathematics, 2017, 60: 317-344.
[16]BAI Y F, ZHOU Z B, XIAO H L, et al. A Hybrid Stochastic Differential Reinsurance and Investment Game with Bounded Memory [J]. European Journal of Operational Research, 2022, 296(2): 717-737.
[17]BJRK T, KHAPKO M, MURGOCI A. On Time-Inconsistent Stochastic Control in Continuous Time [J]. Finance and Stochastics, 2017, 21(2): 331-360.
(責(zé)任編輯: 趙立芹)
收稿日期: 2023-06-28. 網(wǎng)絡(luò)首發(fā)日期: 2024-03-02.
第一作者簡介: 顏炳文(1998—), 男, 漢族, 碩士研究生, 從事保險(xiǎn)精算的研究, E-mail: ybw1112@163.com.
通信作者簡介: 劉海燕(1986—), 女, 漢族, 博士, 副教授, 從事保險(xiǎn)精算的研究, E-mail: rain6397@163.com.
基金項(xiàng)目: 國家自然科學(xué)基金(批準(zhǔn)號(hào): 11701087)和福建省自然科學(xué)基金(批準(zhǔn)號(hào): 2023J01537; 2023J01538).
網(wǎng)絡(luò)首發(fā)地址: https://link.cnki.net/urlid/22.1340.o.20240228.1502.002.