国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

西瓜黃化斑點(diǎn)葉片的生理特性與遺傳傾向

2024-04-30 04:49:07趙紫君趙晨楊可池明張衛(wèi)華
果樹(shù)學(xué)報(bào) 2024年3期
關(guān)鍵詞:生理特性西瓜

趙紫君 趙晨 楊可 池明 張衛(wèi)華

摘? ? 要: 【目的】探究西瓜黃化斑點(diǎn)葉片的生理特性與遺傳傾向,為該材料在實(shí)際應(yīng)用及后續(xù)基因定位與克隆提供參考依據(jù)?!痉椒ā恳渣S化斑點(diǎn)葉西瓜TNY1201和普通西瓜1182為材料,對(duì)其葉片表型、解剖結(jié)構(gòu)以及光合生理特性進(jìn)行對(duì)比分析,同時(shí)建立六世代群體進(jìn)行遺傳傾向研究。【結(jié)果】TNY1201從第一片真葉開(kāi)始就具有黃化斑點(diǎn)性狀,與普通西瓜葉片相比,具有面積大、密度小的氣孔,葉片上下表皮細(xì)胞形狀不規(guī)則,柵欄組織和海綿組織排列松散,葉片緊密度小,海綿組織所占體積較大;TNY1201凈光合速率與葉綠素含量均顯著低于1182,氣孔導(dǎo)度、胞間CO2濃度顯著高于1182;將TNY1201與1182進(jìn)行正反交與回交,遺傳傾向表現(xiàn)為F2中葉片有斑與無(wú)斑的分離比為3:1,回交BC1P1葉片有斑與無(wú)斑分離比為1∶1。【結(jié)論】TNY1201葉片葉綠素含量、凈光合速率均顯著低于普通西瓜葉片。TNY1201葉片的黃化斑點(diǎn)由一對(duì)顯性核基因控制。

關(guān)鍵詞:西瓜;葉片斑點(diǎn);生理特性;遺傳傾向

中圖分類(lèi)號(hào):S651 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)03-0517-08

Study on physiology and genetic tendency of watermelon spotted leaf

ZHAO Zijun, ZHAO Chen, YANG Ke, CHI Ming, ZHANG Weihua*

(College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China)

Abstract: 【Objective】 Leaf color variation represents a common plant alteration. It is notably caused by genetic mutations that result in an abnormal chlorophyll metabolism leading to changes in leaf color. Hence, these mutations are popularly identified as chlorophyll mutations. The leaf color variance can serve as a phenotypic marker in plant breeding and as a germplasm resource for ornamental plants. In the realm of plant physiology, leaf color variants are recognized as ideal materials to investigate a spectrum of physiological processes like photosynthesis and hormone metabolism. In the context of genetics, variant analysis can aid in recognizing the function of corresponding genes. TNY1201, a watermelon germplasm, displays speckled attributes on each leaf. Thus, the exploration of its leaf structure, photosynthesis, and genetic features can provide a benchmark for its practical usage and subsequent gene mapping and cloning. The present investigation undertook a comparative analysis on the leaf phenotype, anatomical structure, and photosynthetic physiological characteristics between the spotted leaf watermelon TNY1201 and ordinary watermelon 1182. 【Methods】 The healthy and unblemished leaves were harvested from different individuals of spotted leaf watermelon TNY1201 and typical watermelon 1182 to ascertain the pertinent parameters of the leaves. The leaf length and width were measured. The praffin sections were crafted to observe and assess the anatomical structure of the leaves. The average area and density of single stomata were measured using a micrometer and nail polish imprinting technique. The photosynthetic parameters including net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration were quantified via GFS-3000 photosynthetic apparatus at 09:00—10:00 on a clear day. The chlorophyll content of the leaves was estimated by alcohol extraction method. The content of dissolved sugar was measured by Anthrone colorimetry, and the content of soluble protein was assayed by the Coomassie brilliant blue method. The seeds of F1, F1, F2, BC1P1 and BC1P2 progeny were obtained via conventional field management and artificial pollination. The P1 (1182), P2 (TNY1201), orthogonal F1, reciprocal F1, BC1P1, BC1P2 progeny were sowed in module trays. As the seedlings matured to three leaves, the count of individual plants of spotless leaves and spotted leaves was surveyed and the data were analysed by Chi square test to determine the genetic tendency. 【Results】 From the first real leaf, all leaves of the TNY1201 have yellow spots. The average single stomatal area of the TNY1201 leaves equated to 467.97 μm2, substantially larger than that of the 1182 leaves. Conversely, the stomatal density of the 1182 leaves was notably higher than those of the TNY1201. The anatomical parameters demonstrated notable disparities between the TNY1201 and 1182 leaves. Referencing the leaves of 1182, the morphology of the epidermal cells of the TNY1201 leaves was irregular, the palisade tissue and spongy tissue were loosely aligned within the mesophyll tissue, and the spongy tissue occupied a smaller proportion of volume. The leaf width, leaf area and leaf thickness of the TNY1201 are 18.38 cm, 206.59 cm2 and 124.13 μm, respectively, markedly greater than those of the 1182. Contrarily, there was no significant difference in the leaf length between the two materials. The content of chlorophyll in the TNY1201 leaves was significantly lower than 1182. The content of chlorophyll a, chlorophyll b and total chlorophyll in the TNY1201 leaves amounted to 82.51%, 70.97% and 75.38% of the 1182. There was no significant disparity in carotenoid content between the TNY1201 and 1182 leaves. The net photosynthetic rate of the 1182 leaves was 7.90 μmol·m-2·s-1. The net photosynthetic rate of the TNY1201 leaves was 6.98 μmol·m-2·s-1. The net photosynthetic rate of the 1182 was significantly higher than that of the TNY1201, which accounted for a 1.13 times increase over the TNY1201. The stomatal conductance and intercellular CO2 concentration of the TNY1201 leaves exhibited significantly higher values than those of the 1182. The transpiration rates demonstrated no significant variance between the TNY1201 and 1182 leaves. The content of soluble protein in the TNY1201 leaves was 22.70 μg·g-1, noticeably higher than that of the 1182 leaves. The total soluble sugar content of the TNY1201 leaves was 0.77 mg·g-1, which was markedly lower than that of the 1182 leaves. The F2 segregation population comprised 188 plants, including 146 individuals with spotted leaves and 42 individuals without spotted leaves. In contrast, the BC1P1 population of the 142 plants included 74 individuals with spotted leaves and 68 without spotted leaves. There were 145 strains present in the BC1P2 population, and all displayed spots on their leaves. Furthermore, the proportion of leaves exhibiting spots in the F2 plant population followed an approximate 3∶1 segregation ratio, while the proportion in the BC1P1 population followed a 1∶1 separation ratio. 【Conclusion】 The mesophyll tissue compactness in the TNY1201 leaves was lower than that of the 1182, and the proportion of palisade tissue was minimal. It could be postulated that there was fewer chloroplast in the TNY1201 leaves compared with 1182, leading to decreased chlorophyll content and photosynthetic rate, resulting in limited accumulation of photosynthetic products. The development of leaf spots was attributed to the reduction of chlorophyll content in the leaves. It would be noteworthy that the genetic control of these spots in the TNY1201 leaves was governed by a pair of dominant nuclear genes.

Key words: Watermelon; Spotted leaf mutant; Physiological characteristics; Genetic tendency

葉色變異是植物界一種正常的生命現(xiàn)象。在植物育種工作中,葉色變化既可以作為標(biāo)記性狀,簡(jiǎn)化選擇過(guò)程,也可以像花色、果色一樣作為觀賞元素,培育出多樣的彩葉植物[1]。葉色變化受多種遺傳與生理機(jī)制調(diào)控。王建玉等[2]對(duì)甜瓜芽黃材料進(jìn)行遺傳分析,發(fā)現(xiàn)甜瓜芽黃突變性狀可穩(wěn)定遺傳,屬于隱性基因控制的細(xì)胞核遺傳。楊莎等[3]將辣椒野生型材料與葉色黃化突變體材料雜交,并將F1自交,通過(guò)觀察分離性狀計(jì)算分離比,發(fā)現(xiàn)辣椒葉色黃化性狀是由一對(duì)核基因控制的隱性性狀。王亞玲等[4]對(duì)番茄黃綠葉突變體進(jìn)行了遺傳分析,結(jié)果表明,黃綠葉性狀受隱性單基因控制。葉色變化會(huì)影響植物的光合作用,并產(chǎn)生一系列生理生化反應(yīng)。因此葉色突變體也成為研究植物光合作用、激素代謝等一系列生理過(guò)程的重要材料[5]。邵勤[6]在甜瓜中發(fā)現(xiàn)了黃化的葉色突變體,對(duì)黃化突變體和野生型材料的葉綠素含量進(jìn)行對(duì)比研究,結(jié)果表明,突變體的葉色黃化與葉綠素含量有著直接的關(guān)系。曹穩(wěn)[7]對(duì)黃瓜的花斑葉突變體進(jìn)行研究,測(cè)定突變體與野生型材料的光合參數(shù)和葉綠素含量,發(fā)現(xiàn)突變體的光合能力、葉綠素含量都低于野生型。李萬(wàn)青等[8]對(duì)黃瓜黃化突變體和普通葉片在幼苗期的光合參數(shù)進(jìn)行測(cè)定,結(jié)果表明,葉色黃化突變體的凈光合速率與胞間CO2濃度均顯著低于普通的黃瓜葉片。Ma等[9]在山茶中發(fā)現(xiàn)了花斑葉突變體,通過(guò)對(duì)突變體與野生型材料的葉綠體解剖結(jié)構(gòu)進(jìn)行觀察,發(fā)現(xiàn)突變體的葉綠體數(shù)量有所減少。

西瓜是重要的園藝作物,研究西瓜葉色變化具有重要意義。任藝慈等[10]在對(duì)西瓜黃化突變體進(jìn)行研究時(shí)發(fā)現(xiàn)黃化性狀伴隨整個(gè)生育期,植株黃化是由總?cè)~綠素缺乏導(dǎo)致的。徐銘等[11]對(duì)西瓜后綠突變體的光合特性進(jìn)行研究,得出Ⅰ期(第三節(jié)位)由于光合色素含量低導(dǎo)致幼葉黃化,Ⅱ期(第九節(jié)位)光合色素含量大幅提高,葉色也逐漸由黃轉(zhuǎn)綠。但是對(duì)西瓜帶有黃色斑點(diǎn)葉片與普通葉片生理特性、解剖結(jié)構(gòu)差異及遺傳規(guī)律的研究未見(jiàn)報(bào)道。

西瓜自交系TNY1201葉片具有不規(guī)則黃色斑點(diǎn),能正常開(kāi)花結(jié)實(shí),1182是普通的西瓜自交系。筆者將TNY1201與1182的葉片表型、生理特性、解剖結(jié)構(gòu)進(jìn)行比較,有助于闡明形成黃色斑點(diǎn)的生理機(jī)制及其對(duì)葉片生理、結(jié)構(gòu)特性造成的影響。筆者以TNY1201和1182作為親本構(gòu)建六世代群體(P1、P2、F1、F2、BC1P1、BC1P2),分析葉片斑點(diǎn)的遺傳傾向,可為后續(xù)進(jìn)行基因定位與克隆提供參考依據(jù),也為利用西瓜葉片斑點(diǎn)標(biāo)記輔助育種奠定基礎(chǔ)。

1 材料和方法

1.1 材料

本試驗(yàn)供試的西瓜材料TNY1201和1182由天津市桑田梓地農(nóng)業(yè)科技有限公司提供。TNY1201為黃色斑點(diǎn)葉片西瓜,子葉無(wú)斑點(diǎn),從第一片真葉開(kāi)始,所有葉片均帶有黃色斑點(diǎn)(圖1-A);1182為普通西瓜,所有葉片均無(wú)斑點(diǎn)(圖1-B)。

1.2 方法

1.2.1 斑點(diǎn)葉片的生理特性測(cè)定 2022年3月5日將1182和TNY1201兩份材料播種育苗,4月1日定植于天津農(nóng)學(xué)院西校區(qū)玻璃溫室,正常管理。定植40 d時(shí),在兩個(gè)品種的10個(gè)不同個(gè)體上分別采集健康、陽(yáng)生且無(wú)破損的材料,其中TNY1201選取黃綠混合部分,將兩種取樣材料編號(hào)密封于封口袋內(nèi),帶回實(shí)驗(yàn)室進(jìn)行葉片表型、解剖結(jié)構(gòu)、光合色素含量等指標(biāo)的測(cè)定。

利用直尺測(cè)定葉長(zhǎng)、葉寬等葉片表型。利用指甲油印跡法[12]和測(cè)微尺測(cè)定氣孔密度、氣孔大小。利用石蠟切片法[13]和測(cè)微尺測(cè)定上表皮厚度、下表皮厚度、柵欄組織厚度、海綿組織厚度。柵海比=柵欄組織厚度/海綿組織厚度。組織疏密度=海綿組織厚度/葉片厚度。采用95%乙醇提取法測(cè)定光合色素含量[14]。采用蒽酮比色法測(cè)定可溶性糖含量[15],采用考馬斯亮藍(lán)G-250染色法測(cè)定可溶性蛋白含量[15]。

在盛花期,選擇晴朗無(wú)風(fēng)的天氣,在上午10:00使用GFS-3000光合儀測(cè)定葉片的光合參數(shù)。

1.2.2 斑點(diǎn)葉片的斑點(diǎn)遺傳分析 2022年將1182、TNY1201進(jìn)行正反交,得到正反交的F1代種子。2023年3月將兩個(gè)親本與正反交F1播種,進(jìn)行人工授粉得到BC1P1、BC1P2和F2種子。2023年7月將六世代群體播種,調(diào)查群體苗期(三葉一心)的無(wú)斑葉片和有斑葉片的單株數(shù)量,對(duì)所得數(shù)據(jù)進(jìn)行卡方檢驗(yàn),確定遺傳傾向。

1.3 數(shù)據(jù)分析

采用SPSS26.0 軟件進(jìn)行試驗(yàn)數(shù)據(jù)處理及差異顯著性分析,應(yīng)用ImageJ軟件進(jìn)行試驗(yàn)圖片處理。

2 結(jié)果與分析

2.1 斑點(diǎn)葉片西瓜與普通西瓜葉片表型比較

從表1可以看出,兩種材料的葉長(zhǎng)無(wú)顯著差異,TNY1201葉片寬度、葉片面積和葉片厚度分別為20.88 cm、247.08 cm2和176.12 μm,均顯著高于1182。

2.2 斑點(diǎn)葉片西瓜與普通西瓜葉片結(jié)構(gòu)比較

由表2可知,TNY1201的葉片單個(gè)氣孔面積平均為467.97 μm2,顯著大于1182。1182葉片氣孔密度為137.36個(gè)·mm-2,顯著大于TNY1201。綜上所述,1182的葉片氣孔單個(gè)面積小但密度大,而TNY1201的葉片則相反,單個(gè)氣孔面積大但密度小。

從圖2可以看出,西瓜的葉片為典型的異面葉,葉片由上下表皮細(xì)胞、柵欄組織和海綿組織構(gòu)成,海綿組織由3~5層排列疏松的細(xì)胞組成。TNY1201葉片與普通葉片的解剖結(jié)構(gòu)存在很大差別。1182的葉片組織結(jié)構(gòu)清晰,上下表皮細(xì)胞完整,有明顯的柵欄組織和海綿組織,柵欄組織排列緊密。TNY1201斑點(diǎn)葉的葉片上下表皮細(xì)胞形狀不規(guī)則,柵欄組織和海綿組織排列松散。

由表3可以看出,TNY1201葉片和1182的葉片解剖結(jié)構(gòu)參數(shù)之間存在顯著差異。TNY1201的上下表皮厚度顯著大于1182,分別為1182的1.33倍和1.39倍,柵欄組織厚度和海綿組織厚度也都顯著大于1182,分別為66.24 μm和69.54 μm。1182葉肉組織緊密度和柵海比顯著大于TNY1201。TNY1201的葉肉組織疏密度為0.40%,顯著大于1182。

2.3 斑點(diǎn)葉片西瓜與普通西瓜葉片光合生理參數(shù)比較

從表4可以看出,TNY1201葉片的葉綠素a、葉綠素b和總?cè)~綠素的含量都顯著低于1182葉片。1182的葉綠素a、葉綠素b和總?cè)~綠素含量分別是TNY1201的1.21倍、1.39倍和1.33倍。TNY1201葉片類(lèi)胡蘿卜素含量和葉綠素a/b值與1182葉片無(wú)顯著差異。

從表5可以看出,1182葉片的凈光合速率為7.90 μmol·m-2·s-1,顯著高于TNY1201,是TNY1201葉片凈光合速率的1.13倍。TNY1201葉片的氣孔導(dǎo)度、胞間CO2濃度都顯著高于1182,蒸騰速率之間無(wú)顯著差異。

從表6可以看出,1182葉片可溶性總糖含量顯著高于TNY1201,是TNY1201的1.75倍。TNY1201葉片可溶性蛋白含量為22.70 μg·g-1,顯著高于1182。

2.4 西瓜葉片斑點(diǎn)的遺傳傾向分析

從表7可以看出,親本1182葉片全部無(wú)斑,親本TNY1201、正反交F1都有黃色斑點(diǎn),表明葉片斑點(diǎn)為細(xì)胞核遺傳。BC1P2植株葉片也全都有黃色斑點(diǎn)。F2群體共188株,其中146株葉片有斑,42株葉片無(wú)斑。BC1P1群體共142株,其中74株葉片有斑,68株葉片無(wú)斑。F2植株葉片有斑、無(wú)斑的比例符合3∶1的分離比,BC1P1植株葉片有斑、無(wú)斑的比例符合1∶1的分離比。以上結(jié)果表明TNY1201葉片的斑點(diǎn)性狀受一對(duì)顯性核基因控制。

3 討 論

葉片是植物與外界進(jìn)行氣體交換和光合作用的重要器官,葉片的結(jié)構(gòu)形態(tài)直接影響植物的光合作用、蒸騰作用等[16]。TNY1201的柵欄組織排列松散,葉肉組織緊密度顯著低于1182,而葉綠體大部分位于柵欄組織中[17],推斷TNY1201的葉綠體含量低于1182,這與葉綠素含量的測(cè)定結(jié)果相符合。本試驗(yàn)中TNY1201的葉綠素含量顯著低于1182,葉色改變是光合色素含量變化的外在表現(xiàn)[5]。由此可以推斷葉片在進(jìn)行光合作用時(shí),在缺少葉綠素的情況下,葉綠素a和葉綠素b間的轉(zhuǎn)換受到阻礙。綜上所述,可能是葉綠素的合成陷入停滯狀態(tài),致使葉綠素含量降低,從而使葉片出現(xiàn)黃色斑點(diǎn)[1]。崔麗朋等[18]在研究番茄葉色黃化突變體時(shí),測(cè)定了兩種材料的葉綠素含量,結(jié)果表明葉色黃化突變體的葉綠素含量顯著低于野生型,與本試驗(yàn)研究結(jié)果相似。

氣孔是葉片進(jìn)行光合作用所需的CO2進(jìn)入植物體內(nèi)的主要通道,因此氣孔的密度以及面積是植物正常生長(zhǎng)的基礎(chǔ)[19]。張艷萍等[17]對(duì)觀賞桃葉片的氣孔參數(shù)與光合速率進(jìn)行測(cè)定,發(fā)現(xiàn)氣孔小而密集的葉片光合速率較高。本試驗(yàn)中,TNY1201氣孔面積大密度小,可能導(dǎo)致其葉片光合速率低于普通西瓜,這與葉片凈光合速率測(cè)定的結(jié)果相符合。光合色素含量直接或間接地影響植物的光合能力,具體表現(xiàn)在凈光合速率、蒸騰速率、胞間CO2濃度等指標(biāo)發(fā)生變化方面[19]。胡亮亮等[20]在對(duì)黃瓜葉色突變體進(jìn)行研究時(shí)發(fā)現(xiàn),突變體的凈光合速率顯著低于野生型,胞間CO2濃度顯著高于野生型,推測(cè)突變體光合能力較低并非僅受氣孔大小和密度的影響,而且也受CO2的利用率較低影響。本試驗(yàn)中TNY1201的凈光合速率顯著低于1182,胞間CO2濃度和氣孔導(dǎo)度顯著高于1182,蒸騰速率之間差異不顯著,與上述推論相符合。

可溶性糖是主要的能量代謝中間產(chǎn)能物,在一定程度上可以反映植物體內(nèi)能量代謝的快慢[5]??扇苄缘鞍资侵匾臐B透調(diào)節(jié)物質(zhì)和營(yíng)養(yǎng)物質(zhì),其大多數(shù)是參與各種代謝的酶類(lèi)[5]。當(dāng)葉片中葉綠素缺失時(shí),會(huì)導(dǎo)致可溶性糖和可溶性蛋白含量產(chǎn)生變化。在本試驗(yàn)中,TNY1201葉片的可溶性糖含量顯著低于1182,是1182的56.82%,可溶性蛋白含量顯著高于1182,是1182的1.22倍。推斷葉片的可溶性糖含量較低,是由光合能力下降導(dǎo)致的,而可溶性蛋白含量較高,可能是由大量的特異性蛋白表達(dá)所導(dǎo)致的,與陳星旭[21]對(duì)花燭葉色黃化突變體的研究結(jié)果類(lèi)似。

西瓜葉色遺傳規(guī)律有不同的報(bào)道。Poole[22]對(duì)斑點(diǎn)葉西瓜‘Sun,Moon and Stars的遺傳規(guī)律進(jìn)行研究,基于回交和F2群體的觀察數(shù)據(jù)(原文中未詳細(xì)列出),認(rèn)為斑點(diǎn)葉是由一種細(xì)胞質(zhì)基因控制的葉綠體缺陷造成的。本試驗(yàn)對(duì)兩份材料進(jìn)行正反交、回交并建立F2群體,對(duì)性狀結(jié)果的分離比進(jìn)行卡方檢測(cè),分離比均符合孟德?tīng)栠z傳定律,顯示TNY1201葉片斑點(diǎn)由核基因控制。兩種結(jié)果不同,可能是試驗(yàn)材料不同造成的。Kidanemariam[23]對(duì)西瓜后綠突變體的遺傳規(guī)律進(jìn)行研究,通過(guò)自交、回交試驗(yàn),推測(cè)該突變體受隱性基因控制。本試驗(yàn)初步推斷影響葉片黃色斑點(diǎn)形成的是細(xì)胞核基因,但要闡明其機(jī)制,仍需要進(jìn)一步深入研究。

4 結(jié) 論

斑點(diǎn)葉片西瓜TNY1201與1182相比,葉片上下表皮細(xì)胞形狀不規(guī)則,柵欄組織和海綿組織排列松散,葉片緊密度較小,具有面積大而密度小的氣孔。TNY1201葉片的葉綠素含量、凈光合速率、可溶性糖含量均顯著低于1182,可溶性蛋白含量顯著高于1182。遺傳特性分析表明,TNY1201葉片斑點(diǎn)屬于細(xì)胞核遺傳,葉片有斑對(duì)無(wú)斑為顯性。

綜上所述,筆者在本文中研究的TNY1201是一種重要的資源材料,可以作為西瓜常規(guī)育種中選擇的表型標(biāo)記,也可以作為觀賞西瓜品種選育的種質(zhì)資源。研究結(jié)論為西瓜葉片光合生理研究及斑點(diǎn)性狀在育種實(shí)踐中的應(yīng)用提供了理論依據(jù),豐富了葫蘆科植物葉色突變機(jī)制的理論基礎(chǔ)。

參考文獻(xiàn) References:

[1] 李音音. 葉色黃化突變體甜瓜生物學(xué)特性研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2014.

LI Yinyin. Study on biological characters of xantha mutant in melon[D]. Harbin:Northeast Agricultural University,2014.

[2] 王建玉,王志鵬,段祥坤. 甜瓜芽黃標(biāo)記性狀的發(fā)現(xiàn)與遺傳分析[J]. 中國(guó)瓜菜,2019,32(2):15-17.

WANG Jianyu,WANG Zhipeng,DUAN Xiangkun. Discovery and genetic analysis of yellow markers in melon buds[J]. China Cucurbits and Vegetables,2019,32(2):15-17.

[3] 楊莎,張竹青,陳文超,劉周斌,周書(shū)棟,鄒學(xué)校,馬艷青. 辣椒葉色黃化突變體的遺傳及生理特性[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,46(1):48-52.

YANG Sha,ZHANG Zhuqing,CHEN Wenchao,LIU Zhoubin,ZHOU Shudong,ZOU Xuexiao,MA Yanqing. Genetic analysis and physiological characteristics of yellow leaf mutant in pepper[J]. Journal of Hunan Agricultural University (Natural Sciences),2020,46(1):48-52.

[4] 王亞玲,李小寒,宮方林,梁佳佳,李金華. 一個(gè)新的番茄黃綠葉突變體表型鑒定與遺傳分析[J]. 植物遺傳資源學(xué)報(bào),2019,20(1):215-220.

WANG Yaling,LI Xiaohan,GONG Fanglin,LIANG Jiajia,LI Jinhua. Phenotypic identification and genetic analysis of a novel tomato yellow green leaf mutant[J]. Journal of Plant Genetic Resources,2019,20(1):215-220.

[5] 李燕. 黃瓜葉色突變體的生理生化及遺傳特性研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2016.

LI Yan. Physiological characteristics and genetic analysis of leaf color mutant in cucumber[D]. Yaan:Sichuan Agricultural University,2016.

[6] 邵勤. 一個(gè)新的甜瓜葉色黃化突變體研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2013.

SHAO Qin. Characterization and proteomics of a novel xantha mutant in muskmelon[D]. Harbin:Northeast Agricultural University,2013.

[7] 曹穩(wěn). 黃瓜花斑葉突變體及候選基因鑒定[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2019.

CAO Wen. Identification of variegated leaf mutant and candidate gene in cucumber (Cucumis sativus L.)[D]. Harbin:Northeast Agricultural University,2019.

[8] 李萬(wàn)青,高波,楊俊,陳鵬,李玉紅. 一個(gè)新的黃瓜葉色黃化突變體的生理特性分析[J]. 西北農(nóng)業(yè)學(xué)報(bào),2015,24(7):98-103.

LI Wanqing,GAO Bo,YANG Jun,CHEN Peng,LI Yuhong. Physiological characteristic analysis of a new leaf color yellow mutant in cucumber[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2015,24(7):98-103.

[9] MA C Y,CAO J X,LI J K,ZHOU B,TANG J C,MIAO A Q. Phenotypic,histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis[J]. Scientific Reports,2016,6:33369.

[10] 任藝慈,朱迎春,孫德璽,鄧云,安國(guó)林,李衛(wèi)華,劉君璞. 一個(gè)西瓜葉色黃化突變體的生理特性分析[J]. 果樹(shù)學(xué)報(bào),2020,37(4):565-573.

REN Yici,ZHU Yingchun,SUN Dexi,DENG Yun,AN Guolin,LI Weihua,LIU Junpu. Physiological characteristic analysis of a leaf-yellowing mutant in watermelon[J]. Journal of Fruit Science,2020,37(4):565-573.

[11] 徐銘,高美玲,郭宇,包秀萍,劉秀杰,劉繼秀,高越. 西瓜后綠突變體光合特性分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,50(3):91-96.

XU Ming,GAO Meiling,GUO Yu,BAO Xiuping,LIU Xiujie,LIU Jixiu,GAO Yue. Photosynthetic characteristics of virescent mutant in watermelon[J]. Journal of Northwest A & F University (Natural Science Edition),2022,50(3):91-96.

[12] 張亞,楊石建,孫梅,曹坤芳. 基部被子植物氣孔性狀與葉脈密度的關(guān)聯(lián)進(jìn)化[J]. 植物科學(xué)學(xué)報(bào),2014,32(4):320-328.

ZHANG Ya,YANG Shijian,SUN Mei,CAO Kunfang. Stomatal traits are evolutionarily associated with vein density in basal angiosperms[J]. Plant Science Journal,2014,32(4):320-328.

[13] 李琪,賀曉,賀一鳴,吳敏,孟剛,郭剛. 豆科3屬6種植物葉片特征比較研究[J]. 干旱區(qū)資源與環(huán)境,2017,31(11):148-153.

LI Qi,HE Xiao,HE Yiming,WU Min,MENG Gang,GUO Gang. Comparative study of leaf characters in 6 species of Leguminosae[J]. Journal of Arid Land Resources and Environment,2017,31(11):148-153.

[14] 閆曉麗,王書(shū)柔,丁新宇,劉興菊,梁海永. 異源三倍體榆樹(shù)葉片形態(tài)及光合特性[J]. 林業(yè)科技,2023,48(4):1-5.

YAN Xiaoli,WANG Shurou,DING Xinyu,LIU Xingju,LIANG Haiyong. Leaf morphology and photosynthetic characteristics of allotriploid elm[J]. Forestry Science & Technology,2023,48(4):1-5.

[15] 劉萍,李明軍. 植物生理學(xué)實(shí)驗(yàn)[M]. 2版. 北京:科學(xué)出版社,2016:80.

LIU Ping,LI Mingjun. Plant physiology experiments[M]. 2nd ed. Beijing:Science Press,2016:80.

[16] 徐艷芳,賀雅萍,王夢(mèng)瑤,張琪,周杰,蘭琳英,艾葉. 16個(gè)建蘭品種葉片解剖結(jié)構(gòu)研究[J]. 熱帶作物學(xué)報(bào),2022,43(10):2099-2105.

XU Yanfang,HE Yaping,WANG Mengyao,ZHANG Qi,ZHOU Jie,LAN Linying,AI Ye. Leaf anatomical structure of 16 Cymbidium ensifolium varieties[J]. Chinese Journal of Tropical Crops,2022,43(10):2099-2105.

[17] 張艷萍,劉衛(wèi)東,龍達(dá),張雕,曾廣輝. 5種觀賞桃F1代葉片解剖結(jié)構(gòu)與光合性能研究[J]. 南方林業(yè)科學(xué),2021,49(1):1-5.

ZHANG Yanping,LIU Weidong,LONG Da,ZHANG Diao,ZENG Guanghui. Study on leaf anatomical structure and photosynthetic performance of five ornamental peach F1 generations[J]. South China Forestry Science,2021,49(1):1-5.

[18] 崔麗朋,宋麗華,黃澤軍,高建昌,國(guó)艷梅,杜永臣,王孝宣. 番茄黃化基因Netted Viresce(NV)的遺傳定位及生理特性研究[J]. 中國(guó)蔬菜,2017(7):29-36.

CUI Lipeng,SONG Lihua,HUANG Zejun,GAO Jianchang,GUO Yanmei,DU Yongchen,WANG Xiaoxuan. Physiological characteristics and genetic mapping of tomato yellow leaf gene netted viresce (NV)[J]. China Vegetables,2017(7):29-36.

[19] 薛黎. 遮陰對(duì)5種珍貴樹(shù)種幼苗光合及葉片解剖特性的影響[D]. 長(zhǎng)沙:中南林業(yè)科技大學(xué),2020.

XUE Li. Photosynthetic characteristics and leaf anatomical structure of five precious tree species under shading condition[D]. Changsha:Central South University of Forestry & Technology,2020.

[20] 胡亮亮,趙子瑤,張海強(qiáng),陳菲帆,張朝文,戎福喜,陳鵬,李玉紅. 一個(gè)新的黃瓜葉色突變體的光合特性分析[J]. 西北農(nóng)業(yè)學(xué)報(bào),2018,27(11):1622-1628.

HU Liangliang,ZHAO Ziyao,ZHANG Haiqiang,CHEN Feifan,ZHANG Chaowen,RONG Fuxi,CHEN Peng,LI Yuhong. Photosyntheic characteristics analysis of a new leaf color mutant in cucumber[J]. Acta Agriculturae Boreali-occidentalis Sinica,2018,27(11):1622-1628.

[21] 陳星旭. 花燭葉色嵌合體及突變體葉色形成機(jī)理及保持特征[D]. 南京:南京農(nóng)業(yè)大學(xué),2009.

CHEN Xingxu. Formative mechanism and maintenance characteristics of leaf color chimera and mutants of Anthurium andreaeanum ‘Sonate[D]. Nanjing:Nanjing Agricultural University,2009.

[22] POOLE C F. Genetics of cultivated cucurbits[J]. Journal of Heredity,1944,35(4):122-128.

[23] KIDANEMARIAM G H. 西瓜葉色后綠和植株短蔓性狀的遺傳與分子機(jī)制研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2020.

KIDANEMARIAM G H. Genetic and molecular mechanisms of delayed green leaf color and short internode length in watermelon (Citrullus lanatus)[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.

猜你喜歡
生理特性西瓜
大西瓜
我愛(ài)西瓜
大小西瓜
當(dāng)夏天遇上西瓜
硝普鈉浸種對(duì)干旱脅迫下玉米種子萌發(fā)及幼苗生長(zhǎng)的影響
硝普鈉浸種對(duì)干旱脅迫下玉米種子萌發(fā)及幼苗生長(zhǎng)的影響
超聲波處理對(duì)羽扇豆種子活力及生理特性的影響
不同品種番茄幼苗在弱光條件下對(duì)亞適溫的適應(yīng)性研究
巧切西瓜
灰水對(duì)黃楊生理特性的影響
石屏县| 赞皇县| 伊金霍洛旗| 商水县| 如东县| 天津市| 镇安县| 四会市| 伊金霍洛旗| 青海省| 柳河县| 遵义市| 高邮市| 德州市| 申扎县| 兴和县| 浮梁县| 肥城市| 晋江市| 建德市| 合肥市| 九台市| 东港市| 庄浪县| 察雅县| 石门县| 金溪县| 柏乡县| 雅江县| 巴彦淖尔市| 土默特右旗| 图木舒克市| 麻栗坡县| 嘉祥县| 图片| 天等县| 青龙| 综艺| 化德县| 莱阳市| 开平市|