張莉 張薇 郭金麗
摘? ? 要:【目的】探討歐李果實發(fā)育過程中不同形態(tài)鈣及有機酸代謝的變化及二者之間的關(guān)系,以期為解析歐李果實鈣素吸收積累機制及進一步研究調(diào)控提供理論依據(jù)?!痉椒ā恳詢?nèi)蒙古地區(qū)高鈣和低鈣兩種鈣素水平歐李果實為試材,比較研究果實發(fā)育成熟過程中不同形態(tài)鈣以及有機酸代謝相關(guān)指標的變化,并進行相關(guān)性分析?!窘Y(jié)果】(1)在果實發(fā)育成熟過程中,兩種鈣素水平歐李果實中水溶性鈣含量表現(xiàn)為先降后升,整體為上升趨勢;總鈣、果膠鈣、磷酸鈣和草酸鈣含量均表現(xiàn)為先升后降,整體為下降趨勢;殘渣鈣含量表現(xiàn)為持續(xù)下降。(2)兩種鈣素水平歐李果實中蘋果酸脫氫酶(NAD-MDH)活性、蘋果酸含量及有機酸總量的變化一致,均表現(xiàn)為先升后降,在硬熟期達到最高值,整體呈明顯上升趨勢,且以上三者活性或含量均表現(xiàn)為低鈣果實高于高鈣果實;蘋果酸酶(NADP-ME)活性整體表現(xiàn)為下降;檸檬酸含量表現(xiàn)為先升后降,在硬核期達到最高值,整體呈下降趨勢,且高鈣果實中檸檬酸含量高于低鈣果實。(3)相關(guān)性分析表明,兩種鈣素水平歐李果實中NAD-MDH活性、蘋果酸含量、有機酸總量與水溶性鈣含量均呈極顯著正相關(guān),與其他組分鈣及總鈣含量均呈不同程度的負相關(guān);NADP-ME活性和檸檬酸含量與水溶性鈣含量均呈顯著或極顯著負相關(guān),與其他組分鈣及總鈣含量均呈不同程度的正相關(guān)。【結(jié)論】在歐李果實發(fā)育成熟過程中鈣素積累與有機酸代謝有關(guān),蘋果酸是歐李果實中主要的有機酸,蘋果酸合成代謝增強有利于水溶性鈣含量的增加,檸檬酸含量增加則趨向于促進非水溶性鈣類果膠鈣、磷酸鈣和草酸鈣的積累。
關(guān)鍵詞:歐李果實;鈣;有機酸;相關(guān)性分析
中圖分類號:S662.3 文獻標志碼:A 文章編號:1009-9980(2024)03-0494-11
Analysis of changes and correlations between calciums and organic acids in fruits of Cerasus humilis during different development stages
ZHANG Li, ZHANG Wei, GUO Jinli*
(College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, Inner Mongolia, China)
Abstract: 【Objective】 Calcium is an important nutritional component in fruits, however, the regulatory mechanisms of calcium in fruits is still limited. This study investigated the changes of organic acids, related metabolic enzymes, and different forms of calcium during the development of the fruits of Cerasus humilis, and analyzed the correlations between the calcium and organic acids. The purpose is to reveal the relationship between calcium accumulation and organic acid metabolism, and provide a theoretical basis for investigating the regulation of calcium in fruits. 【Methods】 The high-calcium and low-calcium C. humilis fruits from Inner Mongolia were used as research materials. The samples were collected at different stages of fruit development, including the young fruit stage (S1), hard kernel stage (S2), coloring and enlargement stage (S3), hardening stage (S4), and fully ripe stage (S5). Each fruit sample was washed with distilled water and then rapidly frozen in liquid nitrogen, and stored at -80 ℃. The progressive extraction method was used to extract water-soluble calcium, pectin calcium, calcium phosphate, oxalate calcium, and residual calcium in the fruits. The content of these forms of calcium was determined using flame atomic absorption spectrophotometry. The content of malic acid and citric acid in the C. humilis fruits were measured using high-performance liquid chromatography. Additionally, the activities of malic enzyme (NADP-ME) and malate dehydrogenase (NAD-MDH) were determined. The correlation between the organic acid metabolism and calcium accumulation was analyzed. The tests were repeated three times, with three biological repeats each time. 【Results】 (1) During the development and maturation of C. humilis fruits, the water-soluble calcium content in high-calcium and low-calcium C. humilis fruits showed an initial decrease followed by an increase, indicating an overall upward trend. In contrast, the total calcium, pectin calcium, calcium phosphate, and oxalate calcium contents exhibited an initial increase followed by a decrease, indicating an overall downward trend. The residual calcium content showed a continuous decrease throughout the process. At the fully ripe stage of the fruits, the low-calcium fruits exhibited higher levels of water-soluble calcium. However, the other calcium components and total calcium content were higher in the high-calcium fruits. Among these components, the proportion of active calcium was the highest, accounting for 70.29% in the high-calcium fruits and 68.30% in the low-calcium fruits. (2) During the development and maturation of C. humilis fruits, the patterns of NAD-MDH activity, malic acid content, and total organic acid content were consistent in high-calcium and low-calcium C. humilis fruits. They showed an initial increase followed by a decrease, reaching their peak values at the hard ripening stage, indicating a significant overall upward trend. Notably, the activity or content of these three factors was higher in the low-calcium fruits. The NADP-ME activity exhibited an overall decreasing trend. The citric acid content showed an initial increase followed by a decrease, reaching its highest value at the hard kernel stage, indicating an overall downward trend. The high-calcium fruits had higher content of citric acid. The activity of NAD-MDH was significantly and positively correlated with the content of malic acid, and was significantly and negatively correlated with the content of citric acid. The activity of the NADP-ME was significantly and negatively correlated with the content of malic acid and was significantly and positively correlated with the content of citric acid. There was a highly significantly negative correlation between the activities of the NADP-ME and NAD-MDH. (3) The correlation analysis revealed significantly positive correlations between the activity of the NAD-MDH, malic acid content, content of total organic acid and content of water-soluble calcium in high-calcium and low-calcium C. humilis fruits. They exhibited varying degrees of negative correlations with other forms of calcium and total calcium content. The activity of NADP-ME and the content of citric acid showed a highly significantly negative correlation with water-soluble calcium content. In addition, they exhibited significant or highly significantly positive correlations with other forms of calcium and total calcium content. 【Conclusion】 The accumulation of calciums in C. humilis fruits during the development and maturation was closely related to the organic acid metabolism. The malic acid is the predominant organic acid in C. humilis fruits. As the activity of NAD-MDH increases and the activity of NADP-ME decreases, the synthesis of malic acid would be enhanced while its degradation would be reduced, leading to an increase in malic acid accumulation. This increase in the malic acid contributed to the increase in the water-soluble calcium, which would inhibit the synthesis of the other calcium components. The increase of the citric acid content tended to promote the accumulation of the non-water-soluble calcium components such as pectin calcium, calcium phosphate, and oxalate calcium.
Key words: Cerasus humilis fruit; Calcium; Organic acids; Correlation analysis
歐李[Cerasus humilis (Bge.) Sok.]屬薔薇科櫻桃屬矮生櫻亞屬植物,又稱為“鈣果”,是中國特有的果樹資源[1]。歐李植株耐旱、耐寒、耐瘠薄,防風固土、防治水土流失能力強[2];果實色澤鮮艷,風味獨特,富含氨基酸、維生素、有機酸,以及鈣、鐵、鎂等礦質(zhì)元素[3-4],既可鮮食,也可深加工成果酒、果汁、果醬、蜜餞等產(chǎn)品[5];歐李果肉中鈣含量是其他水果中的2~10倍,且易被人體吸收[6];此外,歐李仁可入藥[7],葉可制茶[8]。歐李集果、葉、仁等綜合利用于一身,具有較高的營養(yǎng)價值和經(jīng)濟價值,可應(yīng)用于食品、營養(yǎng)保健等多個領(lǐng)域,開發(fā)前景廣闊[9-10]。
鈣是植物生長發(fā)育必需的礦質(zhì)元素,在調(diào)節(jié)植物體內(nèi)的代謝、參與信息傳遞、維持細胞壁強度、保護細胞膜結(jié)構(gòu)等方面有重要作用[11-12]。鈣既是果實重要營養(yǎng)品質(zhì)之一,又對品質(zhì)有重要影響。鈣在果實中的形態(tài)主要有水溶性鈣、果膠鈣、磷酸鈣和草酸鈣等[13];果膠鈣和水溶性鈣為活性鈣,尤其是水溶性鈣有利于鈣離子的轉(zhuǎn)移和吸收利用[14]。在果樹體內(nèi),鈣主要通過木質(zhì)部,以離子態(tài)、蘋果酸鈣和檸檬酸鈣的形式向上運輸,以有機酸鈣和果膠鈣等形態(tài)在果實中積累[15]。
有機酸存在于所有植物中,在細胞代謝中發(fā)揮著重要功能,有機酸組分和含量是決定果實風味和品質(zhì)的重要因子[16]。果實中含有多種有機酸,如蘋果酸、檸檬酸和琥珀酸等[17]。歐李果實有機酸含量豐富,可滴定酸含量在1.0%~2.0%之間[18]。有研究表明,歐李果實中的有機酸以蘋果酸和檸檬酸為主[19],通常以檸檬酸和蘋果酸含量之和表示果實的總有機酸含量。有機酸可以與鈣結(jié)合形成有機酸鈣,能夠增強鈣的活性,促進果實對于鈣素營養(yǎng)的吸收和利用,因此歐李果實中有機酸的含量與果實鈣積累及鈣的形態(tài)轉(zhuǎn)化有一定的關(guān)系。目前對歐李果實鈣素營養(yǎng)的研究主要集中在不同生長時期、不同形態(tài)鈣的含量和組成[20],以及不同貯藏條件下鈣的變化等方面[21],而對于歐李果實中鈣素積累調(diào)控方面研究較少。有機酸調(diào)控果實品質(zhì)已有過報道,但有關(guān)歐李果實發(fā)育成熟過程中鈣積累與有機酸代謝關(guān)系的研究還鮮見報道。因此筆者在本研究中以前期研究為基礎(chǔ),以不同鈣含量的歐李果實為材料,進一步研究歐李果實發(fā)育成熟過程中鈣素營養(yǎng)積累和有機酸代謝的變化,解析歐李果實中有機酸代謝與鈣素積累之間的關(guān)系,以期為歐李果實鈣素營養(yǎng)調(diào)控及進一步開發(fā)利用提供理論依據(jù)。
1 材料和方法
1.1 試驗材料
以種植于內(nèi)蒙古農(nóng)業(yè)大學(xué)歐李科研基地中果實鈣含量較高(MY-2)和鈣含量較低(MY-9)的兩種歐李優(yōu)系資源為試驗材料。
1.2 樣品采集
試驗在2022年6—9月進行,分別于果實幼果期(S1)、硬核期(S2)、著色膨大期(S3)、硬熟期(S4)和完熟期(S5),挑選無損傷、無病蟲害、大小均一以及成熟度一致的果實,用蒸餾水洗凈晾干后用液氮速凍,于-80 ℃冰箱中保存待測。
1.3 試驗指標測定
1.3.1 歐李果實中鈣含量的測定 不同形態(tài)鈣的提取參照Ohta等[22]的方法。分別稱取不同發(fā)育期歐李果實5.0 g,依次用超純水、氯化鈉、乙酸、鹽酸浸提劑逐級提取得到水溶性鈣、果膠鈣、磷酸鈣、草酸鈣;剩余殘渣用HNO3-HClO4(體積比為5∶1)混合酸消化得到殘渣鈣。用火焰原子吸收分光光度計測定不同形態(tài)鈣的含量,總鈣含量為不同形態(tài)鈣含量之和。測定時每個指標均設(shè)3次生物學(xué)重復(fù)。
1.3.2 歐李果實有機酸含量及相關(guān)代謝酶活性的測定 有機酸含量的測定參考冀曉昊等[23]的方法。稱取不同發(fā)育期歐李果實5.0 g,加入25 mL 80%乙醇研磨成勻漿,75 ℃水浴提取60 min后抽濾,在60 ℃下將濾液用旋轉(zhuǎn)蒸發(fā)儀蒸干,殘渣用3 mL重蒸水溶解,過0.45 μm濾膜。采用高效液相色譜分析果實中檸檬酸和蘋果酸含量,有機酸總量為檸檬酸和蘋果酸含量之和。
用北京索萊寶科技有限公司的試劑盒測定蘋果酸脫氫酶(NAD-MDH)和蘋果酸酶(NADP-ME)活性。具體方法按操作說明進行。以上指標測定時均3次生物學(xué)重復(fù)。
1.4 數(shù)據(jù)處理與分析
用Excel 2010和GraphPad Prism軟件進行數(shù)據(jù)分析和作圖,采用SPSS 26.0統(tǒng)計軟件進行相關(guān)性分析,使用https://www.chiplot.online/網(wǎng)站繪制相關(guān)性分析熱圖。
2 結(jié)果與分析
2.1 歐李果實發(fā)育過程中不同形態(tài)鈣含量的變化
在果實發(fā)育成熟過程中,不同鈣素水平歐李果實中總鈣、果膠鈣、磷酸鈣及草酸鈣含量的變化趨勢相似,整體均呈現(xiàn)先升高后降低的趨勢,于硬核期達到最高,之后隨著果實的成熟快速下降,至完熟期達到最低;兩種鈣素水平果實中以上4種鈣含量在幼果期和硬核期均表現(xiàn)為低鈣果實高于高鈣果實,膨大期至完熟期均表現(xiàn)為高鈣果實高于低鈣果實。不同鈣素水平果實中水溶性鈣含量均表現(xiàn)為先降低后逐漸升高,于硬核期達到最低,硬核期后快速積累,至完熟期達到最高;整個發(fā)育過程中低鈣果實的水溶性鈣含量高于高鈣果實。兩種鈣素水平果實中殘渣鈣含量均表現(xiàn)為持續(xù)降低,完熟期時含量僅為微量,且二者之間殘渣鈣含量基本無差異(圖1)。綜上所述,果實發(fā)育成熟過程中不同鈣素水平歐李果實中各鈣組分含量的變化相似,但含量有所差異;在鈣組分的變化方面,總鈣、果膠鈣、磷酸鈣、草酸鈣含量與水溶性鈣含量呈相反的趨勢。
2.2 歐李果實發(fā)育過程中活性鈣占比的變化
在果實發(fā)育成熟過程中,不同鈣素水平歐李果實中水溶性鈣占比均呈現(xiàn)先降低后升高的趨勢,完熟期時占比最高,高鈣果實中占比為36.04%,低鈣果實中占比達到46.11%;果膠鈣占比在不同鈣素水平歐李果實中的變化趨勢略微不同,從幼果期到硬熟期變化趨勢不明顯,從硬熟期開始,果膠鈣占比快速下降,到完熟期占比最低,高鈣果實中占比為34.25%,低鈣果實中占比為22.19%。完熟期高鈣和低鈣果實中活性鈣占比分別為70.29%和68.30%,均表現(xiàn)為水溶性鈣高于果膠鈣,其組成差異較大,高鈣果實中水溶性鈣比果膠鈣高5.19%,兩種活性鈣的含量基本一致,低鈣果實中水溶性鈣是果膠鈣的2.08倍(圖2)??梢?,隨著果實的發(fā)育成熟,不同鈣素水平果實中水溶性鈣和果膠鈣的變化趨勢雖相似,但兩種組分所占比例差異較大;在果實完熟期,高鈣果實中水溶性鈣和果膠鈣比例相當,低鈣果實中水溶性鈣占比高于果膠鈣。
2.3 歐李果實發(fā)育過程中有機酸含量的變化
在果實發(fā)育成熟過程中,不同鈣素水平歐李果實中有機酸總量和蘋果酸含量的變化趨勢相似,均呈現(xiàn)先升高后降低的趨勢,硬熟期含量最高且差異最大;兩種鈣素水平果實中有機酸總量和蘋果酸含量從幼果期到硬熟期均表現(xiàn)為低鈣果實高于高鈣果實,完熟期含量基本一致。不同鈣素水平果實中檸檬酸含量均呈現(xiàn)先升高后降低的趨勢,硬核期含量最高且差異最大,之后持續(xù)下降;從硬核期到完熟期,均表現(xiàn)為高鈣果實中檸檬酸含量高于低鈣果實(圖3)。綜上,歐李果實中蘋果酸為主要的有機酸,占比超過90%。在果實發(fā)育過程中不同鈣素水平果實中3種有機酸變化趨勢相似,含量差異較大;表現(xiàn)為低鈣果實的蘋果酸含量和有機酸總量高于高鈣果實,高鈣果實的檸檬酸含量高于低鈣果實。
2.4 歐李果實發(fā)育過程中有機酸相關(guān)代謝酶活性的變化
在果實發(fā)育成熟過程中,不同鈣素水平歐李果實中NADP-ME活性的變化趨勢基本一致,均呈現(xiàn)先升高后降低再升高的趨勢,從果實發(fā)育開始緩慢升高,均在硬核期達到最高值,之后快速下降,在硬熟期達到最低,完熟期又升高;NADP-ME活性在幼果期、硬核期和完熟期,高鈣果實高于低鈣果實,在著色膨大期和硬熟期,低鈣果實高于高鈣果實。不同鈣素水平歐李果實中NAD-MDH活性均呈先升高后降低的趨勢,從果實發(fā)育開始緩慢升高,幼果期活性最低,從硬核期到硬熟期快速升高,在硬熟期達到最高值,之后小幅下降,整體上呈明顯上升趨勢;幼果期到果實膨大期高鈣果實中NAD-MDH活性略高于低鈣果實,硬熟期和完熟期低鈣果實中NAD-MDH活性高于高鈣果實(圖4)。綜上,不同鈣素水平歐李果實中NADP-ME和NAD-MDH活性隨著果實的成熟變化趨勢一致,酶活性高低存在差異,NADP-ME活性的變化趨勢與NAD-MDH的變化趨勢相反。
2.5 歐李果實有機酸含量與其代謝酶活性的關(guān)系
兩種鈣素水平歐李果實中蘋果酸含量與有機酸總量均呈極顯著正相關(guān),相關(guān)系數(shù)達到1.000,與檸檬酸含量均呈極顯著負相關(guān);檸檬酸含量與有機酸總量均呈顯著或極顯著負相關(guān)。兩種鈣素水平歐李果實中蘋果酸、有機酸總量均與NADP-ME活性呈極顯著負相關(guān),與NAD-MDH活性呈極顯著正相關(guān);檸檬酸含量與NAD-MDH活性均呈極顯著負相關(guān),與NADH-ME活性均呈顯著或極顯著正相關(guān)。兩種鈣素水平果實中NADP-ME活性與NAD-MDH活性均呈極顯著負相關(guān)(表1)。以上相關(guān)性分析表明,果實中NAD-MDH正調(diào)控蘋果酸含量,負調(diào)控檸檬酸含量;NADH-ME的調(diào)控效應(yīng)與之正好相反,表現(xiàn)為負調(diào)控蘋果酸含量,正調(diào)控檸檬酸含量。
2.6 歐李果實鈣積累與有機酸代謝的關(guān)系
兩種鈣素水平歐李果實中蘋果酸含量、有機酸總量與水溶性鈣含量均呈極顯著正相關(guān),與總鈣含量及其他組分鈣含量均呈不同程度的負相關(guān),其中高鈣果實中與磷酸鈣和殘渣鈣含量的負相關(guān)性達到極顯著水平,低鈣果實中與總鈣、磷酸鈣和草酸鈣含量的負相關(guān)性達到顯著水平。兩種鈣素水平歐李果實中檸檬酸含量與水溶性鈣含量均呈極顯著負相關(guān),與總鈣及其他組分鈣含量均呈顯著或極顯著正相關(guān)。兩種鈣素水平歐李果實中NAD-MDH活性與水溶性鈣含量均呈極顯著正相關(guān),與總鈣和其他組分鈣含量均呈顯著或極顯著負相關(guān)。高鈣果實中NADP-ME活性與水溶性鈣含量呈顯著負相關(guān),而與總鈣及其他組分鈣含量的相關(guān)性不顯著;低鈣果實NADP-ME活性與水溶性鈣含量呈極顯著負相關(guān),而與總鈣及其他組分鈣含量均呈顯著或極顯著正相關(guān)(圖5)。以上相關(guān)性分析表明,歐李果實中蘋果酸會促進水溶性鈣的積累,對其他組分鈣有不同程度的抑制作用,進而影響到總鈣的積累;檸檬酸會抑制水溶性鈣的積累,但會促進果膠鈣及其他組分鈣的積累,進而提高總鈣的含量。
3 討 論
3.1 歐李果實發(fā)育成熟過程中不同形態(tài)鈣含量的變化
鈣是植物生長發(fā)育的必需營養(yǎng)元素,對果實的品質(zhì)具有重要作用,特別是在果實發(fā)育后期,鈣含量直接影響果實品質(zhì)以及采后的儲藏和運輸[24]。筆者在本試驗中研究了高鈣和低鈣兩種鈣素水平歐李果實不同發(fā)育期總鈣、水溶性鈣、果膠鈣、磷酸鈣、草酸鈣和殘渣鈣的含量。研究結(jié)果表明,不同鈣素水平果實的鈣素積累特性不同,但不同組分鈣的變化趨勢大致相同。歐李果實中總鈣、果膠鈣、磷酸鈣和草酸鈣含量均呈現(xiàn)先上升后下降的趨勢,硬核期含量達到最高值,殘渣鈣含量呈現(xiàn)出持續(xù)下降的趨勢,而水溶性鈣含量均呈現(xiàn)先下降后上升的趨勢,果實完熟期含量最高,這與前人的研究結(jié)果一致[25]。歐李果實鈣積累主要發(fā)生在果實細胞分裂期和細胞膨大期兩個階段。幼果期到果實硬核期以果膠鈣積累為主,不同鈣素水平歐李果實硬核期果膠鈣占總鈣的比例均超過40%,這是因為只有存在大量的鈣才能促使新生細胞快速增長、細胞間中膠層的發(fā)育,以及新生細胞壁的形成,因此在細胞分裂期果膠鈣的積累量較高,從幼果期到硬核期表現(xiàn)為快速積累;隨著果實的成熟,果實體積增大,蒸騰作用效率降低,細胞壁生長所需的果膠鈣有限,果實對鈣的吸收速度減慢,鈣的相對含量開始下降[21];果實成熟期以水溶鈣積累為主,水溶性鈣占比從硬核期開始快速增加,到果實完熟期兩個鈣素水平歐李果實中占比均超過35%,果實細胞的迅速膨大是液泡迅速增大導(dǎo)致的,而鈣主要以水溶性鈣的形式在液泡中積累[26],所以隨著果實的成熟,水溶性鈣的積累明顯高于其他形態(tài)鈣。
水溶性鈣和果膠鈣為活性鈣,活性鈣組分對歐李鈣吸收和積累的貢獻最大[27]。在本試驗中,兩種鈣素水平歐李果實完熟期活性鈣在總鈣中占比最大,分別為70.29%和68.30%,結(jié)果與之相吻合。不同鈣素水平歐李果實完熟期活性鈣組分的差異較大,高鈣果實中兩種活性鈣組分的含量基本一致,水溶性鈣只比果膠鈣高5.19%;低鈣果實中水溶性鈣含量是果膠鈣含量的2.08倍。可能是因為高鈣果實在發(fā)育過程中對鈣的吸收與積累能力更強,聚集在細胞壁上的鈣更多與細胞壁上的果膠結(jié)合,從而積累了更多的果膠鈣,增強了細胞壁和細胞膜的穩(wěn)定性,用來維持果實的發(fā)育成熟。
3.2 歐李果實發(fā)育過程中有機酸代謝的變化
有機酸作為果實風味物質(zhì),能影響果實品質(zhì)和商品價值[28]。在本試驗中,隨著果實的發(fā)育成熟,不同鈣素水平歐李果實中有機酸含量均呈現(xiàn)先升高后降低的趨勢。蘋果酸和總有機酸含量的變化趨勢基本一致,均在硬核期后迅速積累,到硬熟期達到最大值,完熟期則表現(xiàn)為下降;檸檬酸含量在幼果期迅速積累,硬核期達到最大值,之后逐漸下降。成熟期果實中有機酸含量逐漸下降,在很多果樹上有同樣的結(jié)果。田麗[29]的研究表明,在歐李果實發(fā)育前期,歐李有機酸含量逐漸增加,果實膨大期后迅速增多并達到最大值,成熟時有機酸含量有所減少;施澤彬等[30]在對翠冠梨和玉冠梨的研究中發(fā)現(xiàn),在果實成熟過程中,不同品種果實有機酸含量的變化趨勢不同,但在即將進入成熟期時,果實有機酸含量均表現(xiàn)為下降趨勢;楊光凱等[31]對紅寶石蘋果和富士蘋果的研究表明,果實中蘋果酸含量的大量積累主要在果實發(fā)育前期,隨著果實成熟,蘋果酸含量逐漸降低。可能是因為部分有機酸與K+、Mg2+、Ca2+等結(jié)合生成鹽,使得有機酸含量變少,有研究發(fā)現(xiàn)植物的液泡中含有大量的有機酸鈣,如蘋果酸鈣、草酸鈣和檸檬酸鈣等[32];也可能是因為果實發(fā)育成熟時體積變大,水分增加,有機酸被稀釋,濃度降低。
有機酸代謝是一個非常復(fù)雜的過程,由多個基因及其相關(guān)酶協(xié)同調(diào)控[33],還受環(huán)境因素及栽培品種的影響[34]。有研究表明果實生長發(fā)育過程中有機酸含量變化由NAD-MDH、NADP-ME、PEPC、CS等多種代謝酶共同調(diào)控[35-36]。本試驗結(jié)果表明,隨著果實的發(fā)育成熟,不同鈣素水平歐李果實中NAD-MDH活性呈現(xiàn)先升高后降低的趨勢,NADP-ME活性呈現(xiàn)升高-下降-升高的趨勢,這與前人在油桃[37]、砂梨[38]果實中觀察到的有機酸代謝酶活性變化相似。NAD-MDH活性與蘋果酸含量呈極顯著正相關(guān),而與檸檬酸含量呈負相關(guān);NADP-ME活性與蘋果酸含量呈極顯著負相關(guān),而與檸檬酸含量呈正相關(guān),這與菠蘿[39]、梨[40]中的研究結(jié)論相同。前人在對歐李有機酸代謝的研究結(jié)果表明,NAD-MDH是促進歐李蘋果酸積累的關(guān)鍵酶,而NADP-ME是促進歐李蘋果酸降解的關(guān)鍵酶[18],本試驗結(jié)論與之相一致。
3.3 歐李果實鈣積累與有機酸代謝的關(guān)系
果實中鈣的積累和吸收受到生理代謝調(diào)控和遺傳因素的影響,鈣作為滲透調(diào)節(jié)物質(zhì)會在液泡中大量積累,有機酸會和液泡中的鈣離子結(jié)合形成有機酸鈣,如蘋果酸鈣、草酸鈣、檸檬酸鈣等[32]。在本試驗中,兩種鈣素水平歐李果實中蘋果酸含量、有機酸總量和NAD-MDH活性與水溶性鈣含量均呈極顯著正相關(guān),而與其他各組分鈣及總鈣含量均呈不同程度負相關(guān);NAD-MDH活性升高,有利于蘋果酸的積累,進而會增加有機酸總量,從而有利于水溶性鈣的積累,但會抑制其他組分鈣的形成,進而降低了果實中總鈣含量。兩種鈣素水平歐李果實中檸檬酸含量與水溶性鈣含量呈極顯著負相關(guān),與果膠鈣及其他組分鈣含量呈極顯著正相關(guān);檸檬酸含量增加時,水溶性鈣含量降低,果膠鈣及其他各組分鈣含量增加,總鈣含量升高。以上結(jié)果顯示,在果實發(fā)育成熟過程中鈣素積累與有機酸代謝有關(guān),蘋果酸合成增強有利于水溶性鈣的積累,而檸檬酸有利于果膠鈣的積累,有機酸含量及組成不同會影響歐李果實中的不同形態(tài)鈣的組成及鈣素積累。
4 結(jié) 論
綜上所述,歐李果實中有機酸代謝與果實鈣素積累密切相關(guān)。NAD-MDH正調(diào)控蘋果酸含量,負調(diào)控檸檬酸含量;NADP-ME負調(diào)控蘋果酸含量,正調(diào)控檸檬酸含量。果實中蘋果酸含量與水溶性鈣含量呈極顯著正相關(guān),與其他各組分鈣含量呈不同程度負相關(guān);果實中檸檬酸含量與水溶性鈣含量呈極顯著負相關(guān),與其他各組分鈣及總鈣含量呈顯著正相關(guān)。在果實發(fā)育成熟過程中,隨著NAD-MDH活性的上升,NADP-ME活性下降,蘋果酸合成增強而降解減弱,引起蘋果酸積累增多,檸檬酸含量減少,進而會促進水溶性鈣的積累,而抑制其他組分鈣的合成,總鈣含量為降低,初步揭示了有機酸含量及組成的不同會影響歐李果實鈣的積累及不同組分鈣的轉(zhuǎn)化,其具體調(diào)控機制有待進一步研究。
參考文獻 References:
[1] 師建華,曹軍合,徐立軍. 歐李果實營養(yǎng)成分分析與評價[J]. 河北林業(yè)科技,2021(2):23-26.
SHI Jianhua,CAO Junhe,XU Lijun. Evaluation and analysis of yield and nutritional content in Cerasus humilis[J]. The Journal of Hebei Forestry Science and Technology,2021(2):23-26.
[2] 曹慧琴,劉姝韻,王桂瑛,廖國周,白杰. 歐李營養(yǎng)與開發(fā)利用[J]. 農(nóng)產(chǎn)品加工,2015(24):70-72.
CAO Huiqin,LIU Shuyun,WANG Guiying,LIAO Guozhou,BAI Jie. Nutritional composition and development of Prunus humilis Bunge[J]. Farm Products Processing,2015(24):70-72.
[3] 李衛(wèi)東,顧金瑞. 果藥兼用型歐李的保健功能與藥理作用研究進展[J]. 中國現(xiàn)代中藥,2017,19(9):1336-1340.
LI Weidong,GU Jinrui. Research progress on healthy function and pharmacological effect in Cerasus humilis of fruit medicine dual-purpose type[J]. Modern Chinese Medicine,2017,19(9):1336-1340.
[4] LI W D,LI O,ZHANG A R,LI L,HAO J H,JIN J S,YIN S J. Genotypic diversity of phenolic compounds and antioxidant capacity of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] in China[J]. Scientia Horticulturae,2014,175:208-213.
[5] 張可欣,張士凱,王敏,丁政宇,張啟月,吳澎. 歐李深加工產(chǎn)品開發(fā)研究進展[J]. 食品工業(yè)科技,2021,42(22):442-448.
ZHANG Kexin,ZHANG Shikai,WANG Min,DING Zhengyu,ZHANG Qiyue,WU Peng. Study and outlook of deep processing products of Prunus humilis[J]. Science and Technology of Food Industry,2021,42(22):442-448.
[6] 張美莉,鄧秋才,楊海霞,張子儀. 內(nèi)蒙古歐李果肉和果仁中營養(yǎng)成分分析[J]. 氨基酸和生物資源,2007,29(4):18-20.
ZHANG Meili,DENG Qiucai,YANG Haixia,ZHANG Ziyi. Study on nutrition components from fresh fruit and pip of Inner Mongolia Cerasus humilis (Bge.) Sok.[J]. Amino Acids & Biotic Resources,2007,29(4):18-20.
[7] 劉星劼. 不同種質(zhì)歐李種仁質(zhì)量比較研究[D]. 濟南:山東中醫(yī)藥大學(xué),2018.
LIU Xingjie. Comparative study on the quality of Prunus humilis kernel from different germplasm[D]. Jinan:Shandong University of Traditional Chinese Medicine,2018.
[8] 江冠宇,田曉菊,張惠玲. 不同干燥方法對歐李葉袋泡茶的影響[J]. 食品工業(yè),2022,43(6):116-121.
JIANG Guanyu,TIAN Xiaoju,ZHANG Huiling. Effects of different drying methods on bag tea made from Cerasus humilis leaves[J]. The Food Industry,2022,43(6):116-121.
[9] 張士凱,郗良卿,張啟月,石敬一,吳澎. 歐李開發(fā)及利用的研究進展[J]. 食品工業(yè)科技,2020,41(4):361-367.
ZHANG Shikai,XI Liangqing,ZHANG Qiyue,SHI Jingyi,WU Peng. Research progress on the development and utilization of Cerasus humilis (Bge.) Sok.[J]. Science and Technology of Food Industry,2020,41(4):361-367.
[10] 胡小柯,李亞,嚴子柱,姚澤,李銀科,姜生秀. 中華鈣果研究現(xiàn)狀概述[J]. 中國農(nóng)學(xué)通報,2021,37(4):56-61.
HU Xiaoke,LI Ya,YAN Zizhu,YAO Ze,LI Yinke,JIANG Shengxiu. Research status of Cerasus humilis[J]. Chinese Agricultural Science Bulletin,2021,37(4):56-61.
[11] WHITE P J,BROADLEY M R. Calcium in plants[J]. Annals of Botany,2003,92(4):487-511.
[12] 曾后清,張亞仙,汪尚,張夏俊,王慧中,杜立群. 植物鈣/鈣調(diào)素介導(dǎo)的信號轉(zhuǎn)導(dǎo)系統(tǒng)[J]. 植物學(xué)報,2016,51(5):705-723.
ZENG Houqing,ZHANG Yaxian,WANG Shang,ZHANG Xiajun,WANG Huizhong,DU Liqun. Calcium/calmodulin-mediated signal transduction system in plants[J]. Chinese Bulletin of Botany,2016,51(5):705-723.
[13] 馬建軍,張立彬,劉玉艷,許雪峰,于鳳鳴. 野生歐李生長期組織器官中不同形態(tài)鈣含量的變化及其相關(guān)性[J]. 園藝學(xué)報,2008,35(5):631-636.
MA Jianjun,ZHANG Libin,LIU Yuyan,XU Xuefeng,YU Fengming. Variation of different forms of calcium contents and their correlation during the growth stage of Prunus humilis tissues[J]. Acta Horticulturae Sinica,2008,35(5):631-636.
[14] 馬建軍,于鳳鳴,張立彬,杜彬,任艷軍,肖嘯. 野生歐李生長期各組織器官中不同形態(tài)鈣的分配率變化[J]. 林業(yè)科學(xué),2011,47(7):97-101.
MA Jianjun,YU Fengming,ZHANG Libin,DU Bin,REN Yanjun,XIAO Xiao. Variation in different forms of calcium distribution rate in different tissues and organs of wild Cerasus humilis during growth stage[J]. Scientia Silvae Sinicae,2011,47(7):97-101.
[15] 宋雯佩. 果實攝取鈣的規(guī)律、途徑及調(diào)控機理的研究[D]. 廣州:華南農(nóng)業(yè)大學(xué),2018.
SONG Wenpei. The study of fruit calcium uptake pattern,pathways and regulatory mechanisms[D]. Guangzhou:South China Agricultural University,2018.
[16] 劉雅蘭,靳志飛,陳紅. 果梅果實發(fā)育過程中有機酸含量及相關(guān)代謝酶活性的變化特征[J]. 西北植物學(xué)報,2017,37(1):130-137.
LIU Yalan,JIN Zhifei,CHEN Hong. Changes of the organic acid concentrations and the relative metabolic enzyme activities during the development of Prunus mume fruit[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37(1):130-137.
[17] IKEGAYA A,TOYOIZUMI T,OHBA S,NAKAJIMA T,KAWATA T,ITO S,ARAI E. Effects of distribution of sugars and organic acids on the taste of strawberries[J]. Food Science & Nutrition,2019,7(7):2419-2426.
[18] 王鵬飛,曹琴,何永波,杜俊杰. 歐李果實發(fā)育期糖和酸組分及其含量的動態(tài)變化特性[J]. 西北植物學(xué)報,2011,31(7):1411-1416.
WANG Pengfei,CAO Qin,HE Yongbo,DU Junjie. Composition and dynamic changes of sugars and acids in Chinese dwarf cherry (Cerasus humilis Bunge) during fruit development[J]. Acta Botanica Boreali-Occidentalia Sinica,2011,31(7):1411-1416.
[19] 葉麗琴,孫萌,張忠爽,劉海嬌,顧金瑞,李衛(wèi)東. 不同發(fā)育階段歐李果實糖酸變化規(guī)律研究及相關(guān)性分析[J]. 食品工業(yè)科技,2017,38(5):98-102.
YE Liqin,SUN Meng,ZHANG Zhongshuang,LIU Haijiao,GU Jinrui,LI Weidong. Analysis on the changes and correlations of sugar and organic acid contents in Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] during different development stages[J]. Science and Technology of Food Industry,2017,38(5):98-102.
[20] 張薇,邵郅勝,郭金麗. 不同資源類型歐李果實鈣素營養(yǎng)特征研究[J]. 北方園藝,2023(13):21-27.
ZHANG Wei,SHAO Zhisheng,GUO Jinli. Study on the nutritional characteristics of calcium in Cerasus humilis of different resource types[J]. Northern Horticulture,2023(13):21-27.
[21] 朱成. 不同貯藏措施對歐李果實采后品質(zhì)的影響[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2021.
ZHU Cheng. Effects of different storage measures on postharvest quality of Cerasus humilis[D]. Hohhot:Inner Mongolia Agricultural University,2021.
[22] OHTA Y,YAMAMOTO K,DEGUCHI M. Chemical fractionation of calcium in the fresh rice leaf blade and influences of deficiency or oversupply of calcium and age of leaf on the content of each calcium fraction:Chemical fractionation of calcium in some plant species (Part 1)[J]. Japanese Journal of Soil Science and Plant Nutrition,1970,41(1):19-26.
[23] 冀曉昊,張芮,毛志泉,匡林光,鹿明芳,王燕,張艷敏,陳學(xué)森. 野生櫻桃李實生后代果實性狀變異分析及優(yōu)異種質(zhì)挖掘[J]. 園藝學(xué)報,2012,39(8):1551-1558.
JI Xiaohao,ZHANG Rui,MAO Zhiquan,KUANG Linguang,LU Mingfang,WANG Yan,ZHANG Yanmin,CHEN Xuesen. The analysis of characteristic variations of the seedlings of Xinjiang wild myrobalan plum and excavation of the excellent germplasm resources[J]. Acta Horticulturae Sinica,2012,39(8):1551-1558.
[24] HEPLER P K. Calcium:A central regulator of plant growth and development[J]. The Plant Cell,2005,17(8):2142-2155.
[25] 馬建軍,于鳳鳴,張立彬,杜彬,任艷軍,肖嘯. 歐李果實發(fā)育中果肉鈣和果膠含量變化的關(guān)系[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報,2011,34(6):36-39.
MA Jianjun,YU Fengming,ZHANG Libin,DU Bin,REN Yanjun,XIAO Xiao. Relationship between calcium and pectin content in Cerasus humilis flesh during fruit development[J]. Journal of Hebei Agricultural University,2011,34(6):36-39.
[26] PERRING M A. The mineral composition of apples. Ⅺ. An extraction technique suitable for the rapid determination of calcium,but not potassium and magnesium,in the fruit[J]. Journal of the Science of Food and Agriculture,1974,25(3):237-245.
[27] 馬建軍,張立彬,于鳳鳴,許雪峰. 野生歐李果實中不同形態(tài)鈣的含量及分布[J]. 園藝學(xué)報,2007,34(3):755-759.
MA Jianjun,ZHANG Libin,YU Fengming,XU Xuefeng. Contents and distribution of different forms of calcium in Prunus humilis[J]. Acta Horticulturae Sinica,2007,34(3):755-759.
[28] GUO L Q,SHI D C,WANG D L. The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere[J]. Journal of Agronomy and Crop Science,2010,196(2):123-135.
[29] 田麗. 歐李、郁李有機酸代謝及相關(guān)基因表達的研究[D]. 太谷:山西農(nóng)業(yè)大學(xué),2016.
TIAN Li. Study on metabolism of organic acid and expression analysis of related genes in Cerasus humilis (Bge.) Sok and Cerasus japonica (Thumb.)[D]. Taigu:Shanxi Agricultural University,2016.
[30] 施澤彬,戴美松,孫田林,張紹鈴. 翠冠與玉冠梨果實發(fā)育過程中色素、糖、酸累積特性研究[J]. 果樹學(xué)報,2007,24(6):833-836.
SHI Zebin,DAI Meisong,SUN Tianlin,ZHANG Shaoling. Comparative studies on the accumulation process of the pigments,sugar and acid in fruit of Cuiguan and Yuguan pear cultivars[J]. Journal of Fruit Science,2007,24(6):833-836.
[31] 楊光凱,薛詩怡,李嘉禎,李匯斌,高燕,張小軍,郝燕燕. 紅寶石蘋果果實有機酸組分及蘋果酸代謝酶活性分析[J]. 果樹學(xué)報,2023,40(5):884-892.
YANG Guangkai,XUE Shiyi,LI Jiazhen,LI Huibin,GAO Yan,ZHANG Xiaojun,HAO Yanyan. Analysis of organic acid components and malic acid metabolizing enzyme activity in Hongbaoshi apple fruits[J]. Journal of Fruit Science,2023,40(5):884-892.
[32] HIRSCHI K D. The calcium conundrum. Both versatile nutrient and specific signal[J]. Plant Physiology,2004,136(1):2438-2442.
[33] 王建輝,楊鑫,龔曉源,余潔霖,韓冬梅,李凜,李翔,劉達玉,李京晶,唐江. 兩個柑橘品種果實有機酸相關(guān)基因的差異表達分析[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報,2023,31(4):718-729.
WANG Jianhui,YANG Xin,GONG Xiaoyuan,YU Jielin,HAN Dongmei,LI Lin,LI Xiang,LIU Dayu,LI Jingjing,TANG Jiang. Analysis of differential expression genes related to organic acid in fruits of two Citrus cultivars[J]. Journal of Agricultural Biotechnology,2023,31(4):718-729.
[34] G?ND?Z K,OZDEMIR E. The effects of genotype and growing conditions on antioxidant capacity,phenolic compounds,organic acid and individual sugars of strawberry[J]. Food Chemistry,2014,155:298-303.
[35] 王小紅,陳紅,董曉慶. ‘蜂糖李果實發(fā)育過程中有機酸含量變化及其與蘋果酸代謝相關(guān)酶的關(guān)系[J]. 果樹學(xué)報,2018,35(3):293-300.
WANG Xiaohong,CHEN Hong,DONG Xiaoqing. Changes in organic acids content during ‘Fengtang plum (Prunus salicina) fruit development in relation to malic acid metabolism related enzymes[J]. Journal of Fruit Science,2018,35(3):293-300.
[36] 徐愛紅,徐臣善,劉麗霞,劉麗云. 授粉品種對‘紅富士蘋果果實有機酸積累和代謝關(guān)鍵酶活性的影響[J]. 植物生理學(xué)報,2020,56(9):1955-1962.
XU Aihong,XU Chenshan,LIU Lixia,LIU Liyun. Effects of pollination varieties on characteristics of organic acid accumulation and activities of organic acid-metabolizing enzymes in ‘Red Fuji apple fruit[J]. Plant Physiology Journal,2020,56(9):1955-1962.
[37] 趙永紅,李憲利,姜澤盛,王長健,楊富林. 設(shè)施油桃果實發(fā)育過程中有機酸代謝的研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2007,15(5):87-89.
ZHAO Yonghong,LI Xianli,JIANG Zesheng,WANG Changjian,YANG Fulin. Organic acid metabolism in nectarine fruit development under protected cultivation[J]. Chinese Journal of Eco-Agriculture,2007,15(5):87-89.
[38] 霍月青,胡紅菊,彭抒昂,陳啟亮. 砂梨品種資源有機酸含量及發(fā)育期變化[J]. 中國農(nóng)業(yè)科學(xué),2009,42(1):216-223.
HUO Yueqing,HU Hongju,PENG Shuang,CHEN Qiliang. Contents and changes of organic acid in sand pears from different germplasm resources[J]. Scientia Agricultura Sinica,2009,42(1):216-223.
[39] 張秀梅,杜麗清,孫光明,弓德強,陳佳瑛,李偉才,謝江輝. 菠蘿果實發(fā)育過程中有機酸含量及相關(guān)代謝酶活性的變化[J]. 果樹學(xué)報,2007,24(3):381-384.
ZHANG Xiumei,DU Liqing,SUN Guangming,GONG Deqiang,CHEN Jiaying,LI Weicai,XIE Jianghui. Changes in organic acid concentrations and the relative enzyme activities during the development of Cayenne pineapple fruit[J]. Journal of Fruit Science,2007,24(3):381-384.
[40] 李甲明,楊志軍,張紹鈴,黃小三,曹玉芬,吳俊. 不同梨品種果實有機酸含量變化與相關(guān)酶活性的研究[J]. 西北植物學(xué)報,2013,33(10):2024-2030.
LI Jiaming,YANG Zhijun,ZHANG Shaoling,HUANG Xiaosan,CAO Yufen,WU Jun. Change of organic acid contents and related enzyme activities in different pear cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(10):2024-2030.