管書萍 王婷婷 周陽廣 朱虹嫻 伍小萌 龍春瑞 高俊燕 郭文武 解凱東
摘? ? 要:【目的】研究柑橘三倍體有性后代果實(shí)品質(zhì)性狀的遺傳特點(diǎn),為倍性雜交創(chuàng)制無核三倍體新種質(zhì)科學(xué)選配親本提供理論依據(jù)?!痉椒ā恳愿涕俣扼w品種秋輝橘、清見橘橙為母本,異源四倍體體細(xì)胞雜種橘柚 + 甜橙(NS)、甜橙 + 紅橘(SD)為父本倍性雜交獲得的2個(gè)三倍體有性后代群體成熟果實(shí)為材料,通過測定其果實(shí)橫縱徑、單果質(zhì)量、果皮厚度、可溶性固形物和可滴定酸含量等性狀,探究柑橘三倍體有性后代果實(shí)品質(zhì)性狀的遺傳特點(diǎn)?!窘Y(jié)果】三倍體后代單果質(zhì)量和果實(shí)橫徑平均值均介于雙親之間,呈趨中變異;果實(shí)縱徑變化趨勢在2個(gè)組合間有差異,秋輝橘× NS組合后代呈趨大變異,而清見橘橙 × SD組合則呈趨中變異;果皮厚度平均值均大于親中值且多數(shù)高于高值親本,存在一定程度的超高親本遺傳現(xiàn)象;2個(gè)組合三倍體有性后代果實(shí)可溶性固形物含量平均低低親比率分別為74.4%、66.88%,呈趨小變異;而2個(gè)三倍體有性后代群體果實(shí)可滴定酸含量平均值均低于親中值,且不同年份間酸含量介于親本間和低于低值親本的后代比例較高?!窘Y(jié)論】推測柑橘三倍體有性后代果實(shí)單果質(zhì)量、果實(shí)橫徑、縱徑、果形指數(shù)、果皮厚度和可溶性固形物含量性狀是由多基因控制的數(shù)量性狀,可滴定酸含量性狀可能存在主效控制基因。
關(guān)鍵詞:柑橘;三倍體;倍性育種;果實(shí)性狀;遺傳傾向
中圖分類號:S666 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)03-0369-10
Inheritance of some quality traits of the fruits in triploid hybrids derived from two citrus 2x × 4x interploidy crosses
GUAN Shuping1, WANG Tingting1, ZHOU Yangguang1, ZHU Hongxian1, WU Xiaomeng1, LONG Chunrui2, GAO Junyan2, GUO Wenwu1, XIE Kaidong1*
(1College of Horticulture & Forestry Sciences, Huazhong Agricultural University/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, Hubei, China; 2Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, Yunnan, China)
Abstract: 【Objective】 The study aimed to investigate the inheritance of some fruit quality traits and to provide a basis for selecting parents in the interploidy cross breeding of citrus. 【Methods】 Two previously produced triploid hybrid populations derived from the cross of Fallglo mandarin × NS (Nova tangor + Succari sweet orange) and another cross of Kiyomi tangor × SD (Succari sweet orange + Dancy red tangerine) were used as materials. Fully matured fruits were collected in two successive years (2018 and 2019) for fruit quality analysis. For each triploid plant, twelve fruits were collected and pooled for three technical replicates. The transverse diameter, longitudinal diameter and peel thickness were measured using a digital vernier caliper. The fruit weight was determined by a precise 1/100 electronic balance. Furthermore, the soluble solids content and titratable acid content of the fruit pulp were determined using an ATAGO handheld digital refractometer. The genetic variation of the fruit traits was assessed by the coefficient of variation (CV), transmitting ability (Ta) and transgression rate. The normal distribution map was employed to depict the genetic tendencies of the triploid progenies. All data were processed using Microsoft excel. 【Results】 The distribution of fruit transverse and longitudinal diameter, fruit weight, peel thickness, and soluble solids content frequency in two citrus sexual offspring populations showed a continuous normal distribution, while the distribution of the titratable acid content showed a partial normal distribution. The fruit transverse diameter and fruit quality of the two triploid sexual offsprings were mostly distributed between those of the parents, indicating a trend of intermediate variation. The fruit longitudinal diameter exhibited diverse patterns in different combinations. For instance, 60.47% and 42.00% of the fruit longitudinal diameters of individuals from the Fallglo mandarin×NS cross was significantly higher than that of the higher value of the parents in 2018 and, respectively, indicating a genetic trend of transgressive variation. In contrast, 94.12% and 97.0% of the fruit longitudinal diameter of the individuals from the Kiyomi tangor × SD combination in 2018 and 2019 fell between the values of the two parents, respectively, showing an intermediate variation trend. The average peel thickness of the fruits was greater than the median value of the parents and most of them were higher than the high-value parents, showing a phenomenon of transgressive inheritance. The ratios of the average value of the soluble solids content of the fruits from the two triploid crosses lower than that of the lower value of the parent were 74.4% and 66.88%, respectively. The average value of the titratable acid content in the fruits of the both two triploid progeny populations was lower than that of the median value of the parents, which was different from the results reported previously, implying that the occurrence rate of the low-acid offspring might be related to the acid content of the female parents. The coefficient of variation for the fruit weight and titratable acid content in the fruit traits exceeded 30%, indicating extensive separation of these traits in the triploid sexual offsprings. In contrast, the coefficient of variation for the fruit transverse and longitudinal diameter, peel thickness, and soluble solids content remained below 30%, implying a limited separation in these traits in the triploid sexual offsprings. The genetic transmission ability of the fruit transverse and longitudinal diameter, peel thickness, soluble solids and titratable acids of the triploid sexual offspring exceeded 70%, suggesting that genetic factors were the primary drivers of variation in these traits. The genetic transmission ability of the fruit weight varied significantly with the different combinations. For instance, the genetic transmitting ability of the fruit weight in the Fallglo mandarin × NS cross for two consecutive years were both high (99.79% and 91.84%). However, the genetic transmitting ability in the Kiyomi tangor × SD combination was relatively low (55.93% and 63.30%), indicating that the inheritance of the fruit weight is greatly influenced by the parents. 【Conclusion】 The fruit weight, fruit transverse diameter, longitudinal diameter, peel thickness and soluble solids content of the sexual offspring in citrus triploids were polygenic quantitative traits, whereas the titratable acid content might be primarily influenced by a major gene, potentially of paternal origin. Notably, the significant genetic variation was observed in single fruit quality and titratable acid content, facilitating the trait segregation, while the variation was comparatively low in the other traits. The order of the genetic heritability values for several traits was as follows: fruit peel thickness>fruit longitudinal diameter>fruit transverse diameter>titratable acid content>soluble solids content>fruit weight. The enhanced genetic transmission ability were correlated with the prominent heterosis, providing a foundational framework for the parent selection in ploidy hybridization aiming to generate elite triploid progeny in the future.
Key words: Citrus; Triploid hybrid; Interploidy breeding; Fruit character; Genetic tendency
柑橘(Citrus L.)是世界第一大水果,也是我國南方最重要的果樹[1],是柑橘產(chǎn)區(qū)鄉(xiāng)村振興和農(nóng)民脫貧致富的支柱產(chǎn)業(yè)。我國柑橘主要用于鮮食,培育果實(shí)品質(zhì)佳的新品種是柑橘核心育種目標(biāo)[2-3]。柑橘果實(shí)品質(zhì)主要由外觀品質(zhì)和內(nèi)在品質(zhì)共同決定,包括果實(shí)大?。M、縱徑)、質(zhì)量、果皮顏色、果皮厚度、可溶性固形物和有機(jī)酸含量等[4-5]。關(guān)于果實(shí)品質(zhì)性狀遺傳規(guī)律的研究在梨、葡萄、李、杏和枇杷等多種果樹中已有報(bào)道[6-17],認(rèn)為果實(shí)外觀品質(zhì)性狀和可溶性固形物含量在大多數(shù)果樹中為多基因控制的數(shù)量性狀,雜交后代呈正態(tài)分布;但可滴定酸含量一般呈偏正態(tài)分布,可能為主效基因和微效基因共同控制的復(fù)雜性狀。上述研究多以二倍體為研究對象,關(guān)于果樹多倍體果實(shí)品質(zhì)性狀遺傳特點(diǎn)的報(bào)道較少。
柑橘三倍體一般果實(shí)無核,且由于倍性增加,果實(shí)有益代謝物含量可能增加。因此,培育三倍體是獲得無核且品質(zhì)優(yōu)良柑橘新品種的重要途徑[18]。但柑橘多數(shù)品種存在多胚性,常規(guī)雜交難以獲得有性后代。利用單胚性品種為母本與四倍體倍性雜交[19-21],雖然在一定程度上可克服珠心胚干擾,但三倍體胚在發(fā)育早期易敗育,往往需借助幼胚離體挽救培養(yǎng)才能再生三倍體,耗時(shí)長且難以獲得較大的三倍體群體,導(dǎo)致對柑橘三倍體有性后代果實(shí)相關(guān)性狀的遺傳規(guī)律知之甚少。針對我國柑橘地方良種多數(shù)有核的問題,華中農(nóng)業(yè)大學(xué)以二倍體為母本與四倍體倍性雜交,創(chuàng)制了3500余株柑橘三倍體新種質(zhì),部分已經(jīng)連續(xù)開花結(jié)果多年,為研究柑橘三倍體果實(shí)性狀遺傳特點(diǎn)奠定了寶貴的材料基礎(chǔ)。筆者在本研究中以前期秋輝橘、清見橘橙為母本倍性雜交創(chuàng)制的2個(gè)三倍體有性后代群體為材料,對其果實(shí)大小、果實(shí)質(zhì)量、果皮厚度、果實(shí)可溶性固形物和可滴定酸含量等品質(zhì)性狀進(jìn)行測定,探討三倍體有性后代果實(shí)品質(zhì)性狀的遺傳特點(diǎn),為未來三倍體育種親本選配和無核新品種培育奠定理論基礎(chǔ)。
1 材料和方法
1.1 試驗(yàn)材料
課題組前期以秋輝橘{[Citrus reticulata Blanco × (C. paradis Macf. × C. reticulata Blanco)]× (C. reticulata Blanco × C. sinensis Osbeck)}和清見橘橙(C. unshiu Marcow. × C. sinesis Osbeck)為母本,異源四倍體體細(xì)胞雜種Nova橘柚 + Succari甜橙(C. reticulata Blanco × C. paradis Macf + C. sinensis Osbeck,簡稱NS)、Succari甜橙 + Dancy紅橘(C. sinensis Osbeck + C. reticulata Blanco,簡稱SD)為父本,進(jìn)行倍性雜交培育的2個(gè)三倍體有性群體為材料[19],探究三倍體后代果實(shí)品質(zhì)性狀的遺傳特點(diǎn)。秋輝橘 × NS組合共155株三倍體后代,2018和2019年分別有43株和50株后代開花結(jié)果;秋輝橘 × NS組合共135株三倍體后代,2018和2019年分別有34株和43株開花結(jié)果。上述材料定植于云南省農(nóng)業(yè)科學(xué)院熱帶亞熱帶經(jīng)濟(jì)作物研究所,株行距3.0 m×4.0 m。果實(shí)成熟期,每個(gè)樣品隨機(jī)采摘樹冠外圍不同方向、果實(shí)大小有代表性且無病蟲害的果實(shí)12個(gè),對果實(shí)橫縱徑、果實(shí)質(zhì)量、果皮厚度、果實(shí)可溶性固形物和可滴定酸含量進(jìn)行測定。
1.2 試驗(yàn)方法
1.2.1 果實(shí)橫縱徑、單果質(zhì)量和果皮厚度測定 果實(shí)橫縱徑、果皮厚度采用游標(biāo)卡尺進(jìn)行測量。果實(shí)赤道面最寬的直徑為果實(shí)橫徑,果頂?shù)焦俚木嚯x為果實(shí)縱徑;果實(shí)赤道面的果皮厚度為果皮厚度,每個(gè)果實(shí)取不同部位測量3次取平均值;果實(shí)單果質(zhì)量采用百分之一電子天平測定。
1.2.2 可溶性固形物和可滴定酸含量測定 果實(shí)可溶性固形物和可滴定酸含量采用糖酸一體機(jī)(Atago,日本)進(jìn)行測定。4個(gè)果實(shí)為一組,將其果汁擠入同一個(gè)杯子為1個(gè)生物學(xué)重復(fù),設(shè)置3次生物學(xué)重復(fù)。糖酸一體機(jī)校準(zhǔn)后,每個(gè)生物學(xué)重復(fù)吸取100 ?L混勻的果汁滴于糖酸一體機(jī)傳感器上,測定其可溶性固形物含量;隨后吸取4.9 mL去離子水加至傳感器上,將果汁稀釋50倍后再測定可滴定酸含量,每個(gè)生物學(xué)重復(fù)測定3次。
1.2.3 數(shù)據(jù)統(tǒng)計(jì) 用Excel 2020對數(shù)據(jù)進(jìn)行整理和分析。參考崔艷波等[6]的方法對三倍體有性后代群體果實(shí)橫縱徑、單果質(zhì)量、果皮厚度、可溶性固形物和可滴定酸含量的親中值、雜交群體的平均值、變異系數(shù)、遺傳傳遞力進(jìn)行計(jì)算。超高親比率和低低親比率的計(jì)算參考劉有春等[11]的方法。
2 結(jié)果與分析
2.1 三倍體有性后代群體果實(shí)橫、縱徑的遺傳特點(diǎn)
秋輝橘 × NS和清見橘橙 × SD 2個(gè)組合三倍體有性后代群體果實(shí)橫徑和縱徑頻率分布如圖1所示,均趨近于正態(tài)分布,為典型的數(shù)量性狀遺傳特征,表明三倍體后代的果實(shí)橫縱徑可能為多基因控制的數(shù)量性狀。由表1可知,2個(gè)三倍體有性后代群體果實(shí)橫徑平均值均低于親中值但高于低值親本,且雜交后代果實(shí)橫徑多介于親本之間,表現(xiàn)趨中變異。如清見橘橙 × SD組合三倍體后代果實(shí)橫徑介于雙親間的比率分別為67.65%(2018年)和83.78%(2019年)。與果實(shí)橫徑不同,不同組合三倍體有性后代果實(shí)縱徑的遺傳趨勢不同,秋輝橘 × NS組合2018和2019年果實(shí)縱徑超高親比率分別為60.47%和42.00%,表現(xiàn)出超親遺傳變異趨勢;而清見橘橙 × SD組合2018和2019年果實(shí)縱徑介于親本之間的比率分別為94.12%和97.30%,呈趨中變異(表2)。對果實(shí)橫縱徑的變異系數(shù)和遺傳傳遞力進(jìn)行分析,2個(gè)雜交組合連續(xù)2 a(年)果實(shí)橫縱徑的變異系數(shù)均較小但遺傳傳遞力較高(表1和表2),如秋輝橘 × NS組合2018和2019年橫徑的變異系數(shù)分別為13.26%和14.61%,遺傳傳遞力分別為96.40%和93.18%;縱徑變異系數(shù)分別為13.74%和15.53%,遺傳傳遞力分別為107.20%和102.96%,表明三倍體有性雜交后代果實(shí)橫縱徑變異程度較小,但主要由遺傳因素決定。
2.2 三倍體有性后代群體單果質(zhì)量和果皮厚度的遺傳特點(diǎn)
2個(gè)三倍體有性后代群體的單果質(zhì)量、果皮厚度的頻率分布也趨近于正態(tài)分布(圖1),且不同年份間規(guī)律相似,表明三倍體有性后代的單果質(zhì)量和果皮厚度也為多基因控制的數(shù)量性狀。對單果質(zhì)量和果皮厚度的遺傳特點(diǎn)分析表明,2個(gè)三倍體有性后代群體平均單果質(zhì)量在不同年份間均低于親中值但高于低值親本且多數(shù)介于親本之間,表現(xiàn)趨中變異;而2個(gè)三倍體有性后代群體的果皮厚度平均值連續(xù)2 a均大于親中值且多數(shù)高于高值親本,表明三倍體有性后代果皮厚度表現(xiàn)超親遺傳特點(diǎn),大部分三倍體后代果皮變厚。進(jìn)一步對三倍體單果質(zhì)量、果皮厚度的變異系數(shù)進(jìn)行分析,發(fā)現(xiàn)2個(gè)三倍體有性后代群體單果質(zhì)量的變異系數(shù)在不同年份間均較大(表3),但果皮厚度連續(xù)2 a的變異系數(shù)偏小(表4),表明三倍體有性后代的單果質(zhì)量易發(fā)生性狀分離,而果皮厚度分離程度有限。對2個(gè)三倍體有性后代群體單果質(zhì)量和果皮厚度的遺傳力分析表明,不同組合單果質(zhì)量的遺傳力不同;如秋輝橘 × NS連續(xù)2 a單果質(zhì)量的遺傳傳遞力均較高(99.79%和91.84%),而清見橘橙 × SD組合的遺傳傳遞力比較低(55.93%和63.30%),表明不同組合三倍體有性后代的單果質(zhì)量遺傳受親本影響較大。2個(gè)三倍體有性后代群體果皮厚度的遺傳傳遞力均較高(表4),表明三倍體有性后代果皮厚度性狀主要由遺傳因素決定。
2.3 三倍體有性后代群體果實(shí)可溶性固形物和可滴定酸含量的遺傳特點(diǎn)
2個(gè)三倍體有性后代群體果實(shí)可溶性固形物含量的頻率分布連續(xù)2 a呈正態(tài)分布,而可滴定酸含量則呈偏正態(tài)分布(圖2),表明柑橘三倍體有性后代可溶性固形物含量為數(shù)量性狀,而可滴定酸含量則可能存在主效控制基因。且2個(gè)三倍體有性后代群體果實(shí)可溶性固形物含量平均值連續(xù)2 a均小于親中值且低低親比率較高,表明可溶性固形物含量總體呈趨小變異。如秋輝橘 × NS組合連續(xù)2 a的低低親比率分別為84.62%和64.29%。2個(gè)三倍體有性后代群體的可滴定酸含量平均值低于親中值高于低親值,且雜交后代可滴定酸含量多介于親本之間或低于低值親本,呈趨中或趨小變異,2個(gè)三倍體后代的果實(shí)可滴定酸含量連續(xù)2 a介于雙親間的平均比率分別為58.79%(秋輝橘 × NS)和52.98%(清見橘橙 × SD),低于雙親的平均比率分別為33.29%(秋輝橘 × NS)和37.57%(清見橘橙 × SD)。
對2個(gè)三倍體有性后代群體果實(shí)可溶性固形物和可滴定酸含量的變異系數(shù)和遺傳傳遞力分析表明,2個(gè)三倍體有性后代群體果實(shí)可溶性固形物含量變異系數(shù)均較小,未出現(xiàn)廣泛的性狀分離(表5);而2個(gè)三倍體有性后代群體果實(shí)可滴定酸含量的變異系數(shù)連續(xù)2 a均較高,表現(xiàn)出現(xiàn)廣泛的性狀分離,選擇潛力較大(表6);且2個(gè)性狀的遺傳傳遞力均較高,表明三倍體有性后代果實(shí)糖酸變異主要受遺傳因素影響。
3 討 論
3.1 不同親本組合對三倍體有性后代果實(shí)外觀品質(zhì)的影響
柑橘外觀品質(zhì)通常包括果實(shí)大小、果實(shí)形狀、果皮顏色及光澤度、果皮厚度和果實(shí)整齊度等,其中果實(shí)大?。ü麑?shí)橫縱徑)、果實(shí)質(zhì)量和果皮厚度是衡量柑橘果實(shí)的重要經(jīng)濟(jì)性狀指標(biāo)。因此,筆者在本研究中著重對秋輝橘 × NS和清見橘橙 × SD 2個(gè)三倍體有性后代群體的果實(shí)橫縱徑、單果質(zhì)量和果皮厚度3個(gè)外觀品質(zhì)性狀的遺傳特點(diǎn)進(jìn)行了評價(jià),上述性狀在2個(gè)組合三倍體后代中頻次分布均呈現(xiàn)連續(xù)正態(tài)分布,推測均為多基因共同控制的數(shù)量性狀。2個(gè)三倍體有性后代群體的果實(shí)橫徑和單果質(zhì)量表現(xiàn)出相同的遺傳傾向,雜交后代果實(shí)橫徑和單果質(zhì)量平均值均低于親中值高于低親親本,呈現(xiàn)趨中偏小變異,且單果質(zhì)量變異系數(shù)較大,后代分離廣泛,可能是由親本的非加性效應(yīng)解體造成的。與果實(shí)橫徑和單果質(zhì)量的遺傳傾向不同,2個(gè)三倍體有性后代群體的果實(shí)縱徑表現(xiàn)出不同的遺傳傾向,秋輝橘× NS組合呈現(xiàn)出趨大遺傳變異,而清見橘橙 × SD組合呈趨中變異。該結(jié)果與前人在梨和枇杷中的報(bào)道差別較大(雜交后代果實(shí)橫徑、縱徑和果實(shí)質(zhì)量呈趨小變異)[6,16,22],可能是因?yàn)榍叭怂貌牧蠟槎扼w間的有性雜交后代,后代倍性與父母本一致,而筆者在本研究中所用材料為二倍體與四倍體倍性雜交獲得的三倍體有性后代,后代由于倍性增加,大多數(shù)表現(xiàn)出果實(shí)大于二倍體母本(器官巨大性)的特點(diǎn),為培育柑橘大果無核新品種提供了數(shù)據(jù)支撐。
2個(gè)三倍體有性后代群體的果皮厚度平均值均高于親中值且多數(shù)高于高值親本,呈現(xiàn)超親遺傳變異,遺傳傳遞力均高于100%,變異系數(shù)較小,表明三倍體有性后代果皮厚度分離程度有限,受環(huán)境影響較小,遺傳穩(wěn)定,該結(jié)果與前人在紅美人上的研究結(jié)果一致[23]。但三倍體后代中也存在部分株系果皮厚度較雙親薄的情況,如清見橘橙 × SD組合三倍體有性后代在2018年和2019年的低低親比率分別為9.09%和16.22%,為培育無核且果皮薄的柑橘新品種提供了寶貴的育種材料。
3.2 不同親本組合對三倍體有性后代群體果實(shí)內(nèi)在品質(zhì)的影響
可溶性糖和有機(jī)酸含量是影響柑橘果實(shí)內(nèi)在品質(zhì)的重要風(fēng)味物質(zhì),其含量和比例決定了柑橘果實(shí)的口感和風(fēng)味[4,24-25],是評價(jià)柑橘品種是否優(yōu)良的重要指標(biāo)。在實(shí)際的果實(shí)品質(zhì)評價(jià)過程中,通常用可溶性固形物和可滴定酸含量2個(gè)指標(biāo)來衡量柑橘果實(shí)的可溶性糖和有機(jī)酸含量,因此筆者在本研究中通過測定2個(gè)三倍體有性后代群體的可溶性固形物和可滴定酸含量來評價(jià)三倍體有性后代果實(shí)可溶性糖和有機(jī)酸的遺傳傾向。結(jié)果顯示2個(gè)三倍體有性后代群體的可溶性固形物和可滴定酸含量均低于親中值,且可溶性固形物含量的低低親比率均較高,表現(xiàn)為趨小變異,這與前人在越橘[11]和柑橘[26]上的報(bào)道一致,暗示出未來要想培育出高糖的三倍體無核優(yōu)系,親本必須選擇可溶性固形物含量高的品種或材料。在本研究中,2個(gè)三倍體有性后代群體果實(shí)可滴定酸含量平均值均低于親中值,且不同年份間含量介于親本間和低于低值親的后代比例較高,該結(jié)果與王婷婷等[26]的結(jié)果(50%以上的三倍體后代可滴定酸含量超過高酸親本)差別較大,推測可能是母本的不同對三倍體酸含量的影響較大,這為未來培育低酸的三倍體新品種提供了思路,可選擇類似清見橘橙和秋輝橘的二倍體母本與四倍體倍性雜交創(chuàng)制三倍體新種質(zhì),培育低酸無核的三倍體新品種。
4 結(jié) 論
2個(gè)三倍體有性后代群體的單果質(zhì)量、果實(shí)橫徑和可滴定酸含量均呈趨中變異,果皮厚度呈超親遺傳;可溶性固形物含量呈趨小變異,果實(shí)縱徑不同組合遺傳傾向不同;單果質(zhì)量和可滴定酸含量變異系數(shù)大,后代易出現(xiàn)性狀分離,而其他性狀變異系數(shù)??;幾個(gè)性狀的遺傳傳遞力高低順序依次為果皮厚度>果實(shí)縱徑>果實(shí)橫徑>可滴定酸含量>可溶性固形物含量>單果質(zhì)量,遺傳傳遞力越高,雜種優(yōu)勢越明顯,為未來倍性雜交創(chuàng)制三倍體的親本選配奠定了理論基礎(chǔ)。
參考文獻(xiàn) References:
[1] 郭文武,葉俊麗,鄧秀新. 新中國果樹科學(xué)研究70年:柑橘[J]. 果樹學(xué)報(bào),2019,36(10):1264-1272.
GUO Wenwu,YE Junli,DENG Xiuxin. Fruit scientific research in New China in the past 70 years:Citrus[J]. Journal of Fruit Science,2019,36(10):1264-1272.
[2] 鄧秀新. 中國柑橘育種60年回顧與展望[J]. 園藝學(xué)報(bào),2022,49(10):2063-2074.
DENG Xiuxin. A review and perspective for Citrus breeding in China during the last six decades[J]. Acta Horticulturae Sinica,2022,49(10):2063-2074.
[3] NAVARRO L,ALEZA P,CUENCA J,JU?REZ J,PINA J A,ORTEGA C,NAVARRO A,ORTEGA V. The mandarin triploid breeding program in Spain[J]. Acta Horticulturae,2015(1065):389-395.
[4] HUSSAIN S B,SHI C Y,GUO L X,KAMRAN H M,SADKA A,LIU Y Z. Recent advances in the regulation of citric acid metabolism in Citrus fruit[J]. Critical Reviews in Plant Sciences,2017,36(4):241-256.
[5] RAO M J,ZUO H,XU Q. Genomic insights into citrus domestication and its important agronomic traits[J]. Plant Communications,2021,2(1):100138.
[6] 崔艷波,陳慧,樂文全,張樹軍,伍濤,陶書田,張紹鈴. ‘京白梨與‘鴨梨正反交后代果實(shí)性狀遺傳傾向研究[J]. 園藝學(xué)報(bào),2011,38(2):215-224.
CUI Yanbo,CHEN Hui,LE Wenquan,ZHANG Shujun,WU Tao,TAO Shutian,ZHANG Shaoling. Studies on genetic tendency of fruit characters in reciprocal crosses generation between ‘Jingbaili and ‘Yali pear cultivars[J]. Acta Horticulturae Sinica,2011,38(2):215-224.
[7] 高洪娜,張武杰,劉鳳芝,徐德海,周文志. 黑穗醋栗雜交后代部分性狀的遺傳傾向[J]. 分子植物育種,2021,19(23):7932-7937.
GAO Hongna,ZHANG Wujie,LIU Fengzhi,XU Dehai,ZHOU Wenzhi. Genetic tendency of some characters in the hybrid progeny of black currant (Ribes nigrum L.)[J]. Molecular Plant Breeding,2021,19(23):7932-7937.
[8] 郭權(quán),郭印山,郭修武. 葡萄‘紅地球與‘雙優(yōu)雜交后代果實(shí)糖酸的遺傳規(guī)律[J]. 分子植物育種,2021,19(10):3424-3431.
GUO Quan,GUO Yinshan,GUO Xiuwu. Genetic law of sugar and acid in the fruits of hybrids between ‘Red globe and ‘Shuangyou[J]. Molecular Plant Breeding,2021,19(10):3424-3431.
[9] 李俊才,伊凱,劉成,隋洪濤,王家珍. 梨果實(shí)部分性狀遺傳傾向研究[J]. 果樹學(xué)報(bào),2002,19(2):87-93.
LI Juncai,YI Kai,LIU Cheng,SUI Hongtao,WANG Jiazhen. Studies on the trend of inheritance of some characters of pear fruit[J]. Journal of Fruit Science,2002,19(2):87-93.
[10] 劉家成,章秋平,牛鐵泉,劉寧,張玉萍,徐銘,馬小雪,張玉君,劉碩,劉威生. 串枝紅與‘賽買提杏正、反交后代果實(shí)性狀遺傳傾向分析[J]. 果樹學(xué)報(bào),2020,37(5):625-634.
LIU Jiacheng,ZHANG Qiuping,NIU Tiequan,LIU Ning,ZHANG Yuping,XU Ming,MA Xiaoxue,ZHANG Yujun,LIU Shuo,LIU Weisheng. Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Chuanzhihong and ‘Saimaiti in apricots[J]. Journal of Fruit Science,2020,37(5):625-634.
[11] 劉有春,鄂輝邦,劉成,王興東,楊艷敏,孫斌,張舵,袁興福,魏永祥. 越橘半同胞系雜交后代果實(shí)糖酸性狀的變異和遺傳傾向[J]. 果樹學(xué)報(bào),2016,33(6):664-675.
LIU Youchun,E Huibang,LIU Cheng,WANG Xingdong,YANG Yanmin,SUN Bin,ZHANG Duo,YUAN Xingfu,WEI Yongxiang. Variability and inheritance of sugar and acid content in blueberry (Vaccinium) fruit of half-sib crosses[J]. Journal of Fruit Science,2016,33(6):664-675.
[12] 劉政海,董志剛,李曉梅,譚敏,楊镕兆,楊兆亮,唐曉萍. ‘威代爾與‘霞多麗葡萄雜交F1代果實(shí)性狀遺傳傾向分析[J]. 果樹學(xué)報(bào),2020,37(8):1122-1131.
LIU Zhenghai,DONG Zhigang,LI Xiaomei,TAN Min,YANG Rongzhao,YANG Zhaoliang,TANG Xiaoping. Inheritance trend of fruit traits in F1 progenies of ‘Vidal and ‘Chardonnay of grape[J]. Journal of Fruit Science,2020,37(8):1122-1131.
[13] 武曉紅,景晨娟,陳雪峰,趙習(xí)平,袁立勇,梁爽,張憲成,唐煥英,李立穎. ‘金太陽與‘串枝紅杏正反交后代果實(shí)性狀的遺傳傾向研究[J]. 江西農(nóng)業(yè)學(xué)報(bào),2018,30(10):13-18.
WU Xiaohong,JING Chenjuan,CHEN Xuefeng,ZHAO Xiping,YUAN Liyong,LIANG Shuang,ZHANG Xiancheng,TANG Huanying,LI Liying. Studies on genetic tendency of fruit characters in F1 generation of reciprocal crosses between apricot cultivars ‘Jintaiyang and ‘Chuanzhihong[J]. Acta Agriculturae Jiangxi,2018,30(10):13-18.
[14] 徐豆,付鴻博,杜靈敏,郭晉鳴,杜俊杰,王鵬飛,穆霄鵬,張建成. 歐李正反交F1果實(shí)性狀的遺傳變異分析[J]. 山西農(nóng)業(yè)科學(xué),2020,48(5):696-699.
XU Dou,F(xiàn)U Hongbo,DU Lingmin,GUO Jinming,DU Junjie,WANG Pengfei,MU Xiaopeng,ZHANG Jiancheng. Genetic variation analysis of fruit traits in positive and negative cross F1 generation of Chinese dwarf cherry[J]. Journal of Shanxi Agricultural Sciences,2020,48(5):696-699.
[15] 許家輝,余東,魏秀清,許玲,蔣際謀,黃金松. 枇杷正反交雜種后代果實(shí)性狀遺傳分析[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,23(5):663-667.
XU Jiahui,YU Dong,WEI Xiuqing,XU Ling,JIANG Jimou,HUANG Jinsong. Genetic analysis of fruit agronomic characters in reciprocal hybrid progeny of loquat[J]. Journal of Yunnan Agricultural University (Natural Science),2008,23(5):663-667.
[16] 趙崇斌,郭乙含,李舒慶,徐紅霞,黃天啟,林順權(quán),陳俊偉,楊向暉. 寧海白×大房枇杷F1雜交群體果實(shí)性狀的相關(guān)性及遺傳分析[J]. 果樹學(xué)報(bào),2021,38(7):1055-1065.
ZHAO Chongbin,GUO Yihan,LI Shuqing,XU Hongxia,HUANG Tianqi,LIN Shunquan,CHEN Junwei,YANG Xianghui. Correlation and genetic analysis of fruit traits in F1 hybrid population of loquat generated from Ninghaibai × Dafang[J]. Journal of Fruit Science,2021,38(7):1055-1065.
[17] 劉月,劉海楠,鄧宇,劉禹姍,殷秀巖,孫海悅,李亞東. 越橘正反交后代部分性狀的遺傳傾向[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,41(1):35-41.
LIU Yue,LIU Hainan,DENG Yu,LIU Yushan,YIN Xiuyan,SUN Haiyue,LI Yadong. Genetic predisposition of some traits of blueberry in hybrid progenies[J]. Journal of Jilin Agricultural University,2019,41(1):35-41.
[18] CUENCA J,GARC?A-LOR A,JU?REZ J,PINA J A,NAVARRO L,ALEZA P. Alborea:a new mid-late mandarin triploid hybrid [(Citrus clementina × C. tangerina) × (C. nobilis × C. deliciosa)[J]. HortScience,2020,55(8):1387-1392.
[19] 解凱東,彭珺,袁東亞,強(qiáng)瑞瑞,謝善鵬,周銳,夏強(qiáng)明,伍小萌,柯甫志,劉高平,GROSSER J W,郭文武. 以本地早橘和槾橘為母本倍性雜交創(chuàng)制柑橘三倍體[J]. 中國農(nóng)業(yè)科學(xué),2020,53(23):4961-4968.
XIE Kaidong,PENG Jun,YUAN Dongya,QIANG Ruirui,XIE Shanpeng,ZHOU Rui,XIA Qiangming,WU Xiaomeng,KE Fuzhi,LIU Gaoping,GROSSER J W,GUO Wenwu. Production of citrus triploids based on interploidy crossing with bendizao and man tangerines as female parents[J]. Scientia Agricultura Sinica,2020,53(23):4961-4968.
[20] 解凱東,王惠芹,王曉培,梁武軍,謝宗周,伊華林,鄧秀新,GROSSER J W,郭文武. 單胚性二倍體為母本與異源四倍體雜交大規(guī)模創(chuàng)制柑橘三倍體[J]. 中國農(nóng)業(yè)科學(xué),2013,46(21):4550-4557.
XIE Kaidong,WANG Huiqin,WANG Xiaopei,LIANG Wujun,XIE Zongzhou,YI Hualin,DENG Xiuxin,GROSSER J W,GUO Wenwu. Extensive Citrus triploid breeding by crossing monoembryonic diploid females with allotetraploid male parents[J]. Scientia Agricultura Sinica,2013,46(21):4550-4557.
[21] 宋健坤,郭文武,伊華林,劉繼紅,陳春麗,鄧秀新. 以異源四倍體體細(xì)胞雜種為父本與二倍體雜交創(chuàng)造柑橘三倍體的研究[J]. 園藝學(xué)報(bào),2005,32(4):594-598.
SONG Jiankun,GUO Wenwu,YI Hualin,LIU Jihong,CHEN Chunli,DENG Xiuxin. Creation of triploid Citrus plants by crossing elite allotetraploid somatic hybrid pollen parents with diploid cultivars[J]. Acta Horticulturae Sinica,2005,32(4):594-598.
[22] 白牡丹,郝國偉,張曉偉,楊盛,郭黃萍. ‘玉露香梨與‘黃冠梨雜交后代果實(shí)性狀遺傳傾向的初步研究[J]. 中國果樹,2017(增刊1):13-16.
BAI Mudan,HAO Guowei,ZHANG Xiaowei,YANG Sheng,GUO Huangping. Primary research on genetic tendency of fruit characters in hybrid progenies between ‘Yuluxiangli and ‘Huangguan pear cultivars[J]. China Fruits,2017(Suppl. 1):13-16.
[23] 鄭妮. ‘紅美人柑橘雜交后代群體果實(shí)主要性狀的遺傳分析及早熟優(yōu)株的篩選[D]. 重慶:西南大學(xué),2021.
ZHENG Ni. Genetic analysis of major fruit traits in the hybrid offspring of Citrus ‘Hongmeiren and screening for the superior early-maturing varieties[D]. Chongqing:Southwest University,2021.
[24] SUN L F,NASRULLA H,KE F Z,NIE Z P,WANG P,XU J G. Citrus genetic engineering for disease resistance:past,present and future[J]. International Journal of Molecular Sciences,2019,20(21):5256.
[25] AHMED D,EVRARD J C,OLLITRAULT P,F(xiàn)ROELICHER Y. The effect of cross direction and ploidy level on phenotypic variation of reciprocal diploid and triploid mandarin hybrids[J]. Tree Genetics & Genomes,2020,16(1):25.
[26] 王婷婷,周陽廣,朱虹嫻,張苗,段耀園,曹惠祥,管書萍,解凱東,伍小萌,龍春瑞,高俊燕,郭文武. 2個(gè)柑橘三倍體有性群體果實(shí)糖酸性狀遺傳評價(jià)[J]. 果樹學(xué)報(bào),2022,39(7):1147-1156.
WANG Tingting,ZHOU Yangguang,ZHU Hongxian,ZHANG Miao,DUAN Yaoyuan,CAO Huixiang,GUAN Shuping,XIE Kaidong,WU Xiaomeng,LONG Chunrui,GAO Junyan,GUO Wenwu. Inheritance of sugar and acid contents in the fruits of triploid hybrids originated from two 2x × 4x crosses with Nadorcott tangor as a female parent[J]. Journal of Fruit Science,2022,39(7):1147-1156.