王建軍 李宏光 王慶超 董潤洲 楊志南
摘要:近年來隨著我國高速、重載鐵路的快速發(fā)展,列車速度的提升、軸重的加大對(duì)鋼軌服役性能的可靠性提出了更高的要求。如果鋼軌中的殘余應(yīng)力過大且處于不利的分布狀態(tài),容易促進(jìn)疲勞裂紋的形成,并加速擴(kuò)展,從而嚴(yán)重影響其服役性能。本文匯總了當(dāng)前針對(duì)鋼軌中殘余應(yīng)力的測(cè)量方法,并論述了鋼軌中殘余應(yīng)力的產(chǎn)生原因及其對(duì)綜合性能的影響機(jī)制。同時(shí),依據(jù)鋼軌生產(chǎn)的工藝流程,從預(yù)彎、冷卻、矯直、回火等方面出發(fā),綜述了國內(nèi)外研究者在鋼軌殘余應(yīng)力演變及其調(diào)控領(lǐng)域所取得的成果。最后,對(duì)鋼軌殘余應(yīng)力演變與調(diào)控技術(shù)的發(fā)展進(jìn)行了展望。
關(guān)鍵詞:鋼軌;貝氏體;殘余應(yīng)力;制造工藝;調(diào)控
中圖分類號(hào): TG142文獻(xiàn)標(biāo)識(shí)碼: ADOI:10.3969/j.issn.1007-791X.2024.01.0010
引言
近幾年來,我國在高速、重載鐵路領(lǐng)域的發(fā)展已經(jīng)邁入世界前列。列車速度的提升、軸重的加大,對(duì)鐵路軌道服役性能的穩(wěn)定性和可靠性提出更高要求,以保證鐵路運(yùn)輸安全、高效。鋼軌是最主要的鐵路軌道部件之一,其制造過程主要包括熱軋、冷卻和矯直等工序[1]。在此過程中,鋼軌不同位置的冷卻速度和變形量存在差異,導(dǎo)致鋼軌在成形后會(huì)在內(nèi)部形成較大的殘余應(yīng)力[2]。鋼軌鋼按微觀組織分類,主要有珠光體型和貝氏體型兩大類。相對(duì)于珠光體鋼軌,貝氏體鋼軌的強(qiáng)度更高,矯直時(shí)需要矯直輥輸出更大的壓下力,造成貝氏體鋼軌的殘余應(yīng)力也更大[3-4]。因此,貝氏體鋼軌在矯直后,會(huì)進(jìn)一步進(jìn)行回火處理,以降低殘余應(yīng)力,并進(jìn)一步提高韌性、穩(wěn)定組織[5]。
殘余應(yīng)力會(huì)顯著影響鋼軌的抗疲勞、抗腐蝕等性能[6-8],從而嚴(yán)重制約鋼軌的壽命及可靠性。因此,對(duì)鋼軌中殘余應(yīng)力的調(diào)控至關(guān)重要。本文將從鋼軌中殘余應(yīng)力的測(cè)量方法、產(chǎn)生原因、對(duì)鋼軌綜合性能的影響以及調(diào)控方法等方面,綜述近年來的發(fā)展?fàn)顩r,以期為當(dāng)前鋼軌中殘余應(yīng)力調(diào)控提供指導(dǎo)。
1鋼軌中殘余應(yīng)力的測(cè)量方法簡(jiǎn)介
殘余應(yīng)力是指產(chǎn)生應(yīng)力的各種外部因素(外力、溫度變化等)去除后,在物體內(nèi)部保持平衡的一種內(nèi)應(yīng)力[9]。為準(zhǔn)確認(rèn)識(shí)鋼軌中的殘余應(yīng)力狀態(tài),研究者在鋼軌殘余應(yīng)力測(cè)量方面做了很多工作[10-13]。根據(jù)我國鐵道行業(yè)標(biāo)準(zhǔn)TB/T 2344—2012《43 kg/m~75 kg/m鋼軌訂貨技術(shù)條件》中規(guī)定的鋼軌軌底殘余應(yīng)力測(cè)量方法,韓志杰等發(fā)現(xiàn)經(jīng)過矯直60 kg/m規(guī)格U75V鋼軌的軌底殘余應(yīng)力由83 MPa提高到220 MPa,這表明矯直工藝可顯著提高鋼軌軌底的殘余拉應(yīng)力[10]。劉佳朋等采用X射線衍射法測(cè)量并繪制出鋼軌橫截面上殘余應(yīng)力的分布,如圖1所示[11]。這使研究人員對(duì)鋼軌中殘余應(yīng)力的三維分布有了更清晰的認(rèn)識(shí)。Kang等分別采用X射線衍射法和切片法對(duì)60E2鋼軌底部的殘余應(yīng)力進(jìn)行對(duì)比研究,發(fā)現(xiàn)采用兩種方法測(cè)量的結(jié)果差異較大,如圖2所示。通過與之前文獻(xiàn)結(jié)果相比,研究者認(rèn)為用切片法測(cè)定的殘余應(yīng)力值相對(duì)可靠[12]。雖然采用X射線衍射法測(cè)量鋼軌殘余應(yīng)力存在一定的誤差,但是采用該方法可以進(jìn)行無損測(cè)量,因此X射線衍射法在測(cè)量殘余應(yīng)力方面得到廣泛應(yīng)用。此外,Wang等提出了一種利用激光超聲技術(shù)無損測(cè)量鋼軌踏面殘余應(yīng)力的方法[13]。該方法對(duì)物體檢測(cè)表面的要求不高,且可以無接觸測(cè)量,為鋼軌中殘余應(yīng)力的無損測(cè)量提供了新的選擇。
2鋼軌中殘余應(yīng)力的產(chǎn)生及其對(duì)綜合性能的影響
2.1鋼軌中殘余應(yīng)力的產(chǎn)生
鋼軌中的殘余應(yīng)力主要有兩個(gè)來源:一是鋼軌在制造過程中因其不同位置的冷卻速度和變形量存在差異而產(chǎn)生,二是鋼軌在服役過程中由于輪軌接觸表面發(fā)生塑性變形而產(chǎn)生[14]。
鋼軌在制造過程中,要經(jīng)過熱軋成型、冷卻、矯直、回火等工藝。熱軋成型的鋼軌在隨后冷卻過程中,由于鋼軌表面與內(nèi)部的冷卻速度存在差異以及相變發(fā)生,導(dǎo)致鋼軌內(nèi)部形成很大的熱應(yīng)力和組織應(yīng)力。在兩種應(yīng)力的共同驅(qū)動(dòng)下,鋼軌不同位置的變形量存在差異,因而產(chǎn)生殘余應(yīng)力。同時(shí),因?yàn)檐壯蛙壍椎谋缺砻娣e比軌頭大,軌腰和軌底的冷卻速度比軌頭快;因此,在冷卻后期軌頭部位的收縮量更大,導(dǎo)致鋼軌產(chǎn)生較大的殘余應(yīng)力并產(chǎn)生彎向軌頭的彎曲變形。鋼軌冷卻后殘余應(yīng)力分布規(guī)律如圖3(b)所示,在軌頭表面為縱向殘余壓應(yīng)力,軌腰和軌底表面為縱向殘余拉應(yīng)力。
由于鋼軌在冷卻后產(chǎn)生了彎曲變形,須經(jīng)矯直后才能使用。目前國內(nèi)外普遍使用的矯直方法是輥式矯直機(jī)矯直。在矯直輥巨大的彎曲應(yīng)力、剪切應(yīng)力和接觸應(yīng)力的作用下,鋼軌的不同部位發(fā)生不同程度的塑性變形,軌頭和軌底在矯直后橫向變長,縱向變短,而軌腰縱向變得更長。因此,矯直后的鋼軌在軌頭和軌底產(chǎn)生縱向拉伸應(yīng)力,軌腰產(chǎn)生縱向壓縮應(yīng)力,從軌頭到軌底呈C形分布,與矯直前的應(yīng)力分布發(fā)生明顯變化[14],如圖3(c)所示。
鋼軌的材質(zhì)顯著影響鋼軌矯直后的殘余應(yīng)力大小。由表1可知,貝氏體鋼軌軌頭和軌底的殘余應(yīng)力比珠光體鋼軌相應(yīng)位置的殘余應(yīng)力高得多。這是因?yàn)樨愂象w鋼軌的強(qiáng)度更高,矯直時(shí)需要矯直輥輸出更大的壓下力,造成貝氏體鋼軌的殘余應(yīng)力也更大[4]。因此,降低貝氏體鋼軌的殘余應(yīng)力是一項(xiàng)重要課題。
新鋼軌在服役過程中,由于受車輪接觸應(yīng)力和摩擦力的作用,在輪軌接觸表面發(fā)生塑性變形,也會(huì)引入一定的殘余應(yīng)力。該殘余應(yīng)力與鋼軌中原有的殘余應(yīng)力相互疊加,使鋼軌殘余應(yīng)力的分布發(fā)生一些變化,如圖4所示[15]。軌頭表面的縱向殘余應(yīng)力由拉應(yīng)力變?yōu)閴簯?yīng)力。軌腰和軌底殘余應(yīng)力在數(shù)值上變小,但分布規(guī)律變化不大。隨著服役時(shí)間的增加,鋼軌各部位殘余應(yīng)力分布狀態(tài)逐漸趨于穩(wěn)定。
此外,打磨作為鋼軌常用的養(yǎng)護(hù)手段,也會(huì)在鋼軌中引入殘余應(yīng)力[16]。在打磨過程中,砂輪和鋼軌的強(qiáng)烈摩擦?xí)逛撥壉砻婢植繙囟妊杆偕仙?,造成鋼軌表面與內(nèi)部形成很大的溫差。在冷卻過程中,鋼軌表面的收縮變形程度大于鋼軌內(nèi)部,但是鋼軌表面的收縮變形受到鋼軌內(nèi)部材料的約束。因此,打磨結(jié)束后,在鋼軌磨削區(qū)域的表層會(huì)產(chǎn)生較大的殘余拉應(yīng)力[17]。
2.2殘余應(yīng)力對(duì)鋼軌疲勞斷裂的影響
如果鋼軌內(nèi)部的殘余應(yīng)力數(shù)值偏大且分布不當(dāng),會(huì)顯著影響鋼軌的綜合性能。當(dāng)鋼軌軌頭部位的縱向殘余拉應(yīng)力偏大時(shí),如果在踏面亞表層處存在夾雜物等缺陷,或出現(xiàn)亞表層水平裂紋時(shí),容易誘發(fā)鋼軌橫向疲勞斷裂,造成斷軌事故[18],如圖5所示。在軌底,由于車輪通過引起的彎曲應(yīng)力和殘余應(yīng)力都呈拉應(yīng)力狀態(tài),兩個(gè)拉應(yīng)力疊加容易在軌底的缺陷處誘發(fā)疲勞裂紋。軌底過大的殘余拉應(yīng)力將直接影響鋼軌的疲勞壽命,所以需要對(duì)其進(jìn)行限制。我國鐵道行業(yè)標(biāo)準(zhǔn)TB/T 2344—2012《43 kg/m~75 kg/m鋼軌訂貨技術(shù)條件》中對(duì)珠光體鋼軌殘余應(yīng)力的要求是軌底縱向殘余應(yīng)力不能超過250 MPa。對(duì)于貝氏體鋼軌,鐵總科技頒發(fā)的暫行技術(shù)條件TJ/GW 117—2013《U20Mn2SiCrNiMo貝氏體鋼軌暫行技術(shù)條件》規(guī)定軌底縱向殘余應(yīng)力不能超過330 MPa。當(dāng)軌腰存在較高的縱向殘余壓應(yīng)力時(shí),由于泊松效應(yīng),將在軌腰高度方向上形成殘余拉應(yīng)力,容易誘發(fā)鋼軌軌腰的水平開裂[14]。
鋼軌中的殘余應(yīng)力、車輪作用在鋼軌上的彎曲應(yīng)力、接觸應(yīng)力在軌頂部位縱向方向構(gòu)成循環(huán)應(yīng)力。當(dāng)軌頂殘余應(yīng)力由296 MPa下降到166 MPa時(shí),縱向循環(huán)應(yīng)力峰值由320 MPa降低到181 MPa,如圖6所示[20]。由于應(yīng)力變化范圍越大,疲勞壽命越短,因此鋼軌軌頭部位的縱向殘余應(yīng)力與鋼軌軌頭疲勞壽命密切相關(guān)。另外,有研究結(jié)果表明,鋼軌制造過程產(chǎn)生的殘余應(yīng)力會(huì)明顯促進(jìn)疲勞裂紋的萌生[21]。裂紋萌生后,殘余拉應(yīng)力將促進(jìn)裂紋張開,并提高裂紋的最大應(yīng)力強(qiáng)度因子。因此,鋼軌軌頭的殘余拉應(yīng)力會(huì)顯著提高初始疲勞裂紋的擴(kuò)展速率,降低鋼軌的使用壽命[22]。綜上所述,鋼軌中的殘余應(yīng)力會(huì)顯著促進(jìn)疲勞裂紋的萌生和擴(kuò)展,影響鋼軌的綜合性能。所以,對(duì)鋼軌中殘余應(yīng)力的調(diào)控至關(guān)重要。
3鋼軌殘余應(yīng)力的調(diào)控
本章依據(jù)鋼軌生產(chǎn)的工藝流程,從預(yù)彎、冷卻、矯直、回火四個(gè)方面出發(fā),綜述近年來在調(diào)控鋼軌殘余應(yīng)力方面的研究成果。
3.1鋼軌熱預(yù)彎工藝對(duì)殘余應(yīng)力的影響
鋼軌軋制完直接冷卻,會(huì)產(chǎn)生一個(gè)彎向軌頭的彎曲度。熱預(yù)彎工藝是使用彎軌小車在鋼軌冷卻前給它一個(gè)反向的彎曲變形,在接下來的冷卻過程中,該變形可以補(bǔ)償因鋼軌各部位冷卻不均勻?qū)е碌淖冃?。所以,?jīng)過熱預(yù)彎工藝的鋼軌在冷卻后的彎曲度要比未進(jìn)行熱預(yù)彎的小。已經(jīng)證實(shí),鋼軌冷卻后的矯前彎曲度越小,平直度越好,矯直后鋼軌的斷面尺寸變化越小、殘余應(yīng)力越小[23]。所以,研究鋼軌矯前彎曲度的變化原理,獲取適當(dāng)?shù)臒犷A(yù)彎變形量,有利于降低鋼軌最終的殘余應(yīng)力水平。
秦瑞廷通過數(shù)學(xué)模型計(jì)算得到,鋼軌的最佳熱預(yù)彎變形量大小與相同外部環(huán)境下未預(yù)彎直接冷卻后的彎曲變形量相等,方向?yàn)橛绍夘^彎向軌底[24]。然而,有觀點(diǎn)認(rèn)為,預(yù)彎改變了鋼軌在冷卻階段的應(yīng)力、應(yīng)變和位移等初始條件,若簡(jiǎn)單按照直接冷卻后的變形參數(shù)進(jìn)行預(yù)彎并不能達(dá)到最佳效果,需要進(jìn)行適當(dāng)?shù)男拚齕25]。此外,研究者還得到預(yù)彎溫度為800 ℃時(shí),冷卻后的彎曲變形和殘余應(yīng)力均最小。除了軋后熱預(yù)彎工藝,還有學(xué)者研究了利用輥徑差和壓下量差對(duì)鋼軌進(jìn)行定向且彎曲量可控的預(yù)彎軋法,通過該方法能夠有效提高鋼軌冷卻后的全長平直度,使鋼軌在進(jìn)入矯直機(jī)時(shí)具有較小的彎曲度[26]。
3.2鋼軌冷卻制度對(duì)殘余應(yīng)力的影響
鋼軌在熱軋成型后的冷卻過程中,受熱應(yīng)力和相變應(yīng)力的影響,會(huì)發(fā)生彎曲變形并產(chǎn)生殘余應(yīng)力。有研究表明,鋼軌在軋后冷卻過程中產(chǎn)生的殘余應(yīng)力值較小。新鋼軌中的殘余應(yīng)力大小取決于矯直階段[27]。還有研究表明,鋼軌矯直后殘余應(yīng)力隨矯直前彎曲度的增加而增大[23]。因此有必要對(duì)鋼軌冷卻過程的彎曲變形規(guī)律進(jìn)行研究,從而開發(fā)出一種降低鋼軌在冷卻過程中彎曲變形程度的工藝。
通過有限元仿真,可以很直觀地得到U75V鋼軌在冷卻過程彎曲度的變化情況,如圖7所示[28-29]。在鋼軌冷卻初始階段,由于軌底、軌腰比表面積大,冷卻速度比軌頭快,這時(shí)鋼軌逐漸由軌頭彎向軌底。隨著冷卻的進(jìn)行,軌底、軌腰首先達(dá)到相變點(diǎn),發(fā)生固態(tài)相變并釋放相變潛熱,導(dǎo)致軌底、軌腰的冷卻速度有所減慢。與此同時(shí),軌底、軌腰部分由于相變產(chǎn)生體積膨脹,使鋼軌的彎曲度有所減小。軌底、軌腰完成相變時(shí),鋼軌達(dá)到平直狀態(tài)。隨后鋼軌繼續(xù)冷卻收縮,但軌頭收縮變形更大。鋼軌慢慢地由平直變?yōu)閺澫蜍夘^,直至冷卻結(jié)束。
由以上分析可知,鋼軌冷卻后產(chǎn)生彎曲變形主要是由于鋼軌各部位冷卻速度不同造成的。針對(duì)這一問題,Nallathambi等提出一種基于材料質(zhì)量分布的控制冷卻方法[30]。該方法是在質(zhì)量集中部位加大冷卻速度,在邊緣和角部降低冷卻速度,可以達(dá)到降低材料的淬火變形和殘余應(yīng)力的作用。這為減小鋼軌冷卻后的彎曲變形程度提供了思路。由于軌頭部位比表面積小,同等條件下散熱更慢,因此可以采用提高軌頭部位換熱系數(shù)的方法,降低鋼軌冷卻后彎曲變形程度[31]。張文雄通過對(duì)鋼軌風(fēng)冷淬火進(jìn)行數(shù)值模擬計(jì)算,優(yōu)化了噴嘴間距、噴射距離和噴風(fēng)壓力,使鋼軌冷卻后彎曲變形程度減小[32]。目前,武鋼建設(shè)了一條鋼軌在線熱處理生產(chǎn)線。該產(chǎn)線通過在軌頭和軌底使用不同的噴風(fēng)壓力,可以達(dá)到降低鋼軌冷卻過程彎曲變形程度的目的[33]??梢?,在鋼軌冷卻過程中,采用控制冷卻的方式,是減小鋼軌冷卻變形程度,進(jìn)而減小鋼軌矯直后殘余應(yīng)力的發(fā)展方向。
3.3鋼軌矯直工藝對(duì)殘余應(yīng)力的影響
目前,針對(duì)鋼軌冷卻后產(chǎn)生的彎曲變形,大多使用輥式矯直機(jī)對(duì)其進(jìn)行矯直。輥輪上下交錯(cuò)排列,每3個(gè)輥組成一個(gè)矯直變形區(qū),共形成7個(gè)矯直變形區(qū),如圖8所示。彎曲變形的鋼軌經(jīng)過各變形區(qū)連續(xù)反彎,逐漸縮小殘余曲率,最終被成功矯直。在此過程中,鋼軌被反復(fù)彎曲,各個(gè)部位產(chǎn)生了不同程度的塑性變形,導(dǎo)致矯直后的鋼軌內(nèi)部存在很大的殘余應(yīng)力。如何在保證鋼軌平直度滿足要求的基礎(chǔ)上,盡可能地降低鋼軌殘余應(yīng)力是一個(gè)困擾軌道交通領(lǐng)域多年的難題。在過去的幾年里,很多學(xué)者通過對(duì)鋼軌矯直過程的數(shù)值模擬研究,尋求解釋殘余應(yīng)力的演變規(guī)律,以及影響殘余應(yīng)力大小的因素[34-38]。
由于鋼軌在矯直過程中被反復(fù)彎曲導(dǎo)致的包辛格效應(yīng),很多學(xué)者在建立仿真模型時(shí)采用了隨動(dòng)強(qiáng)化模型[34-38]。Kaiser等采用中子衍射法、等高線法和有限元模擬表征了矯直后鋼軌的縱向殘余應(yīng)力分布,發(fā)現(xiàn)實(shí)驗(yàn)數(shù)據(jù)和模擬數(shù)據(jù)吻合良好,如圖9所示[34]。這為利用有限元方法預(yù)測(cè)鋼軌矯直過程殘余應(yīng)力的演變提供了基礎(chǔ)。Biempica等建立了鋼軌矯直過程的一、二、三維有限元模型,利用這些模型研究了不同的工藝參數(shù)對(duì)殘余應(yīng)力的影響,為優(yōu)化工藝提供了參考[35]。不同道次的矯直對(duì)鋼軌最終的殘余應(yīng)力會(huì)產(chǎn)生影響,有研究認(rèn)為R4輥的壓下量越大,最終的殘余應(yīng)力越大[36]。也有研究認(rèn)為對(duì)鋼軌最終殘余應(yīng)力影響最大的是R8輥,其次是R2輥和R6輥[37]。此外,鋼軌矯直后的殘余應(yīng)力大小不僅與矯直輥總壓下量有關(guān),還與各矯直輥壓下量之間的匹配有關(guān)[38]。
3.4回火對(duì)鋼軌殘余應(yīng)力的影響
珠光體鋼軌矯直后殘余應(yīng)力相對(duì)較小,可以滿足使用要求。因此,珠光體鋼軌在矯直后不需回火處理。貝氏體鋼軌矯直后的殘余應(yīng)力較大,為了消減殘余應(yīng)力,并進(jìn)一步提高貝氏體鋼軌的韌性、穩(wěn)定組織,通常采取回火的處理方法[39]。在回火過程中,應(yīng)力松弛與“材料軟化效應(yīng)”和“蠕變效應(yīng)”有關(guān)[40]?!安牧宪浕?yīng)”是指隨著溫度的升高,材料的屈服強(qiáng)度和彈性模量逐漸變小,且屈服強(qiáng)度的降低速率更大。殘余應(yīng)力是由彈性應(yīng)變和彈性模量決定的,即屈服強(qiáng)度的降低速率大于殘余應(yīng)力的降低速率。當(dāng)材料的屈服強(qiáng)度低于殘余應(yīng)力時(shí),彈性應(yīng)變要轉(zhuǎn)化為塑性應(yīng)變,從而導(dǎo)致最終殘余應(yīng)力的減小。蠕變是指在一定溫度、應(yīng)力條件下,隨時(shí)間發(fā)生的材料變形不斷增大的現(xiàn)象。蠕變過程中發(fā)生的材料變形將導(dǎo)致應(yīng)力松弛。目前,關(guān)于回火消減殘余應(yīng)力的研究主要圍繞蠕變展開[41],通過建立冪律蠕變模型揭示熱處理過程中殘余應(yīng)力的演變規(guī)律[42]。有研究結(jié)果表明,在回火過程中,“蠕變效應(yīng)”比“材料軟化效應(yīng)”對(duì)消減殘余應(yīng)力的貢獻(xiàn)更大[43-44]。李智麗等通過實(shí)驗(yàn),研究了保溫時(shí)間對(duì)在線淬火貝氏體鋼軌軌底殘余應(yīng)力的影響,得到隨著保溫時(shí)間的延長,鋼軌軌底縱向殘余應(yīng)力的降低速度逐漸減小,如圖10所示[45]。這可能是由于回火過程中內(nèi)應(yīng)力的釋放導(dǎo)致蠕變效果減弱所致。張鳳明等研究了保溫溫度對(duì)貝氏體鋼軌軌底殘余應(yīng)力的影響,得到隨著回火溫度的升高,鋼軌軌底縱向殘余應(yīng)力顯著降低,如圖11所示[46]。這是因?yàn)闇囟雀邥r(shí)材料發(fā)生蠕變的驅(qū)動(dòng)力更大所致[47]。
在回火時(shí),不僅要考慮回火參數(shù)對(duì)鋼軌中殘余應(yīng)力的影響,也要考慮回火參數(shù)對(duì)鋼軌力學(xué)性能的影響。貝氏體組織在回火過程中可能發(fā)生殘余奧氏體分解[48]、碳化物析出[49]、位錯(cuò)密度降低以及貝氏體鐵素體板條粗化等現(xiàn)象[50]。貝氏體組織的變化將直接導(dǎo)致其性能發(fā)生改變。有研究表明,隨著回火的溫度升高,貝氏體鋼的沖擊韌性呈先升高后降低的趨勢(shì)[51]。還有研究表明20CrSiMn2MoV貝氏體鋼在250 ℃回火時(shí),隨著時(shí)間的延長,其硬度值和抗拉強(qiáng)度逐漸下降,塑性呈先升高后降低的趨勢(shì)[52]??梢妴渭兊靥岣呋鼗饻囟取⒀娱L保溫時(shí)間可能會(huì)顯著影響貝氏體鋼軌的力學(xué)性能。近期有研究結(jié)果表明,一種中碳馬氏體鋼通過高溫快速回火可以獲得比常規(guī)回火更優(yōu)異的拉伸性能和斷裂韌性[53]。由于較高的回火溫度更有利于殘余應(yīng)力的釋放[54],并且在回火初期殘余應(yīng)力的降低速度最快[55],因此高溫快速回火工藝可能是貝氏體鋼軌殘余應(yīng)力與力學(xué)性能協(xié)同調(diào)控的發(fā)展方向。
4總結(jié)與展望
本文在概述鋼軌殘余應(yīng)力的測(cè)量方法、產(chǎn)生原因及其對(duì)綜合性能影響的基礎(chǔ)上,從鋼軌制造流程預(yù)彎、冷卻、矯直、回火四方面,綜述了鋼軌殘余應(yīng)力的演變規(guī)律和調(diào)控技術(shù)研究進(jìn)展。
鋼軌經(jīng)冷卻后的矯前彎曲度越小,平直度越好,矯直后鋼軌的斷面尺寸變化越小、殘余應(yīng)力越小。在鋼軌冷卻過程中采用控制冷卻的方式,是減小鋼軌冷卻變形程度,進(jìn)而減小鋼軌矯直后殘余應(yīng)力的發(fā)展方向。
隨著鋼軌的服役環(huán)境越來越苛刻,貝氏體鋼軌殘余應(yīng)力大的問題逐漸變得突出。在貝氏體鋼軌回火過程中,通過提高回火溫度、延長保溫時(shí)間,可以降低鋼軌的殘余應(yīng)力;但是,回火參數(shù)會(huì)顯著影響貝氏體鋼軌的力學(xué)性能。因此貝氏體鋼軌回火時(shí),殘余應(yīng)力的控制與組織性能調(diào)控必須協(xié)同進(jìn)行。
數(shù)值模擬作為研究鋼軌殘余應(yīng)力演變規(guī)律和調(diào)控技術(shù)的一種重要手段被廣泛應(yīng)用。目前,鋼軌制造過程中的某些數(shù)學(xué)模型還不夠完善。在鋼軌冷卻過程數(shù)學(xué)模型的建立過程中需進(jìn)一步考慮相變產(chǎn)生的組織應(yīng)力,在貝氏體鋼軌矯直過程的力學(xué)模型建立過程中還需考慮殘余奧氏體的轉(zhuǎn)變情況。構(gòu)建更加完善的數(shù)學(xué)模型,對(duì)于深入了解鋼軌殘余應(yīng)力的形成機(jī)理、開發(fā)降低鋼軌殘余應(yīng)力方法具有重要意義。
參考文獻(xiàn)
[1] 陳昕. 高速重載貝氏體鋼軌開發(fā)的應(yīng)用基礎(chǔ)研究[D].沈陽:東北大學(xué),2013.
CHEN X. Investigation on the application basis for developing bainitic rail for usage of high-speed and over loading railroad[D]. Shenyang: Northeastern University,2013.
[2] 陳岳源,馬立忠,易大斌. 鋼軌殘余應(yīng)力試驗(yàn)分析[J]. 鐵道學(xué)報(bào), 1982, 4(2): 72-86.
CHEN Y Y,MA L Z,YI D B. Test and analysis of residual stress in rails[J]. Journal of the China Railway Society, 1982, 4(2): 72-86.
[3] 王權(quán),李春龍,付學(xué)義,等. 鋼種、軌型及生產(chǎn)工藝對(duì)鋼軌矯后殘余應(yīng)力的影響[J]. 金屬熱處理,2002,27(9): 35-37.
WANG Q,LI C L,F(xiàn)U X Y,et al. Effects of steel grade,rail shape and process on residual stress of steel rail after straightening[J]. Heat Treatment of Metals,2002, 27(9): 35-37.
[4] 詹新偉,王樹青. 基于技術(shù)標(biāo)準(zhǔn)的鋼軌殘余應(yīng)力測(cè)試與分析[J]. 鐵道技術(shù)監(jiān)督,2015, 43(10): 1-5.
ZHAN X W,WANG S Q. Test and analysis of rail residual stress based on technical standard[J]. Railway Quality Control, 2015, 43(10): 1-5.
[5] 劉佳朋,杜涵秋,李英奇,等. 典型生產(chǎn)工藝對(duì)無碳化物貝氏體鋼軌組織與性能的影響[J]. 中國鐵道科學(xué),2022,43(1):29-37.
LIU J P,DU H Q,LI Y Q,et al. Effect of typical production process on microstructure and properties of carbide-free bainitic rail steels[J]. China Railway Science,2022,43(1):29-37.
[6] 李楊. 殘余應(yīng)力對(duì)鋼軌疲勞裂紋萌生與擴(kuò)展的影響機(jī)理研究[D]. 石家莊:石家莊鐵道大學(xué), 2017.
LI Y. Study on the effect of residual stress on fatigue crack initiation and propagation of rail[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2017.
[7] 劉杰. 鋼軌表面疲勞裂紋擴(kuò)展機(jī)制[J]. 鋼鐵,2017,52(4):67-71.
LIU J. Analysis of propagation mechanism of fatigue crack on rail surface[J]. Iron and Steel,2017,52(4):67-71.
[8] 李燁峰,劉豐收,李晨光,等. 大秦鐵路重車線U78CrV鋼軌銹蝕斷裂原因分析[J]. 鐵道建筑,2019,59(3):116-119.
LI Y F,LIU F S,LI C G,et al. Cause analysis of rust corrosion and fracture of U78CrV rails in Datong-Qinhuangdao heavy haul railway[J]. Railway Engineering,2019,59(3):116-119.
[9] 喬桂英,張?jiān)娪恚瑥堉嵌?,? 預(yù)變形對(duì)X80直縫埋弧焊管焊接接頭殘余應(yīng)力及疲勞性能影響的模擬研究[J]. 燕山大學(xué)學(xué)報(bào),2020,44(6):552-557.
QIAO G Y,ZHANG S Y,ZHANG Z Y,et al. Effect of pre-deformation on residual stress and fatigue life of weld joint of X80 LSAW pipe[J]. Journal of Yanshan University,2020,44(6):552-557.
[10] 韓志杰,李鈞正,楊正宗. 鋼軌軌底殘余應(yīng)力測(cè)量與研究[J]. 南方金屬,2020(5):1-3.
HAN Z J,LI J Z,YANG ZZ. Measurement and study of residual in rail foot[J]. Southern Metals,2020(5):1-3.
[11] 劉佳朋,劉鈺,李闖,等.在線熱處理貝氏體鋼軌三維殘余應(yīng)力研究[J]. 鐵道建筑,2022,62(3): 34-38.
LIU J P,LIU Y,LI C,et al. Study on 3D residual stress of online heat treatment bainitic rail[J]. Railway Engineering,2022,62(3): 34-38.
[12] KANG C,WENNER M,MARX S. Experimental investigation on the rail residual stress distribution and its influence on the bending fatigue resistance of rails[J]. Construction and Building Materials,2021,284(122856): 15.
[13] WANG J,F(xiàn)ENG Q. Residual stress determination of rail tread using a laser ultrasonic technique[J]. Laser Physics,2015,25(5): 056104.
[14] 張東濤. Cr-Mo合金鋼軌軌腰水平斷裂機(jī)理的研究[D]. 北京:鐵道部科學(xué)研究院, 2001.
ZHANG D T. Study on longitudinal web fracture in Cr-Mo alloy rail[D].Beijing:China Academy of Railway Sciences,2001.
[15] 高明昕,楊建,付麗華,等. 鋼軌循環(huán)滾動(dòng)接觸過程殘余應(yīng)力-應(yīng)變的變化規(guī)律研究[J].鐵道學(xué)報(bào),2018,40(11):147-153.
GAO M X,YANG J,F(xiàn)U L H,et al. Study on variation rules of rail residual stress and strain during cyclic rail rolling contact[J]. Journal of the China Railway Society,2018,40(11):147-153.
[16] 王文璽,李建勇,吳源,等.鋼軌砂帶打磨殘余應(yīng)力的試驗(yàn)與仿真研究[J]. 金剛石與磨料磨具工程,2020,40(3):5-12.
WANG W X,LI J Y,WU Y,et al. Experimental and simulation investigation into residual stress for rail grinding with abrasive belt[J]. Diamond & Abrasives Engineering,2020,40(3):5-12.
[17] HUANG L,DING H,ZHANG S,et al. Simulation research on temperature field and stress field during rail grinding[J]. Proceedings of the Institution of Mechanical Engineers,Part F: Journal of Rail and Rapid Transit,2021,235(10):1-13.
[18] 王權(quán),付學(xué)義,李智麗. 鋼軌內(nèi)殘余應(yīng)力的產(chǎn)生及其危害[J]. 金屬熱處理,2004,29(6):29-33.
WANG Q,F(xiàn)U X Y,LI Z L. Production of the residual stress in the rail and its harm[J]. Heat Treatment of Metals,2004,29(6):29-33.
[19] 呂晶,楊其全,鄒定強(qiáng),等. 貝氏體鋼軌母材軌頭核傷原因分析[J]. 鐵道建筑,2020,60(1):120-124.
LYU J,YANG Q Q,ZOU D Q,et al. Analysis on cause of rail head transverse cracks of bainite rail base metal[J]. Railway Engineering,2020,60(1):120-124.
[20] 丁韋,高振坤,宋宏圖,等. 殘余應(yīng)力對(duì)貝氏體鋼軌使用缺陷的影響[J]. 鐵道建筑,2021,61(6):116-120.
DING W,GAO Z K,SONG H T,et al. Research on evaluation standard system of chord measurement for track static geometric irregularity of high speed railway[J]. Railway Engineering,2021,61(6):116-120.
[21] LI Y,CHEN J,WANG J,et al. Study on the effect of residual stresses on fatigue crack initiation in rails[J]. International Journal of Fatigue,2020,139(2): 105750.
[22] 昝曉東,王強(qiáng)勝,生月,等. 考慮塑性的鋼軌表面疲勞微裂紋分析[J]. 表面技術(shù),2018,47(11): 151-156.
ZAN X D,WANG Q S,SHENG Y,et al. Analysis of fatigue micro-crack on rail surface under plasticity[J]. Surface Technology,2018,47 (11):151-156.
[23] 梁婕,袁希金,張亞軍,等. 重軌矯直殘余應(yīng)力有限元模擬研究[J]. 山西冶金,2020,43(2):46-48.
LIANG J,YUAN X J,ZHANG Y J,et al. Finite element simulation of residual stress in heavy rail straightening[J]. Shanxi Metallurgy,2020,43(2):46-48.
[24] 秦瑞廷. 終軋鋼軌熱預(yù)彎空冷后矯前彎曲度控制機(jī)理研究[D]. 秦皇島:燕山大學(xué),2014.
QIN R T. Research on final rolling rail control mechanism of curvature before straightening after hot pre-bending[D]. Qinhuangdao:Yanshan University,2014.
[25] 崔海燕. 百米鋼軌矯前彎曲度與殘余應(yīng)力的研究[D]. 包頭:內(nèi)蒙古科技大學(xué),2009.
CUI H Y. Research of curvature and residual stress before straightening on 100-meter rail[D]. Baotou:Inner Mongolia University of Science & Technology,2012.
[26] 吳迪,趙憲明,王永明,等. 用熱定徑—定向預(yù)彎法軋制高精度高平直度重軌[J]. 鋼鐵,2000, 35(10): 37-39.
WU D,ZHAO X M,WANG Y M,et al. Rolling the rails of high straightness for high-speed tracks by hot finish rolling-prebending in specific direction[J]. Ironand Steel,2000, 35(10): 37-39.
[27] 張祖光. 鋼軌殘余應(yīng)力研究[J]. 鋼鐵,1982, 17(6):49-54.
ZHANG Z G. Study of residual stress in rails[J]. Iron and Steel,1982, 17(6):49-54.
[28] 段金良. 鋼軌冷卻過程中溫度場(chǎng)及彎曲變形數(shù)值模擬研究[D]. 包頭:內(nèi)蒙古科技大學(xué),2012.
DUAN J L. Numerical simulation of temperature field and deformation in rail cooling process[D]. Baotou:Inner Mongolia University of Science & Technology,2012.
[29] 高明昕. U75V鋼軌冷卻過程數(shù)值模擬研究[D].鞍山:遼寧科技大學(xué),2011.
GAO M X. Study on the numerical simulation of the cooling process of U75V heavy rail[D]. Anshan:University of Science and Technology Liaoning,2011.
[30] NALLATHAMBI A K,KAYMAK Y,SPECHT E,et al. Optimum strategies to reduce residual stresses and distortion during the metal quenching process[J]. Journal of ASTM International,2009,6(4):1-18.
[31] 陳林,李曉娜,張志揚(yáng),等. U75V鋼軌軋后冷卻過程彎曲變形演變規(guī)律的模擬[J]. 金屬熱處理,2016,41(12):168-172.
CHEN L,LI X N,ZHANG Z Y,et al. Simulation on bending deformation evolution of U75V rail during cooling process after rolling[J]. Heat Treatment of Metals,2016 ,41(12):168-172.
[32] 張文雄. U75V重軌風(fēng)冷淬火彎曲變形和殘余應(yīng)力的研究[D]. 鞍山:遼寧科技大學(xué),2021.
ZHANG W X. Study on bending deformation and residual stress of U75V heavy rail during air cooling quenching[D].Anshan:University of Science and Technology Liaoning,2021.
[33] 費(fèi)俊杰,周劍華,董茂松,等. 全長在線熱處理鋼軌生產(chǎn)工藝研究及產(chǎn)品開發(fā)[J]. 鐵路技術(shù)創(chuàng)新,2019(2): 69-75.
FEI J J,ZHOU J H,DONG M S,et al. Process research and product development of full length on-line heat treatment rail[J]. Railway Technical Innovation,2019(2):69-75.
[34] KAISER R,STEFENELLI M,HATZENBICHLER T,et al. Experimental characterization and modelling of triaxial residual stresses in straightened railway rails[J]. The Journal of Strain Analysis for Engineering Design,2014, 50(3): 190-198.
[35] BIEMPICA C B ,DIAZ D C,GARCIA P J,et al. Nonlinear analysis of residual stresses in a rail manufacturing process by FEM[J]. Applied Mathematical Modelling,2009,33(1):? 34-53.
[36] 姜巨巖. 75 kg/m重軌矯直變形機(jī)理及殘余應(yīng)力控制[D]. 包頭:內(nèi)蒙古科技大學(xué),2020.
JIANG J Y. 75 kg/m heavy rail straightening deformation mechanism and residual stress control[D]. Baotou:Inner Mongolia University of Science & Technology,2020.
[37] SONG H,WANG P,F(xiàn)U L,et al. Straightening regulation optimization on the residual stress induced by the compound roll straightening in theheavy rail[J]. Shock and Vibration,2011,18(1/2): 171-180.
[38] 周劍華. 高速鐵路重軌尺寸精度,平直度及殘余應(yīng)力控制的研究[D]. 沈陽:東北大學(xué),2009.
ZHOU J H. Study on controlling of dimensional accuracy and flatness and residual stress of rail for high speed railway[D]. Shenyang:Northeastern University,2009.
[39] ZHU M,XU G,ZHOU M,et al. Effects of tempering on the microstructure and properties of a high-strength bainite rail steel with good toughness[J]. Metals,2018,8(7): 484.
[40] 郭政偉,龍偉民,王博,等. 焊接殘余應(yīng)力調(diào)控技術(shù)的研究與應(yīng)用進(jìn)展[J]. 材料導(dǎo)報(bào),2023,37(2): 148-154.
GUO Z W,LONG W M,WANG B,et al. Progresses on research and application of welding residual stress regulation technologies[J]. Materials Reports,2023,37(2): 148-154.
[41] SPENCE T,MAKHLOUF M. The effect of machining-induced residual stresses on the creep characteristics of aluminum alloys[J]. Materials Science and Engineering:A,2015,630: 125-130.
[42] ZHENG J,CHEN L,LEE J,et al. A novel constitutive model for multi-step stress relaxation ageing of a prestrained 7xxx series alloy[J]. International Journal of Plasticity,2018,106:31-47.
[43] 逯世杰,王虎,戴培元,等. 蠕變對(duì)焊后熱處理殘余應(yīng)力預(yù)測(cè)精度和計(jì)算效率的影響[J]. 金屬學(xué)報(bào),2019,55(12): 1581-1592.
LU S J,WANG H,DAI P Y,et al. Effect of creep on prediction accuracy and calculating efficiency of residual stress in post weld heat treatment[J]. Acta Metallurgica Sinica,2019,55(12): 1581-1592.
[44] DONG P,SONG S,ZHANG J. Analysis of residual stress relief mechanisms in post-weld heat treatment[J].International Journal of Pressure Vessels and Piping,2014,122:6-14.
[45] 李智麗,何建中,梁正偉,等. 貝氏體鋼軌的回火試驗(yàn)研究[J]. 包鋼科技,2020,46(4): 1-5.
LI Z L,HE J Z,LIANG Z W,et al. Study on tempering test of bainite rail[J]. Science and Technology of Baotou Steel,2020,46(4): 1-5.
[46] 張鳳明,梁正偉,何建中,等. 貝氏體鋼軌高溫回火試驗(yàn)研究[J]. 包鋼科技,2021,47(5): 68-72.
ZHANG F M,LIANG Z W,HE J Z,et al. Experimental research on high temperature tempering of bainite rail[J]. Science and Technology of Baotou Steel,2021,47(5): 68-72.
[47] CHILUKURU H,DURST K,WADEKAR S,et al. Coarsening of precipitates and degradation of creep resistance in tempered martensite steels[J]. Materials Science and Engineering:A,2008,510-511: 81-87.
[48] WANG X,ZHANG X,F(xiàn)ANG Q,et al,Effect of tempering on stability of retained austenite and tensile properties of nanostructured bainitic steel [J]. Materials Science and Engineering: A,2022,856: 143958.
[49] KROLICKA A,AK A M ,CABALLERO F G . Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite[J]. Materials & Design,2021,211(5): 110143.
[50] WANG X,LIU C,QIN Y,et al. Effect of tempering temperature on microstructure and mechanical properties of nanostructured bainitic steel[J]. Materials Science and Engineering: A,2022,832: 142357.
[51] KANG J,ZHANG F,YANG X,et al. Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel[J]. Materials Science and Engineering:A,2017,686: 150-159.
[52] 李晴. 回火工藝參數(shù)對(duì)無碳化物貝氏體鋼組織和性能的影響[D]. 西安:西安工業(yè)大學(xué),2021.
LI Q. Effect of tempering process parameters on microstructure and properties of carbide-free bainite steel[D]. Xi′an :Xi′an Technological University,2021.
[53] VAHID J,SAKARI P,SAEED S,et al. Rapid tempering of a medium-carbon martensitic steel: in-depth exploration of the microstructure-mechanical property evolution[J]. Materials & Design, 2023, 231: 112059.
[54] WANG B,ZHOU L,CAO Y,et al. Analysis of residual stress relief for Ti62A alloy welded joints by post weld heat treatment considering creep effect[J]. Journal of Materials Research and Technology,2023,24,7462-7474.
[55] 申發(fā)蘭,陳明和,馮建超. TA15合金高溫應(yīng)力松弛和流變應(yīng)力行為[J]. 宇航材料工藝,2013,43(3): 114-119.
SHEN F L,CHEN M H,F(xiàn)ENG J C. Stress relaxation and flow stress of TA15 alloy at elevated temperature[J]. Aerospace Materials & Technology,2013,43(3): 114-119.
Review on production,influence and control of residual stress in rail
WANG Jianjun1,LI Hongguang1,WANG Qingchao1,DONG Runzhou1,YANG Zhinan1,2,ZHANG Fucheng3
(1.National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,Yanshan University,
Qinhuangdao,Hebei 066004,China;
2.State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao,Hebei 066004,China;
3.College of Metallurgy and Energy,North China University of Science and Technology,Tangshan,Hebei 063210,China)
Abstract:In recent years,with the rapid development of high-speed and heavy-haul railways in China,higher requirements are put forward for the reliability of rail service performance. If there is excessive residual stress and adverse distribution state in the rail,it is easy to promote the formation of fatigue cracks and accelerate the propagation,which seriously affects its service performance.? In this paper, the current measurement methods of residual stress in rail are summarized. In addition, the source of residual stress and the influence of residual stress on comprehensive performance of rail are discussed. At the same time,according to the technological process of rail production,such as pre-bending,cooling,straightening,tempering,the research achievements in the field of rail residual stress evolution and control are reviewed. Finally,the development of rail residual stress evolution and control technology are prospected.
Keywords:rail; bainite;residual stress; manufacturing process; control