涂詩(shī)琴 蒲鵬 高凌云
【摘要】冠心病是臨床中發(fā)病率較高的冠狀動(dòng)脈粥樣硬化性心臟病,近年來(lái)發(fā)病率逐年呈年輕化趨勢(shì),嚴(yán)重影響中國(guó)居民的生命健康。既往認(rèn)為年齡、高血壓、高脂血癥等是冠心病發(fā)病的危險(xiǎn)因素。近年來(lái)多項(xiàng)臨床研究及動(dòng)物模型研究證實(shí)腸道菌群失調(diào)、菌群中間代謝產(chǎn)物與冠心病的發(fā)生和發(fā)展存在密切關(guān)聯(lián),指出調(diào)控腸道菌群平衡可能是冠心病防治的新策略。現(xiàn)綜述冠心病與腸道菌群失調(diào)的關(guān)系,并總結(jié)靶向腸道菌群及其代謝產(chǎn)物治療冠心病的機(jī)制,以期指導(dǎo)冠心病的臨床防治。
【關(guān)鍵詞】冠心??;腸道菌群失調(diào);干預(yù)機(jī)制
【DOI】10.16806/j.cnki.issn.1004-3934.2024.02.000
Relationship Between Coronary Heart Disease and Intestinal Flora Dysbiosis and the Mechanism of Targeted Intervention
TU Shiqin,PU Peng,GAO Lingyun
(Department of Cardiovascular Medicine,?The First Affiliated Hospital of Chongqing Medical University,Chongqing?400016,China)
【Abstract】Coronary heart disease?is a coronary atherosclerotic heart disease with high incidence in clinical practice,and in recent years,its incidence has been trending towards youthfulness year by year,which seriously affects the life and health of our residents. Previously,age,hypertension,hyperlipidaemia and other risk factors for the development of coronary heart disease were considered. In recent years,a number of clinical studies and animal model studies have confirmed that intestinal flora dysbiosis,intermediate metabolites of flora and the occurrence and development of coronary heart disease have a close association,suggesting that regulating the balance of intestinal flora may be a new strategy for the prevention and treatment of coronary heart disease. This article reviews the relationship between coronary heart disease and intestinal flora dysbiosis,and summarises the mechanism of targeting intestinal flora and its metabolites for the treatment of coronary heart disease,with a view to guiding the clinical prevention and treatment of coronary heart disease.
【Keywords】Coronary heart disease; Intestinal flora dysbiosis; Intervention mechanisms
冠心病屬于常見(jiàn)心血管疾病,是影響全球疾病負(fù)擔(dān)及死亡的最重要的病因之一,冠心病的患病率及死亡率在不同收入國(guó)家中存在明顯差異。在過(guò)去幾十年間,發(fā)達(dá)國(guó)家冠狀動(dòng)脈疾病發(fā)病率呈下降趨勢(shì),可能與發(fā)達(dá)國(guó)家對(duì)急性期疾病的有效治療、一級(jí)二級(jí)預(yù)防措施的改進(jìn)有關(guān)[1]。China-PEACE調(diào)查[2-3]顯示,從2001—2011年中國(guó)急性心肌梗死的住院率呈升高趨勢(shì),多數(shù)冠心病患者心肌梗死發(fā)病后于院外死亡,冠心病總體死亡率仍居高不下。因此,及早診斷及治療是冠心病防治的重點(diǎn)工作。目前中國(guó)已形成較為完善的冠心病診斷、治療及二級(jí)預(yù)防專家共識(shí)[4-5]。對(duì)于冠心病傳統(tǒng)危險(xiǎn)因素在臨床中已得到充分的認(rèn)識(shí),但臨床研究[6]發(fā)現(xiàn),即使在已證實(shí)的危險(xiǎn)因素得到充分控制后,冠心病患者依然存在急性心血管事件的風(fēng)險(xiǎn)。繼續(xù)探尋冠心病危險(xiǎn)因素仍是臨床工作的重中之重。近年來(lái)研究顯示,腸道菌群與冠心病的發(fā)生和發(fā)展存在密切關(guān)聯(lián)。腸道菌群作為機(jī)體龐大的微觀生物,結(jié)構(gòu)組成、代謝產(chǎn)物及功能對(duì)疾病發(fā)生及發(fā)展具有舉足輕重的作用。以腸道菌群為切入點(diǎn)探究藥物干預(yù)冠心病的臨床效果,為其臨床防治提供新思路。
1 ?腸道菌群及其代謝產(chǎn)物
人體微生物菌群可存在于口腔、陰道、腸道、皮膚等不同部位,菌群組成及功能會(huì)隨宿主健康情況發(fā)生變化。腸道菌群是定植于腸道內(nèi)的微生物統(tǒng)稱,約1014種微生物定植于此,豐富程度是人體細(xì)胞的10倍,基因組是人體基因組的150倍[7]。人類腸道菌群主要由五個(gè)門組成,包括厚壁菌門、擬桿菌門、變形菌門、放線菌門、疣微菌門,其中前兩種是腸道優(yōu)勢(shì)菌群,占總體的80%~90%。受到遺傳、生活方式、年齡等多種因素的影響形成獨(dú)特的腸道菌群特征,優(yōu)勢(shì)菌群從腸道環(huán)境中獲取營(yíng)養(yǎng)物質(zhì),同時(shí)也能對(duì)人體新陳代謝、免疫功能等產(chǎn)生一定影響。腸道菌群多為厭氧菌,可產(chǎn)生大量中間代謝物,包括氧化三甲胺(trimethylamine N-oxide,TMAO)、短鏈脂肪酸(short-chain fatty acid,SCFA)、次級(jí)膽汁酸、多胺、脂多糖(lipopolysaccharide,LPS)等,這些物質(zhì)能為宿主提供營(yíng)養(yǎng),也能通過(guò)多種途徑影響宿主各器官和系統(tǒng)的功能[8]。
2 ?冠心病與腸道菌群
2.1 ?冠心病與腸道菌群失調(diào)
近年來(lái)研究證實(shí),腸道菌群是影響冠心病的主要環(huán)境因素,冠心病與腸道菌群失衡存在密切關(guān)聯(lián),隨冠心病病情發(fā)展而表現(xiàn)出不同的細(xì)菌共豐度組,因此部分學(xué)者提出可將腸道菌群豐度及代謝產(chǎn)物作為冠心病診斷的生物標(biāo)志物。Nakajima等[9]應(yīng)用高通量測(cè)序技術(shù)檢測(cè)發(fā)現(xiàn)有10種腸道細(xì)菌與纖維帽厚度正相關(guān),9種腸道菌群負(fù)相關(guān)(圖1)。Liu等[10]研究顯示,相較于健康人群,冠心病患者的菌群特征存在較大差異,且某些細(xì)菌能通過(guò)調(diào)節(jié)宿主的?;撬?、神經(jīng)酰胺等代謝途徑從而影響動(dòng)脈粥樣硬化(atherosclerosis,AS)過(guò)程,從而確定腸道菌群與AS發(fā)病機(jī)制存在相互作用。Zheng等[11]研究發(fā)現(xiàn),冠心病合并慢性腎衰竭患者腸道菌群中大腸桿菌、酵母菌水平升高,乳酸桿菌、擬桿菌、雙歧桿菌水平降低,且各腸道菌群水平與動(dòng)脈硬度指數(shù)存在相關(guān)性。由此可見(jiàn),腸道菌群失衡與AS密切相關(guān),但仍需更多臨床研究及動(dòng)物實(shí)驗(yàn)證實(shí),以深入探究腸道菌群失衡與冠心病之間的關(guān)系。
注:*,P<0.05;**,P<0.01。
圖1 腸道細(xì)菌與冠心病纖維帽厚度的關(guān)系[9]
2.2 ?冠心病與腸道菌群中間代謝產(chǎn)物
腸道菌群通過(guò)攝入腸道內(nèi)的營(yíng)養(yǎng)成分,如膳食膽堿、卵磷脂、左旋肉堿等,經(jīng)代謝產(chǎn)生多種中間產(chǎn)物影響AS的發(fā)展[12]。TMAO是一種腸道菌群依賴性代謝物,與冠心病存在密切關(guān)聯(lián)已得到多項(xiàng)研究證實(shí)(圖2)[13-14]。研究[15]表明,血清TMAO濃度升高冠心病發(fā)病風(fēng)險(xiǎn)增加,且高水平TMAO對(duì)預(yù)后主要不良心血管事件有較好的預(yù)測(cè)價(jià)值。Sardu等[16]研究發(fā)現(xiàn),ST段抬高型心肌梗死合并高血糖患者普雷沃氏菌群豐度升高,且其豐度與血糖、血栓大小、TMAO濃度有關(guān),隨訪發(fā)現(xiàn)普雷沃氏菌群豐度、TMAO濃度高的ST段抬高型心肌梗死患者主要不良心血管事件發(fā)生風(fēng)險(xiǎn)更高,預(yù)后更差。丁酸鹽屬于SCFA的一種,Chen等[17]報(bào)道指出,腸道菌群中酪酸梭菌、乳酸桿菌、產(chǎn)氣莢膜梭菌等均能產(chǎn)生丁酸鹽,產(chǎn)丁酸鹽的細(xì)菌能通過(guò)維持菌群平衡、改善腸道屏障功能、調(diào)控基因表達(dá)預(yù)防AS惡性進(jìn)展。研究[18]發(fā)現(xiàn),高脂飲食可刺激腸道微生物組產(chǎn)生次級(jí)膽汁酸從而導(dǎo)致微生態(tài)失調(diào),進(jìn)而損害腸道屏障作用誘導(dǎo)LPS易位至血液,通過(guò)激活Toll樣受體信號(hào)通路加劇AS進(jìn)程。另有研究[19]發(fā)現(xiàn),脯氨酸/絲氨酸豐富卷曲螺旋蛋白1(proline/serine-richcoiled-coilprotein?1,PSRC1)敲除的ApoE小鼠血漿TMAO水平升高,將ApoE小鼠移植來(lái)自ApoE或PSRC1 ApoE小鼠的糞便,接受PSRC1 ApoE小鼠糞便者表現(xiàn)出血漿TMAO水平升高、斑塊脂質(zhì)沉積和巨噬細(xì)胞積累,伴有血漿脂質(zhì)水平升高和肝膽固醇轉(zhuǎn)運(yùn)受損。此外,還存在其他腸道菌群中間代謝產(chǎn)物次級(jí)膽汁酸[20]、多胺[21]等,對(duì)冠心病發(fā)生及發(fā)展產(chǎn)生影響,但仍需設(shè)計(jì)試驗(yàn)證實(shí),為冠心病的靶點(diǎn)治療提供證據(jù)支持。
注:TLR,Toll樣受體;IL,白細(xì)胞介素;IFN,干擾素;TGF-β,轉(zhuǎn)化生長(zhǎng)因子-β;Tr細(xì)胞,調(diào)節(jié)性T細(xì)胞;GPCR,G蛋白偶聯(lián)受體;TMA,三甲胺;FMO,黃素單氧化酶。
圖2??腸道菌群中間代謝產(chǎn)物與宿主相互作用致冠心病示意圖[13]
3 ?靶向干預(yù)腸道菌群治療冠心病相關(guān)機(jī)制
3.1 ?腸道菌群與內(nèi)皮損傷
血管內(nèi)皮損傷是AS病變的首要步驟,在多種AS危險(xiǎn)因素(高脂飲食、高血壓、高血糖等)刺激下,血管內(nèi)皮細(xì)胞活化并分泌大量細(xì)胞和血管黏附分子、趨化因子,將血液中的白細(xì)胞及單核細(xì)胞募集至內(nèi)皮細(xì)胞,大量巨噬細(xì)胞生成,攝取氧化型低密度脂蛋白(oxidized low-density lipoprotein,oxLDL)最終轉(zhuǎn)化為泡沫細(xì)胞,促進(jìn)AS斑塊形成,斑塊正向重塑導(dǎo)致血管狹窄,最終演變?yōu)楣谛牟?。Lin等[22]研究發(fā)現(xiàn),腸道菌群失衡與原發(fā)性高血壓分級(jí)、炎癥因子及內(nèi)皮功能障礙嚴(yán)重程度密切相關(guān)。Tsutsumi等[23]研究顯示,ApoE小鼠給予長(zhǎng)鏈不飽和脂肪酸干預(yù)20周后,厚壁菌水平降低,阿克曼氏菌豐度增加,同時(shí)進(jìn)行臨床隨機(jī)對(duì)照研究顯示,冠心病患者腸道菌群環(huán)境同樣改善,厚壁菌和/或擬桿菌水平降低,嗜黏蛋白阿克曼氏菌豐度增加,且血清TMAO得到改善。另有研究[24]顯示,在復(fù)制ApoE?AS模型小鼠過(guò)程中給予甘油磷酸膽堿(營(yíng)養(yǎng)補(bǔ)充劑)干預(yù)后,腸道菌群結(jié)構(gòu)改變,同時(shí)冠狀動(dòng)脈內(nèi)皮細(xì)胞中核因子κB(NF-κB)、絲裂原活化蛋白激酶信號(hào)通路激活,提示甘油磷酸膽堿能靶向調(diào)控腸道菌群活化血管內(nèi)皮促進(jìn)AS(圖3)。Bartolomaeus等[25]報(bào)道顯示,在飲用水中添加SCFA丙酸鹽能顯著減輕高血壓小鼠心臟肥大、血管功能障礙及高血壓,改善心血管損傷。AS發(fā)病基于血管內(nèi)皮功能障礙,而炎癥反應(yīng)是導(dǎo)致內(nèi)皮功能障礙的慢性病理過(guò)程。NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermal protein domain associated protenin 3,NLRP3)炎癥小體參與AS內(nèi)皮功能障礙的機(jī)制已被證實(shí)。有報(bào)道[26]指出,腸道微生物及代謝產(chǎn)物參與調(diào)節(jié)NLRP3炎癥小體的活化,從而影響血管內(nèi)皮功能,參與AS進(jìn)程。由上述研究可知,靶向腸道菌群結(jié)構(gòu)及代謝產(chǎn)物能通過(guò)影響血管內(nèi)皮損傷參與AS過(guò)程,但具體機(jī)制仍需深入研究。
注:GPC,甘油磷酰膽堿;cutC編碼細(xì)菌,編碼膽堿TMA裂解酶的細(xì)菌;TMA,三甲胺;PLD,磷酸二酯酶;FMO,黃素單氧化酶;MAPK,絲裂原活化蛋白激酶。
圖3?甘油磷酸膽堿通過(guò)多種機(jī)制促進(jìn)AS的示意圖[24]
3.2 ?腸道菌群與脂質(zhì)代謝沉積
巨噬細(xì)胞清除oxLDL是一個(gè)漫長(zhǎng)過(guò)程,當(dāng)累積的oxLDL超出巨噬細(xì)胞清道夫受體結(jié)合能力時(shí),巨噬細(xì)胞則作為脂質(zhì)載體轉(zhuǎn)化為泡沫細(xì)胞,通過(guò)分泌大量細(xì)胞因子刺激血管平滑肌細(xì)胞遷移至內(nèi)膜,分泌大量細(xì)胞外基質(zhì),加速AS。因此清除機(jī)體脂質(zhì)代謝沉積是緩解AS進(jìn)程的重要方法。定心方Ⅳ中藥組方:黃連、丹參、酸棗仁、靈芝,活性成分豐富多樣,如黃連中的小檗堿、黃連堿、巴馬汀等[27]多種生物堿具有清除脂質(zhì)代謝沉積的作用,丹參活性成分丹參總酚酸[28]、丹參酮ⅡA[29],靈芝中靈芝多糖、靈芝酸活性成分[30]。Zhang等[31]研究顯示,采用定心方Ⅳ飼喂ApoE?AS小鼠,小鼠主動(dòng)脈中膽固醇沉積及血脂四項(xiàng)紊亂情況得到顯著改善,同時(shí)腸道菌群結(jié)構(gòu)得到改善,其調(diào)控機(jī)制可能與定心方Ⅳ中的多種活性成分能通過(guò)肝X受體α/固醇調(diào)節(jié)元件結(jié)合蛋白2通路有關(guān)。另有研究[32]發(fā)現(xiàn),給予干酪乳桿菌干預(yù)能改善酒精性肝損傷患者脂質(zhì)代謝,調(diào)節(jié)腸道紊亂情況。Yadav等[33]認(rèn)為發(fā)酵乳桿菌發(fā)酵乳能減輕高脂喂養(yǎng)大鼠血脂異常、氧化應(yīng)激及炎癥反應(yīng),從而降低AS風(fēng)險(xiǎn);Xu等[34]發(fā)現(xiàn),與大米相比,燕麥中的益生元活性能調(diào)節(jié)腸道微生物菌群結(jié)構(gòu),更有助于降低膽固醇;Pathak等[35]應(yīng)用膽堿三甲胺裂解酶抑制劑可通過(guò)降低膽汁酸合成關(guān)鍵酶——細(xì)胞色素P450家族成員7A1的表達(dá),阻止飲食驅(qū)動(dòng)的肝膽固醇積累。由此可知,靶向干預(yù)腸道菌群及代謝產(chǎn)物可通過(guò)減少脂質(zhì)代謝沉積緩解AS進(jìn)程,從而有助于冠心病的防治(圖4)[36]。
注:PYY,酪酪肽;GLP1,胰高血糖素樣肽-1;DMA,二十碳四烯酸;CYP,細(xì)胞色素P450酶;FMO3,黃素單氧化酶3;FAs,脂肪酸;CA,檸檬酸;CDCA,鵝去氧膽酸;BAs,次級(jí)膽汁酸;BSH,膽鹽水解酶
圖4??腸道菌群參與調(diào)控異常脂質(zhì)代謝的途徑示意圖[36]
3.3 ?腸道菌群與單核細(xì)胞趨化
脂質(zhì)過(guò)度沉積使血管內(nèi)皮細(xì)胞受累,血管內(nèi)皮細(xì)胞活化后分泌的趨化因子能趨化大量單核細(xì)胞至受損部位,進(jìn)一步分化為巨噬細(xì)胞,因此,抑制單核細(xì)胞趨化同樣是緩解AS的重要機(jī)制。趨化因子是單核細(xì)胞趨化過(guò)程的重要因子,主要包括血管細(xì)胞黏附因子-1、單核細(xì)胞趨化蛋白-1、CXC基趨化因子家族、趨化因子CC配體家族等。Huang等[37]研究表明,通過(guò)耐力訓(xùn)練有助于抑制血管細(xì)胞黏附因子-1、單核細(xì)胞趨化蛋白-1及促炎因子表達(dá),并增加SCFA生成、調(diào)控腸道微生物菌群平衡,從而緩解AS病變程度。腸道菌群失衡可導(dǎo)致腸道黏膜屏障功能受損,Luissint等[38]在腸道屏障功能缺陷小鼠模型中發(fā)現(xiàn),巨噬細(xì)胞表現(xiàn)出趨化因子CXC基序配體1減少及NF-κB活化降低,表明巨噬細(xì)胞依賴性中性粒細(xì)胞募集作用受腸道微生物菌群調(diào)節(jié)。有報(bào)道[39]發(fā)現(xiàn),食用開(kāi)心果有助于增加腸道副擬桿菌、乳酸桿菌等有益菌豐度,并減少波螺旋體、脫硫菌等炎癥相關(guān)菌群豐度,補(bǔ)充開(kāi)心果同時(shí)高脂飲食的小鼠皮下及內(nèi)臟脂肪組織中CC趨化因子配體2 mRNA水平下調(diào),冠狀動(dòng)脈損傷情況減輕。這說(shuō)明可通過(guò)改善腸道菌群、影響單核細(xì)胞趨化作用,緩解AS。
3.4 ?腸道菌群與其他途徑
血栓形成是AS最嚴(yán)重的并發(fā)癥,血栓脫落會(huì)導(dǎo)致急性心肌梗死、腦卒中、下肢深靜脈血栓等,血栓形成的機(jī)制與血小板激活后炎癥反應(yīng)加劇有關(guān),白細(xì)胞及單核細(xì)胞趨化,最終導(dǎo)致血栓形成及血管閉塞。腸道菌群在血栓形成機(jī)制中的作用尚不完全明確。腸道菌群失衡時(shí),過(guò)多的代謝產(chǎn)物L(fēng)PS能通過(guò)腸道屏障進(jìn)入血液循環(huán),引起代謝性內(nèi)毒素血癥,從而引起高凝狀態(tài)。報(bào)道[40]指出,植物乳桿菌HFY05可通過(guò)調(diào)節(jié)NF-κB通路相關(guān)的炎癥反應(yīng)來(lái)減輕角叉菜膠誘導(dǎo)的小鼠血栓形成,同時(shí)發(fā)現(xiàn)HFY05能增加擬桿菌、乳酸桿菌和雙歧桿菌的豐度,會(huì)降低厚壁菌豐度。另有研究[41]顯示,TMAO能引起血小板高反應(yīng)性,促進(jìn)血栓形成,并與心血管疾病有關(guān)。臨床研究[42]顯示,腸道菌群代謝產(chǎn)物TMAO水平與急性靜脈血栓栓塞癥預(yù)后死亡風(fēng)險(xiǎn)相關(guān),血清TMAO水平>25.75?μmol/L患者死亡風(fēng)險(xiǎn)是≤2.28 μmol/L的患者的1.02倍。此外,腸道菌群通過(guò)其他代謝產(chǎn)物抑制巨噬細(xì)胞生成及血小板活化已有相關(guān)報(bào)道[43]。仍需大量臨床及實(shí)驗(yàn)研究探索腸道菌群通過(guò)何種途徑參與影響AS進(jìn)程,為臨床中靶向腸道菌群防治冠心病提供更多依據(jù)。
4 ?結(jié)論
綜上所述,腸道菌群及代謝產(chǎn)物與宿主冠心病發(fā)生及發(fā)展之間的存在密切關(guān)聯(lián),通過(guò)耐力運(yùn)動(dòng)、飲食結(jié)構(gòu)調(diào)整、中西醫(yī)藥物等干預(yù),可調(diào)節(jié)腸道菌群的結(jié)構(gòu)及主要代謝產(chǎn)物TMAO、SCFA、次級(jí)膽汁酸、LPS等,這為冠心病的臨床防治提供了新思路。腸道菌群對(duì)冠心病的影響機(jī)制復(fù)雜,尤其是二者之間是因果關(guān)系還是相互關(guān)系尚未完全明確,需臨床學(xué)者繼續(xù)深入研究靶向腸道菌群干預(yù)AS的具體機(jī)制,以期為未來(lái)個(gè)體化精準(zhǔn)醫(yī)療提供更多理論支持,同時(shí)為新一代益生菌、中醫(yī)藥等治療方案的提出提供有力支撐。
參 考 文 獻(xiàn)
[1]Ralapanawa U,Sivakanesan R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome:a narrative review[J]. J Epidemiol Glob Health,2021,11(2):169-177.
[2]Li J,Li X,Ross JS,et al. Fibrinolytic therapy in hospitals without percutaneous coronary intervention capabilities in China from 2001 to 2011:China PEACE-retrospective?AMI study[J]. Eur Heart J Acute Cardiovasc Care,2017,6(3):232-243.
[3] 衛(wèi)靖靖,朱明軍,王永霞,等. 心肌梗死中醫(yī)健康監(jiān)測(cè)的臨床研究述評(píng)[J]. 中國(guó)中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志,2023,29(5):861-864.
[4] 復(fù)雜冠心病血運(yùn)重建心臟團(tuán)隊(duì)決策研究協(xié)作組. 復(fù)雜冠心病血運(yùn)重建策略內(nèi)外科專家共識(shí)[J]. 中國(guó)循環(huán)雜志,2022,37(11):1073-1085.
[5] ?北京護(hù)理學(xué)會(huì)心血管專業(yè)委員會(huì). 冠心病患者心臟康復(fù)健康教育處方護(hù)理專家共識(shí)[J]. 中華現(xiàn)代護(hù)理雜志,2022,28(9):1121-1127.
[6]Bae JW,Woo SI,Lee J,et al. mHealth interventions for lifestyle and risk factor modification in coronary heart disease:randomized controlled trial[J]. JMIR Mhealth Uhealth,2021,9(9):e29928.
[7]Javdan B,Lopez JG,Chankhamjon P,et al. Personalized mapping of drug metabolism by the human gut microbiome[J]. Cell,2020,181(7):1661-1679.e22.
[8]Krautkramer KA,F(xiàn)an J,B?ckhed F. Gut microbial metabolites as multi-kingdom intermediates[J]. Nat Rev Microbiol,2021,19(2):77-94.
[9]Nakajima A,Mitomo S,Yuki H,et al. Gut microbiota and coronary plaque characteristics[J]. J Am Heart Assoc,2022,11(17):e026036.
[10]Liu H,Chen X,Hu X,et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity[J]. Microbiome,2019,7(1):68.
[11]Zheng X,Li J,Gou Y,et al. Changes in intestinal flora from chronic renal failure complicated with coronary heart disease and its correlation with arterial stiffness index[J]. Altern Ther Health Med,2023,29(1):252-257.
[12]Jia J,Dou P,Gao M,et al. Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health:a bidirectional Mendelian randomization analysis[J]. Diabetes,2019,68(9):1747-1755.
[13]Kim M,Huda MN,Bennett BJ. Sequence meets function-microbiota and cardiovascular disease[J]. Cardiovasc Res,2022,118(2):399-412.
[14]邢團(tuán)結(jié),婁煥堃,李鵬,等. 血清氧化三甲胺水平與冠心病及冠狀動(dòng)脈狹窄程度的相關(guān)性分析[J]. 蚌埠醫(yī)學(xué)院學(xué)報(bào),2023,48(4):466-469,473.
[15]Amrein M,Li XS,Walter J,et al. Gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) and cardiovascular risk in patients with suspected functionally relevant coronary artery disease (fCAD)[J]. Clin Res Cardiol,2022,111(6):692-704.
[16]Sardu C,Consiglia Trotta M,Santella B,et al. Microbiota thrombus colonization may influence athero-thrombosis in hyperglycemic patients with ST segment elevation myocardialinfarction(STEMI). Marianella study[J]. Diabetes Res Clin Pract,2021,173:108670.
[17]Chen W,Zhang S,Wu J,et al. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis[J]. Clin Chim Acta,2020,507:236-241.
[18]Anto L,Blesso CN. Interplay between diet,the gut microbiome,and atherosclerosis:role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism[J]. J Nutr Biochem,2022,105:108991.
[19]Luo T,Guo Z,Liu D,et al. Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3[J]. Gut Microbes,2022,14(1):2077602.
[20]陳嫚,劉洪濤,林相豪,等. 基于腸道菌群及膽汁酸代謝探討動(dòng)脈粥樣硬化的發(fā)病機(jī)制[J]. 現(xiàn)代中西醫(yī)結(jié)合雜志,2022,31(5):709-713.
[21]Sieckmann T,Kirschner KM. Polyamines,metabolites and metabolomics[J]. Acta Physiol (Oxf),2020,229(3):e13480.
[22]Lin Y,Wu SH,Wang XH,et al. Associations of imbalance of intestinal flora with severity of disease,inflammatory factors,adiponectin,and vascular endothelial function of hypertension patients[J]. Kaohsiung J Med Sci,2022,38(2):165-173.
[23]Tsutsumi R,Yamasaki Y,Takeo J,et al. Long-chain monounsaturated fatty acids improve endothelial function with altering microbial flora[J]. Transl Res,2021,237:16-30.
[24]Wang Z,Hazen J,Jia X,et al. The nutritional supplement?L-alpha glycerylphosphorylcholine promotes atherosclerosis[J]. Int J Mol Sci,2021,22(24):13477.
[25]Bartolomaeus H,Balogh A,Yakoub M,et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage[J]. Circulation,2019,139(11):1407-1421.
[26]Zhang XN,Yu ZL,Chen JY,et al. The crosstalk between NLRP3 inflammasome and gut microbiome in atherosclerosis[J]. Pharmacol Res,2022,181:106289.
[27]陳雯雯,拜年,管娜,等. 基于網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接探討黃連治療高脂血癥的作用機(jī)制[J].新疆醫(yī)科大學(xué)學(xué)報(bào),2022,45(9):1020-1028.
[28]徐卓,項(xiàng)想,尚爾鑫,等. 丹參莖葉總酚酸對(duì)2型糖尿病腎病小鼠腸道菌群和短鏈脂肪酸的調(diào)節(jié)作用[J]. 藥學(xué)學(xué)報(bào),2021,56(4):1035-1048.
[29]黃敏,楊燕.丹參酮ⅡA聯(lián)合CASC2對(duì)甲狀腺癌細(xì)胞增殖、凋亡、遷移、侵襲的影響[J].中國(guó)細(xì)胞生物學(xué)學(xué)報(bào),2021,43(5):947-955.
[30]吳睿婷,付王威,萬(wàn)敏,等. 黑靈芝多糖對(duì)糖尿病大鼠血糖血脂調(diào)節(jié)及腸道菌群的影響[J]. 食品科學(xué),2022,43(5):91-102.
[31]Zhang Y,Gu Y,Chen Y,et al. Dingxin Recipe IV attenuates atherosclerosis by regulating lipid metabolism through LXR-α/SREBP1 pathway and modulating the gut microbiota in ApoE-/-?mice fed with HFD[J]. J Ethnopharmacol,2021,266:113436.
[32]Li X,Liu Y,Guo X,et al. Effect of Lactobacillus casei on lipid metabolism and intestinal microflora in patients with alcoholic liver injury[J]. Eur J Clin Nutr,2021,75(8):1227-1236.
[33]Yadav R,Khan SH,Mada SB,et al. Consumption of probiotic Lactobacillus fermentum MTCC:5898-fermented milk attenuates dyslipidemia,oxidative stress,and inflammation in male rats fed on cholesterol-enriched diet[J]. Probiotics Antimicrob Proteins,2019,11(2):509-518.
[34]Xu D,F(xiàn)eng M,Chu Y,et al.?The prebiotic effects of oats on blood lipids,gut microbiota,and short-chain fatty acids in mildly hypercholesterolemic subjects compared with rice:a randomized,controlled trial[J]. Front Immunol,2021,12:787797.
[35]Pathak P,Helsley RN,Brown AL,et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism[J]. Am J Physiol Heart Circ Physiol,2020,318(6):H1474-H1486.
[36]Lei L,Zhao N,Zhang L,et al. Gut microbiota is a potential goalkeeper of dyslipidemia[J]. Front Endocrinol (Lausanne),2022,13:950826.
[37]Huang WC,Tung CL,Yang YSH,et al. Endurance exercise ameliorates Western diet-induced atherosclerosis through modulation of microbiota and its metabolites[J]. Sci Rep,2022,12(1):3612.
[38]Luissint AC,Williams HC,Kim W,et al. Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice[J]. Mucosal Immunol,2019,12(3):668-678.
[39]Terzo S,Mulè F,Caldara GF,et al. Pistachio consumption alleviates inflammation and improves gut microbiota composition in mice fed a high-fat diet[J]. Int J Mol Sci,2020,21(1):365.
[40]Zeng S,Yi R,Tan F,Sun P,et al. Lactobacillus plantarum?HFY05 attenuates carrageenan-induced thrombosis in mice by regulating NF-κB pathway-associated inflammatory responses[J]. Front Nutr,2022,9:813899.
[41]雍晨,黃國(guó)順,葛宏偉,等. 中醫(yī)藥調(diào)節(jié)腸道菌群代謝產(chǎn)物氧化三甲胺干預(yù)慢性腎臟病及其并發(fā)癥的研究進(jìn)展[J]. 中國(guó)中藥雜志,2023,48(2):321-328.
[42]Reiner MF,Müller D,Gobbato S,et al. Gut microbiota-dependent trimethylamine-N-oxide(TMAO) shows a U-shaped association with mortality but not with recurrent venous thromboembolism[J]. Thromb Res,2019,174:40-47.
[43]Vadaq N,Schirmer M,Tunjungputri RN,et al. Untargeted plasma metabolomics and gut microbiome profiling provide novel insights into the regulation of platelet reactivity in healthy individuals[J]. Thromb Haemost,2022,122(4):529-539.
收稿日期:2023-08-03