李芃菲 肖敏 馬雪嬌 嚴(yán)興科 馬重兵
【摘要】 抑郁癥是由多種原因?qū)е碌木窦膊?,其發(fā)病機(jī)制尚未完全明確。本文從腦功能和結(jié)構(gòu)角度總結(jié)抑郁癥的發(fā)病機(jī)制,發(fā)現(xiàn)抑郁癥與海馬、前額葉等腦區(qū)密切相關(guān),海馬及前額葉皮質(zhì)面積、體積減小,神經(jīng)元形態(tài)及超微結(jié)構(gòu)損害是抑郁癥的解剖和結(jié)構(gòu)基礎(chǔ),血流減少、代謝降低、大腦網(wǎng)絡(luò)連接異常、神經(jīng)電生理活動(dòng)失衡是抑郁癥的腦功能機(jī)制。
【關(guān)鍵詞】 抑郁癥 神經(jīng)元 功能連接 結(jié)構(gòu)連接 神經(jīng)電生理
Research Progress on Brain Function Mechanism of Onset of Depressive Disorder/LI Pengfei, XIAO Min, MA Xuejiao, YAN Xingke, MA Chongbing. //Medical Innovation of China, 2024, 21(05): -169
[Abstract] Depressive disorder is a mental disease caused by many reasons, and its pathogenesis has not been fully defined. This paper summarizes the pathogenesis of depression disorder from the perspective of brain function and structure, and finds that depression disorder is closely related to brain regions such as hippocampus and prefrontal cortex. The decrease in the area and volume of hippocampus and prefrontal cortex and the damage of neuronal morphology and ultrastructure are the anatomical and structural basis of depression disorder. Decreased blood flow, decreased metabolism, abnormal brain network connectivity and imbalance of neuroelectrophysiological activity are the brain functional mechanisms of depression disorder.
[Key words] Depression disorder Neuron Functional connectivity Structural connectivity Neuroelectrophysiology
抑郁癥是由多種原因?qū)е碌木窦膊?,表現(xiàn)為顯著而持久的心境低落、興趣減退和快感缺失等,具有高發(fā)病率、高復(fù)發(fā)率、高自殺率及高致殘率等特點(diǎn)[1]。對抑郁癥發(fā)病機(jī)制的研究多從免疫學(xué)、神經(jīng)遞質(zhì)、氧化應(yīng)激、神經(jīng)營養(yǎng)因子等方面開展[2]。近年來,從腦功能和結(jié)構(gòu)角度探討抑郁癥發(fā)病機(jī)制的研究日益增多,本文從關(guān)鍵腦區(qū)皮質(zhì)面積、體積減小,神經(jīng)元形態(tài)及超微結(jié)構(gòu)損害的解剖和結(jié)構(gòu),以及血流減少、代謝降低,大腦網(wǎng)絡(luò)連接異常,神經(jīng)電生理活動(dòng)失衡的腦功能角度,將抑郁癥的發(fā)病機(jī)制綜述如下。
1 抑郁癥患者大腦結(jié)構(gòu)異常改變
抑郁癥患者的大腦出現(xiàn)局灶性功能和結(jié)構(gòu)異常,涉及海馬、內(nèi)側(cè)前額葉、背外側(cè)前額葉、前扣帶回、后扣帶回、楔前葉、杏仁核和尾狀核[3]。海馬和前額葉是抑郁癥發(fā)病的關(guān)鍵腦區(qū)[4]。海馬及前額葉皮質(zhì)面積、體積減小,神經(jīng)細(xì)胞數(shù)量減少、形態(tài)異常改變,神經(jīng)元樹突復(fù)雜性改變及突觸丟失等可能是抑郁癥發(fā)病的關(guān)鍵中樞結(jié)構(gòu)機(jī)制。
1.1 海馬及前額葉面積、體積減小
研究表明,抑郁癥患者前額葉皮層厚度、表面積減小[5]。皮層厚度受神經(jīng)元細(xì)胞排列和密度影響,體現(xiàn)了皮層結(jié)構(gòu)的空間變化;而皮層表面積反映皮層柱狀排列細(xì)胞的數(shù)目,反映皮層體積的改變[6]。抑郁癥患者海馬和前額葉的灰質(zhì)區(qū)域體積減小,且體積變化的程度與抑郁癥的病程和嚴(yán)重程度呈正相關(guān)[7]。在嚙齒動(dòng)物應(yīng)激模型中也觀察到海馬體積減小,而前額葉體積變化沒有明顯的一致性,可能是因?yàn)槿撕蛧X動(dòng)物前額葉的細(xì)胞結(jié)構(gòu)和相對大小差異較大[8]。海馬和杏仁核聯(lián)系緊密,常被稱為海馬-杏仁核復(fù)合體,共同完成一系列情感記憶功能[9]。而杏仁核體積變化在抑郁癥患者中存在爭議,但在抑郁動(dòng)物模型中發(fā)現(xiàn)杏仁核體積增大[10]。杏仁核體積的增大與該區(qū)域和大腦其他部分的結(jié)構(gòu)協(xié)方差增加、突觸蛋白斑點(diǎn)密度增加和抑郁樣行為相關(guān)[11]。
1.2 神經(jīng)元形態(tài)及超微結(jié)構(gòu)損害
神經(jīng)元細(xì)胞結(jié)構(gòu)的改變是抑郁癥大腦宏觀結(jié)構(gòu)改變的基礎(chǔ),并介導(dǎo)了抑郁樣表型的表達(dá)。在抑郁癥患者的尸檢腦組織樣本中觀察到神經(jīng)細(xì)胞數(shù)量減少、萎縮/肥大、樹突復(fù)雜性改變及突觸丟失等現(xiàn)象,其中海馬和前額葉細(xì)胞丟失最為明顯[12]。海馬中,神經(jīng)元胞體減小,堆積密度增加,成熟顆粒細(xì)胞數(shù)量減少,海馬亞區(qū)也存在膠質(zhì)細(xì)胞丟失,特別是星形膠質(zhì)細(xì)胞[13]。有抑郁樣行為的猴子海馬區(qū)域的神經(jīng)纖維層和細(xì)胞層體積減小,膠質(zhì)細(xì)胞密度降低,但無神經(jīng)元數(shù)量減少[14]。海馬中神經(jīng)膠質(zhì)細(xì)胞胞體減小,堆積密度增加,成熟顆粒細(xì)胞數(shù)量減少[15]。在嚙齒動(dòng)物應(yīng)激模型中觀察到膠質(zhì)細(xì)胞密度、標(biāo)記物和代謝降低[16]。前額葉中,膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein, GFAP)mRNA和蛋白質(zhì)水平均下降,但在其他區(qū)域沒有下降,這表明星形膠質(zhì)細(xì)胞的改變可能是局部特異性的[17]。前額葉內(nèi)少突膠質(zhì)細(xì)胞數(shù)量減少,與星形膠質(zhì)細(xì)胞功能受損有關(guān)[18]。抑郁大鼠CA1、CA3和齒狀回亞區(qū)神經(jīng)突觸密度降低,海馬樹突狀萎縮[19]。在抑郁動(dòng)物模型、抑郁癥患者尸檢腦標(biāo)本中均發(fā)現(xiàn)海馬及前額葉突觸減少、突觸密度降低[20]。抑郁癥患者背外側(cè)前額葉、海馬、扣帶皮層的突觸密度與抑郁癥的嚴(yán)重程度呈負(fù)相關(guān)[21],同時(shí),突觸功能相關(guān)的基因表達(dá)減少、突觸信號(hào)蛋白水平降低[22]。
2 抑郁癥患者大腦功能異常改變
抑郁癥患者腦血流量顯著減少,表明存在腦損傷,提示認(rèn)知功能異??赡芘c此相關(guān);同時(shí)代謝顯著增強(qiáng),存在相對過度激活現(xiàn)象,可能是導(dǎo)致抑郁癥患者情緒異常的另一原因[23]。從能量代謝角度來看,抑郁小鼠內(nèi)側(cè)前額葉存在較高的自發(fā)活動(dòng)及較低的產(chǎn)能效率,這種自發(fā)活動(dòng)與產(chǎn)能效率的不匹配,提示抑郁癥存在能量代謝障礙[24]。腦電圖(electroencephalogram,EEG)研究結(jié)果顯示,靜息態(tài)EEG偏側(cè)化程度與抑郁水平呈負(fù)相關(guān),從腦成像角度來看,抑郁癥狀及其嚴(yán)重程度與關(guān)鍵腦區(qū)ReHo值呈負(fù)相關(guān)[25]??蹘Щ?前額葉-頂葉網(wǎng)絡(luò)異常及雙側(cè)前額葉功能異常是抑郁癥患者認(rèn)知障礙的重要神經(jīng)基礎(chǔ)[26]。綜上,血流減少、異常激活、能量代謝障礙和電生理活動(dòng)失衡可能是抑郁癥發(fā)病的關(guān)鍵中樞功能機(jī)制。
2.1 網(wǎng)絡(luò)連接異常
2.1.1 結(jié)構(gòu)連接斷裂 抑郁癥存在結(jié)構(gòu)和功能的連接中斷[27]。區(qū)域間出現(xiàn)廣泛的連接中斷可能會(huì)導(dǎo)致抑郁癥患者整體網(wǎng)絡(luò)的完整性降低,腦白質(zhì)纖維束(white matter fiber bundle,WMFB)完整性異??赡艽龠M(jìn)皮層連接區(qū)和皮層下區(qū)功能障礙,進(jìn)而導(dǎo)致相應(yīng)的抑郁癥狀[28]。研究發(fā)現(xiàn),抑郁癥患者默認(rèn)網(wǎng)絡(luò)(default mode network,DMN)和額皮質(zhì)下網(wǎng)絡(luò)中的腦白質(zhì)(white matter,WM)連接中斷[29]。DMN參與情緒和自我處理的過程,而額葉-皮層下網(wǎng)絡(luò)對情緒調(diào)節(jié)和認(rèn)知功能至關(guān)重要,這些異??赡苁且钟舭Y患者個(gè)體功能和行為缺陷的結(jié)構(gòu)基礎(chǔ)[30]。抑郁癥患者白質(zhì)束存在連接異常,包括扣帶束、鉤狀束、內(nèi)側(cè)前腦束、丘腦前輻射、胼胝體輻射線額部、上縱束、額枕下束、下縱束和皮質(zhì)脊髓束[31]。抑郁癥患者從前胼胝體到前扣帶的纖維束各向異性分?jǐn)?shù)(fractional anisotropy,F(xiàn)A)值顯著降低,F(xiàn)A值越低,患抑郁癥的風(fēng)險(xiǎn)就越高[32]。
2.1.2 功能連接障礙 抑郁癥與參與情緒處理、執(zhí)行功能和獎(jiǎng)賞處理的多個(gè)大腦網(wǎng)絡(luò)的異常靜息態(tài)功能連接(functional connectivity,F(xiàn)C)有關(guān)[33]。抑郁癥患者靜息態(tài)網(wǎng)絡(luò)內(nèi)及網(wǎng)絡(luò)間的FC模式都有所改變[34]。研究發(fā)現(xiàn),抑郁癥患者執(zhí)行控制網(wǎng)絡(luò)(executive control network, ECN)內(nèi)存在低連接模式,DMN內(nèi)存在超鏈接模式;同時(shí)ECN-DMN網(wǎng)絡(luò)間也存在異常的超鏈接[35]。研究進(jìn)一步發(fā)現(xiàn),抑郁癥的FC受損是進(jìn)行性的。首發(fā)抑郁癥患者的感覺運(yùn)動(dòng)網(wǎng)絡(luò)、DMN和背側(cè)注意網(wǎng)絡(luò)表現(xiàn)出低連接性,而復(fù)發(fā)性抑郁癥患者的感覺運(yùn)動(dòng)網(wǎng)絡(luò)、突顯網(wǎng)絡(luò)、ECN、DMN和背側(cè)注意網(wǎng)絡(luò)都表現(xiàn)出高連接性,首發(fā)抑郁癥患者表現(xiàn)出的低連接性和復(fù)發(fā)性抑郁癥患者的高連接性與發(fā)作次數(shù)和總病程時(shí)間呈負(fù)相關(guān)[36]。
2.2 神經(jīng)電生理活動(dòng)失衡
2.2.1 EEG EEG能夠探測大腦皮層神經(jīng)電活動(dòng)變化[37]。應(yīng)用EEG探索抑郁癥潛在的標(biāo)志物可用于疾病診斷和治療預(yù)測[38]。不同頻段與不同大腦機(jī)制有關(guān)。α波反映大腦的靜息態(tài)和放松,有自殺意念的抑郁癥患者在整夜睡眠中α波活動(dòng)有所增加[39]。α頻段偏側(cè)化與趨避模態(tài)有關(guān)[40],它可以預(yù)測特定的癥狀,如煩躁、懶惰[41],焦慮癥可能會(huì)改變?chǔ)令l段偏側(cè)化,使抑郁癥難以診斷[42]。β波與焦慮和反芻思維有關(guān),抑郁癥患者大腦左側(cè)β波功率值有所降低[43]。θ波與情緒加工有關(guān),抑郁癥患者大腦枕區(qū)和頂區(qū)θ波活躍度增強(qiáng)[44]。γ波與感覺和情緒波動(dòng)有關(guān),適當(dāng)?shù)摩貌üβ士梢员WC抑郁癥患者情緒平穩(wěn)[45]。δ波與深度睡眠有關(guān),抑郁癥患者面對負(fù)目標(biāo)時(shí),在中央頂葉和側(cè)電極有更大的δ波幅值[46]。
2.2.2 事件相關(guān)電位(event-related potential,ERP) 誘發(fā)電位研究采用情緒面孔呈現(xiàn)或工作記憶等多種不同任務(wù),反映抑郁癥被試患者大腦功能的差異[47]。ERP是一種特殊的腦誘發(fā)電位,它是個(gè)體接受某項(xiàng)刺激(視覺、聽覺或觸覺)后產(chǎn)生的,反映了患者認(rèn)知過程中大腦的神經(jīng)電生理變化[48]。以P300為代表的內(nèi)源性ERP成分與認(rèn)知心理加工過程密切相關(guān),常被用于抑郁癥患者認(rèn)知功能損害的評估[49]。P300潛伏期反映大腦對外部目標(biāo)刺激做出反應(yīng)時(shí)的神經(jīng)傳導(dǎo)速度,是反映認(rèn)知功能效率的指標(biāo)[50]。P300波幅反映大腦信息加工時(shí)有效資源動(dòng)員的程度和受試者對靶刺激的注意程度,隨著靶刺激識(shí)別難度增加[51]。研究發(fā)現(xiàn)抑郁癥患者P300潛伏期延長、波幅下降,提示抑郁癥患者存在認(rèn)知功能受損,且額葉腦區(qū)與認(rèn)知功能障礙關(guān)系密切[52]。
3 小結(jié)
抑郁癥的發(fā)生與關(guān)鍵腦區(qū)功能、結(jié)構(gòu)異常及大腦網(wǎng)絡(luò)連接異常等因素密切相關(guān),同時(shí)腦連接組學(xué)也強(qiáng)調(diào)抑郁癥大規(guī)模功能和結(jié)構(gòu)腦網(wǎng)絡(luò)的拓?fù)浣M織中斷涉及全局拓?fù)?、模塊化結(jié)構(gòu)和網(wǎng)絡(luò)中樞。
本文總結(jié)發(fā)現(xiàn),從大腦結(jié)構(gòu)角度來看,海馬及前額葉皮質(zhì)面積、體積減小,神經(jīng)細(xì)胞數(shù)量減少、形態(tài)及超微結(jié)構(gòu)損害,神經(jīng)元樹突復(fù)雜性改變及突觸丟失;從大腦功能角度來看,大腦網(wǎng)絡(luò)功能連接障礙、結(jié)構(gòu)連接斷裂,神經(jīng)元電活動(dòng)傳導(dǎo)、整合異常,進(jìn)而導(dǎo)致中樞內(nèi)環(huán)境紊亂,出現(xiàn)抑郁癥狀。
抑郁癥的特征是結(jié)構(gòu)和功能的連接中斷,然而,結(jié)構(gòu)與功能的關(guān)系仍不清楚。海馬-前額葉連通性改變也會(huì)導(dǎo)致抑郁癥患者認(rèn)知缺陷,未來可關(guān)注海馬和前額葉的結(jié)構(gòu)和連通性變化,進(jìn)一步深入研究。抑郁癥還與大腦網(wǎng)絡(luò)的異常拓?fù)浣M織有關(guān),包括整體完整性和區(qū)域連通性的破壞。未來應(yīng)進(jìn)行多模態(tài)成像研究,以確定抑郁癥的結(jié)構(gòu)和功能異常之間的拓?fù)潢P(guān)系。
參考文獻(xiàn)
[1] MALHI G S, MANN J J.Depression[J].Lancet,2018,392(10161):2299-2312.
[2] KENNIS M,GERRITSEN L,VAN D M,et al.Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis[J].Mol Psychiatry,2020,25(2):321-338.
[3] ROLLS E T.Attractor cortical neurodynamics, schizophrenia, and depression[J].Transl Psychiatry,2021,11(1):215.
[4] PRICE R B,DUMAN R.Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J].Mol Psychiatry,2020,25(3):530-543.
[5]牟靜平,成財(cái),梅蘭,等.抑郁癥灰白質(zhì)表面積性別差異研究[J].磁共振成像,2021,12(1):21-26,37.
[6] HANFORD L C,NAZAROV A,HALL G B,et al.Cortical thickness in bipolar disorder:a systematic review[J].Bipolar Disord,2016,18(1):4-18.
[7] HAN K M,KIM A,KANG W,et al.Hippocampal subfield volumes in major depressive disorder and bipolar disorder[J].Eur Psychiatry,2019,57:70-77.
[8] SARABDJITSINGH R A,LOI M,JOELS M,et al.Early life stress-induced alterations in rat brain structures measured with high resolution MRI[J/OL].PLoS One,2017,12(9):e0185061.https://pubmed.ncbi.nlm.nih.gov/28945761/.
[9] ZHANG L Q,HU X Y,HU Y B,et al.Structural covariance network of the hippocampus-amygdala complex in medication-na?ve patients with first-episode major depressive disorder[J].Psychoradiology,2022,2(4):190-198.
[10] GROGANS S E,F(xiàn)OX A S,SHACKMAN A J.The amygdala and depression: a sober reconsideration[J].Am J Psychiatry,2022,179(7):454-457.
[11] NIKOLOVA Y S,MISQUITTA K A,ROCCO B R,et al.Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species[J].Transl Psychiatry,2018,8(1):26.
[12] CHEN F,BERTELSEN A B,HOLM I E,et al.Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects[J].Brain Res,2020,1727:146546.
[13] WANG H,HE Y,SUN Z,et al.Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression[J].J Neuroinflammation,2022,19(1):132.
[14] ZHOU B,ZHU Z,RANSOM B R,et al.Oligodendrocyte lineage cells and depression[J].Mol Psychiatry,2021,26(1):103-117.
[15]COBB J A,O'NEILL K,MILNER J,et al.Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder[J].Neuroscience,2016,316:209-220.
[16] DU P A,ONORATO D,EIBEN I,et al.Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice[J]. Brain Behav Immun,2021,91:24-47.
[17] DURKEE C,KOFUJI P,NAVARRETE M,et al. Astrocyte and neuron cooperation in long-term depression[J].Trends Neurosci,2021,44(10):837-848.
[18] TANTI A,LUTZ P E,KIM J,et al.Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides[J].Neuropsychopharmacology,2019,44(12):2099-2111.
[19] FRIES G R,SALDANA V A,F(xiàn)INNSTEIN J,et al.Molecular pathways of major depressive disorder converge on the synapse[J].Mol Psychiatry,2023,28(1):284-297.
[20] PAREKH P K,JOHNSON S B,LISTON C. Synaptic mechanisms regulating mood state transitions in depression[J].Annu Rev Neurosci,2022,45:581-601.
[21] HOLMES S E,SCHEINOST D,F(xiàn)INNEMA S J,et al.Lower synaptic density is associated with depression severity and network alterations[J].Nat Commun,2019,10(1):1529.
[22] GRANT S.Synapse diversity and synaptome architecture in human genetic disorders[J].Hum Mol Genet,2019,28(R2):219-225.
[23]陳嘉文,郁蕓,韓新煥,等.抑郁癥靜息態(tài)腦功能影像的腦區(qū)激活可能性分析[J].南京醫(yī)科大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,40(11):1704-1712,1724.
[24]張競予,劉愷,曾善美,等.慢性不可預(yù)知溫和刺激小鼠內(nèi)側(cè)前額葉的能量代謝障礙及功能磁共振成像[J].南方醫(yī)科大學(xué)學(xué)報(bào),2021,41(4):521-528.
[25] TANG C,ZHANG Y,ZHAI Z,et al.Mechanism of depression through brain function imaging of depression patients and normal people[J].J Healthc Eng,2022,2022:1125049.
[26] KANG S G,CHO S E.Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder[J].Int J Mol Sci,2020,21(6):2148.
[27] ARULASS A R,KITZBICHLER M G,MORGAN S E,et al.Dysconnectivity of a brain functional network was associated with blood inflammatory markers in depression[J].Brain Behav Immun,2021,98:299-309.
[28] BEKHBAT M,LI Z,MEHTA N D,et al.Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: evidence from a dopamine challenge study[J].Mol Psychiatry,2022,27(10):4113-4121.
[29] HOFLICH A,MICHENTHALER P,KASPER S,et al.Circuit mechanisms of reward, anhedonia, and depression[J].Int J Neuropsychopharmacol,2019,22(2):105-118.
[30] GRAY J P,MULLER V I,EICKHOFF S B,et al.Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies[J].Am J Psychiatry,2020,177(5):422-434.
[31] KOSHIYAMA D,F(xiàn)UKUNAGA M,OKADA N,et al.White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals[J].Mol Psychiatry,2020,25(4):883-895.
[32] VULSER H,PAILLERE MARTINOT M L,ARTIGES E,et al.Early variations in white matter microstructure and depression outcome in adolescents with subthreshold depression[J].Am J Psychiatry,2018,175(12):1255-1264.
[33] CHIN FATT C R,JHA M K,COOPER C M,et al.Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression[J].Am J Psychiatry,2020,177(2):143-154.
[34] GUDAYOL-FERRE E,PERO-CEBOLLERO M,GONZALEZ-GARRIDO A A,et al.Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review[J].Front Hum Neurosci,2015,9:582.
[35] KAISER R H,ANDREWS-HANNA J R,WAGER T D,et al.Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity[J].JAMA Psychiatry,2015,72(6):603-611.
[36] LIU J,F(xiàn)AN Y, LI L Z,et al.The neuroprogressive nature of major depressive disorder: evidence from an intrinsic connectome analysis[J].Transl Psychiatry,2021,11(1):102.
[37] ZHANG J,LIU D,ZHONG D,et al.Specificity study of visualization analysis of electroencephalogram diagnosis of depression based on CiteSpace[J].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2021,38(5):919-931.
[38] DE AGUIAR NETO F S, ROSA J L G.Depression biomarkers using non-invasive EEG: a review[J].Neurosci Biobehav Rev,2019,105:83-93.
[39] DOLSEN M R,CHENG P,ARNEDT J T,et al.Neurophysiological correlates of suicidal ideation in major depressive disorder: hyperarousal during sleep[J].J Affect Disord,2017,212:160-166.
[40] LEE P F,KAN D,CROARKIN P,et al.Neurophysiological correlates of depressive symptoms in young adults: a quantitative EEG study[J].J Clin Neurosci,2018,47:315-322.
[41] NELSON B D,KESSEL E M,KLEIN D N,et al.Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward[J].Psychophysiology,2018,55(1):10.
[42] NUSSLOCK R,SHACKMAN A J,MCMENAMIN B W,et al.Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry[J].Psychophysiology,2018,55(1):10.
[43] SPIRONELLI C,MAFFEI A,ROMEO Z,et al.Evidence of language-related left hypofrontality in major depression: an EEG beta band study[J].Sci Rep,2020,10(1):8166.
[44] CAULFIELD K A.Is accelerated, high-dose theta burst stimulation a panacea for treatment-resistant depression?[J].J Neurophysiol,2020,123(1):1-3.
[45] FITZGERALD P J,WATSON B O.Gamma oscillations as a biomarker for major depression: an emerging topic[J].Transl Psychiatry,2018,8(1):177.
[46] LIU M,ZHOU L,WANG X,et al.Deficient manipulation of working memory in remitted depressed individuals: behavioral and electrophysiological evidence[J].Clin Neurophysiol,2017,128(7):1206-1213.
[47] BURKHOUSE K L,OWENS M,F(xiàn)EURER C,et al.Increased neural and pupillary reactivity to emotional faces in adolescents with current and remitted major depressive disorder[J].Soc Cogn Affect Neurosci,2017,12(5):783-792.
[48] KLUMPP H,SHANKMAN S A.Using event-related potentials and startle to evaluate time course in anxiety and depression[J].Biol Psychiatry Cogn Neurosci Neuroimaging,2018,3(1):10-18.
[49] RUOHONEN E M,ALHAINEN V,ASTIKAINEN P.Event-related potentials to task-irrelevant sad faces as a state marker of depression[J].Biol Psychol,2020,149:107806.
[50] RUPPRECHTER S,STANKEVICIUS A,HUYS Q,et al.Abnormal reward valuation and event-related connectivity in unmedicated major depressive disorder[J].Psychol Med,2021,51(5):795-803.
[51] FELDMANN L,PIECHACZEK C E,PEHL V,et al.State or trait? Auditory event-related potentials in adolescents with current and remitted major depression[J].Neuropsychologia,2018,113:95-103.
[52] ZHOU L,WANG G,NAN C,et al.Abnormalities in P300 components in depression: an ERP-sLORETA study[J].Nord J Psychiatry,2019,3(1):1-8.