鮑艷春,戴伶俐,劉在霞,馬鳳英,王宇,劉永斌,谷明娟,娜日蘇,張文廣,6
綜 述
CRISPR/Cas9系統(tǒng)在畜禽遺傳改良中研究進(jìn)展
鮑艷春1,2,戴伶俐2,3,劉在霞1,2,馬鳳英1,2,王宇4,劉永斌5,谷明娟1,2,娜日蘇1,2,張文廣1,2,6
1. 內(nèi)蒙古農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,呼和浩特 010018 2. 內(nèi)蒙古自治區(qū)農(nóng)業(yè)基因組大數(shù)據(jù)工程研究中心,呼和浩特 010018 3. 內(nèi)蒙古自治區(qū)農(nóng)牧業(yè)科學(xué)院獸醫(yī)研究所,呼和浩特 010031 4. 內(nèi)蒙古農(nóng)業(yè)大學(xué)獸醫(yī)學(xué)院,呼和浩特 010018 5. 內(nèi)蒙古大學(xué)生命科學(xué)學(xué)院,呼和浩特 010021 6. 內(nèi)蒙古農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,呼和浩特 010018
CRISPR/Cas9基因編輯技術(shù)作為一種高效的基因組編輯方法,在畜牧業(yè)遺傳改良領(lǐng)域得到了廣泛的應(yīng)用。該技術(shù)以高效、精準(zhǔn)的特點(diǎn),為畜牧業(yè)發(fā)展帶來(lái)了一場(chǎng)革命。目前,基于CRISPR/Cas9的基因敲除、基因敲入和基因修飾等已被廣泛應(yīng)用,實(shí)現(xiàn)了對(duì)畜禽物種的重要生產(chǎn)性狀進(jìn)行精準(zhǔn)改良。本文介紹了CRISPR/Cas9技術(shù)的工作原理及發(fā)展歷程,重點(diǎn)介紹了該技術(shù)在畜禽肌肉生長(zhǎng)發(fā)育、絨毛纖維生長(zhǎng)、乳品質(zhì)成分、抗病育種以及動(dòng)物福利中的研究進(jìn)展,旨在為更深入地了解CRISPR/Cas9技術(shù)在畜禽基因編輯上的應(yīng)用提供參考。
CRISPR/Cas9;基因編輯;畜禽;遺傳改良;經(jīng)濟(jì)性狀
基因編輯是一種極具發(fā)展前景的生物工程技術(shù),通過(guò)人為方式在有機(jī)體的基因組特定位置上刪除、添加或改變堿基,以達(dá)到編輯基因組的目的。理想的基因組編輯方法需要高效并準(zhǔn)確地改變基因組序列,并盡量減少或避免產(chǎn)生脫靶效應(yīng)[1]。隨著鋅指核酸內(nèi)切酶(zinc-finger endonuclease,ZFN)[2]、類轉(zhuǎn)錄激活因子效應(yīng)物核酸酶(transcription activator like effector nuclease,TALEN)[3]和成簇規(guī)律間隔短回文重復(fù)序列及其相關(guān)系統(tǒng)(clustered regularly inter spaced short palidromic repeats/CRISPR-associated protein 9,CRISPR/Cas9)[4,5]等基因編輯技術(shù)的出現(xiàn),為應(yīng)對(duì)人類對(duì)蛋白質(zhì)日益增長(zhǎng)的需求問(wèn)題提供了潛在的解決途徑。與ZFN和TALEN不同,CRISPR/Cas9系統(tǒng)具有成本低廉、操作簡(jiǎn)單、高效以及可對(duì)多個(gè)靶基因進(jìn)行同時(shí)編輯等優(yōu)勢(shì),目前已被廣泛應(yīng)用于分子育種、疾病防治、遺傳改良和制藥等領(lǐng)域[6~11]。
近年來(lái)CRISPR/Cas9技術(shù)在畜牧業(yè)方面的應(yīng)用帶來(lái)了諸多突破,包括生成轉(zhuǎn)基因動(dòng)物、改良基因組特征、提高動(dòng)物抗病能力以及改善農(nóng)產(chǎn)品的品質(zhì)等。科研人員通過(guò)對(duì)特定基因進(jìn)行編輯和調(diào)控,增強(qiáng)了動(dòng)物的生產(chǎn)潛力和生態(tài)適應(yīng)性。此外,該技術(shù)的可靠性也在不斷取得進(jìn)展,例如通過(guò)堿基修飾來(lái)實(shí)現(xiàn)單堿基突變的插入,而無(wú)需依賴復(fù)雜的DNA供體。這意味著CRISPR/Cas9技術(shù)的應(yīng)用更加簡(jiǎn)便和高效。CRISPR/Cas9技術(shù)的快速發(fā)展極大地推動(dòng)了畜禽養(yǎng)殖領(lǐng)域的革新和發(fā)展,為未來(lái)的畜牧業(yè)發(fā)展提供了更廣闊的應(yīng)用前景。本文對(duì)CRISPR/Cas9技術(shù)的工作原理及進(jìn)展進(jìn)行了概述,著重介紹了目前該技術(shù)在主要家養(yǎng)動(dòng)物基因組中的應(yīng)用進(jìn)展,為CRISPR/Cas9技術(shù)在畜禽遺傳改良的研究提供參考依據(jù)。
日本科學(xué)家在1987年對(duì)大腸桿菌()的基因進(jìn)行研究時(shí),首次在位于基因3′端側(cè)翼區(qū)發(fā)現(xiàn)了5個(gè)高度同源的特殊結(jié)構(gòu),由29個(gè)核苷酸序列排列成的重復(fù)序列組成。由于當(dāng)時(shí)在原核生物中還未發(fā)現(xiàn)與這些序列同源的序列,因此對(duì)這些序列的生物意義是未知的[12]。1991年,Pavletich等[13]通過(guò)解析Zif268蛋白與DNA結(jié)合的晶體結(jié)構(gòu),首次揭示了鋅指蛋白與DNA識(shí)別的分子機(jī)制。隨后,1996年Kim等[14]首次成功制造了嵌合型核酸內(nèi)切酶——鋅指核酸酶。2002年,CRISPR首次被正式命名,并發(fā)現(xiàn)這種新型的DNA序列家族在細(xì)菌和古細(xì)菌中廣泛存在[15],具有抵御病毒或外源物質(zhì)入侵的功能,其存在形式及作用機(jī)理均不相同。同年,利用ZFN技術(shù)成功地在果蠅()中實(shí)現(xiàn)了基因的誘變[16,17]。之后,Barrangou等[18]確認(rèn)CRISPR/Cas系統(tǒng)是一種原核生物特有的天然適應(yīng)性防御機(jī)制。2010年,Christian等[19]將TALE蛋白和酶嵌合創(chuàng)造出了一種新的基因組編輯技術(shù)——TALEN。直到2011年,CRISPR/Cas9的作用機(jī)制才被揭示。當(dāng)病毒首次入侵機(jī)體時(shí),細(xì)菌會(huì)將外源基因的一段序列整合到自身CRISPR序列的間隔區(qū);在病毒再次入侵時(shí),CRISPR序列會(huì)轉(zhuǎn)錄生成前體crRNA(pre-crRNA),pre-crRNA通過(guò)加工形成含有與外源基因匹配序列的crRNA,該crRNA與病毒基因組的同源序列識(shí)別后,介導(dǎo)Cas蛋白結(jié)合并且對(duì)其進(jìn)行切割,從而保護(hù)機(jī)體免受病毒的入侵[20,21](圖1)。2013年,在哺乳動(dòng)物細(xì)胞中成功實(shí)現(xiàn)了II型Cas9系統(tǒng)進(jìn)行基因編輯的研究[22]。由于傳統(tǒng)的基因篩選方法(如RNAi)在哺乳動(dòng)物細(xì)胞中進(jìn)行基因敲除較為困難,因此,Koike-Yusa等[23]于2014年首次將全基因組CRISPR/ Cas9應(yīng)用于小鼠()胚胎干細(xì)胞中,成功鑒定出一些與抗毒素相關(guān)的基因。2016年,Komor等[24]發(fā)現(xiàn)傳統(tǒng)的CRISPR/Cas9通常需要通過(guò)引發(fā)雙鏈斷裂(double strand break,DSB)來(lái)實(shí)現(xiàn)DNA修飾。然而,DSB可能引發(fā)細(xì)胞的修復(fù)機(jī)制,并導(dǎo)致不可預(yù)測(cè)的變異。因此,該團(tuán)隊(duì)開(kāi)發(fā)了一種新方法,稱為堿基編輯器(base editing,BE),旨在精確修改基因組DNA的單個(gè)堿基。具體而言,通過(guò)使用Cas9蛋白和特定的單鏈RNA引導(dǎo)子,將化學(xué)修飾核苷酸修飾酶(cytidine deaminase)定向到目標(biāo)堿基上,并將目標(biāo)堿基從胞嘧啶(C)改變?yōu)猷奏?T)。這項(xiàng)技術(shù)為CRISPR/Cas9的發(fā)展提供了一個(gè)創(chuàng)新性突破。在此基礎(chǔ)上,該團(tuán)隊(duì)又開(kāi)發(fā)了一種名為“Target-AID”的單核苷酸編輯系統(tǒng),它通過(guò)引入特定的修飾酶,能夠直接將一種堿基轉(zhuǎn)化為另一種堿基。Anzalone等[25]設(shè)計(jì)了適用于特定目標(biāo)序列的編輯引導(dǎo)RNA,將Target-AID定向到目標(biāo)堿基上,再使用Target-AID修飾酶將目標(biāo)堿基替換為編輯后的堿基。由于傳統(tǒng)的CRISPR/Cas9系統(tǒng)通常需要數(shù)個(gè)小時(shí)完成基因編輯,Liu等[26]提出了一種新策略,即使用籠狀RNA策略(caged RNA,cgRNA)。該策略在RNA序列中添加光敏基團(tuán),限制了Cas9酶的功能,直到引入光源。光源激活后,光敏基團(tuán)解離,使得Cas9酶能夠在幾秒內(nèi)快速切割目標(biāo)DNA。這種新方法被稱為超快速CRISPR基因編輯方法(very fast CRISPR,vfCRISPR)。這一研究成果為CRISPR/Cas9領(lǐng)域帶來(lái)了變革性的科學(xué)進(jìn)展。目前,科研人員仍在努力研發(fā)更為高效且具有更低脫靶率的基因編輯技術(shù)(圖2)。
圖1 噬菌體CRISPR/Cas9適應(yīng)性免疫系統(tǒng)
CRISPR基因序列主要由前導(dǎo)序列(leader)、重復(fù)序列(repeat)和間隔序列(spacer)構(gòu)成。前導(dǎo)序列位于CRISPR基因上游,被認(rèn)為是CRISPR的啟動(dòng)子,其富含AT堿基[17]。重復(fù)序列的長(zhǎng)度約為20~50 bp,包括5~7 bp回文序列[27],其轉(zhuǎn)錄產(chǎn)物能夠形成發(fā)卡結(jié)構(gòu),從而穩(wěn)定RNA的二級(jí)結(jié)構(gòu)[20]。間隔序列是由細(xì)菌捕獲的外源性DNA序列[15]。目前,在細(xì)菌免疫防御中根據(jù)Cas蛋白的作用將CRISPR系統(tǒng)分為兩大類,又分為6種不同類型(I~VI),并且子類型的數(shù)目還在持續(xù)增長(zhǎng)[17]。I類系統(tǒng)包括的I、III和IV型系統(tǒng)的crRNA效應(yīng)復(fù)合物由多個(gè)亞基組成,而II類系統(tǒng)包括的II型、V型和VI系統(tǒng)的crRNA效應(yīng)復(fù)合物僅由單亞基組成[28,29]。Cas9蛋白是II類系統(tǒng)所需的唯一蛋白質(zhì),Cas9與crRNA-tracrRNA雙鏈體結(jié)合,可用于高效的基因組編輯。這種雙RNA結(jié)構(gòu)與Cas9蛋白形成RNP復(fù)合體,識(shí)別與crRNA互補(bǔ)的PAM序列,將DNA雙鏈解鏈,crRNA將與互補(bǔ)鏈雜交,而另一條DNA鏈則保持游離狀態(tài)。之后,Cas9蛋白負(fù)責(zé)準(zhǔn)確切割目標(biāo)PAM序列,再切割與crRNA互補(bǔ)的DNA單鏈,最終在Cas9的作用下DNA發(fā)生DSB,導(dǎo)致切割位點(diǎn)上的小片段序列的插入和/或缺失[30],此外,它還可以通過(guò)機(jī)體的同源定向修復(fù)機(jī)制導(dǎo)致外源DNA的表達(dá)沉默,從而實(shí)現(xiàn)對(duì)病毒的防御[5,11,15,31]。Yu等[32]將CRISPR/Cas9系統(tǒng)成功運(yùn)用于基因組編輯,借助其在病毒防御中的原理,為基因編輯和研究領(lǐng)域帶來(lái)了新的可能性和機(jī)遇。主要流程如下:(1)構(gòu)建相關(guān)基因的sgRNA文庫(kù),并將sgRNA整合到慢病毒中,制備慢病毒文庫(kù);(2)使用低感染度感染細(xì)胞,使sgRNA整合到細(xì)胞基因組中。隨著基因組DNA的復(fù)制,sgRNA被復(fù)制并傳遞給細(xì)胞后代。通過(guò)抗生素或其他特定篩選條件,篩選出感染病毒的細(xì)胞;(3)根據(jù)特定的表型需求,如耐藥性、增殖能力、存活能力和帶有特定標(biāo)記基因等,選擇適當(dāng)?shù)募?xì)胞;(4)提取細(xì)胞核基因組,準(zhǔn)備進(jìn)行下一步的建庫(kù)。通過(guò)高通量測(cè)序?qū)◣?kù)的細(xì)胞核基因組進(jìn)行測(cè)序;(5)通過(guò)各種生物信息學(xué)分析方法,從測(cè)序數(shù)據(jù)中獲取目標(biāo)基因的相關(guān)信息,進(jìn)一步研究和理解其功能(圖3)。
近年來(lái),基因組編輯技術(shù)CRISPR的迅速發(fā)展使得該技術(shù)在畜禽的多方面應(yīng)用提供了可能性,通過(guò)CRISPR/Cas9技術(shù),畜禽肌肉生長(zhǎng)可以得到促進(jìn),這使得肉類產(chǎn)量得到提高。綿羊毛和山羊絨的質(zhì)量也得到改良,使得纖維產(chǎn)品更具商業(yè)價(jià)值。此外,通過(guò)編輯動(dòng)物基因,牛奶和羊奶的品質(zhì)可以得到改善,從而提供更健康和高營(yíng)養(yǎng)價(jià)值的乳制品。該技術(shù)還有助于提高畜禽的抗病能力,減少疾病對(duì)養(yǎng)殖業(yè)的影響,進(jìn)而提高養(yǎng)殖效益。此外,通過(guò)增強(qiáng)畜禽的生長(zhǎng)和健康狀況,CRISPR/Cas9技術(shù)也有助于改善動(dòng)物福利。
圖2 基因編輯技術(shù)發(fā)展歷程圖
圖3 CRISPR/Cas9系統(tǒng)工作的主要流程
肌肉抑制素(myostatin,MSTN)是一種肌肉生長(zhǎng)抑制因子,它對(duì)肌肉的生長(zhǎng)和發(fā)育起到負(fù)調(diào)控的作用。基因突變、缺失或敲除可以導(dǎo)致肌肉細(xì)胞增殖和分化的增加,從而促進(jìn)肌肉的生長(zhǎng)和發(fā)育[33]。通過(guò)CRISPR/Cas9基因編輯以及優(yōu)化Cas9:sgRNA (向?qū)NA)傳遞系統(tǒng),成功實(shí)現(xiàn)了綿羊()的雙等位基因敲除,與野生型(WT)綿羊相比,敲除綿羊具有更大的肌肉質(zhì)量和肌肉纖維直徑,但其肉質(zhì)品質(zhì)和口感等方面未受到影響[34]。同樣,在牛()中也實(shí)現(xiàn)將sgRNA和Cas9的合成mRNA體外顯微注射到受精牛胚胎,出生健康犢牛的突變率高達(dá)99.9%,表現(xiàn)出雙等位基因突變和雙肌肉表型[35]。在山羊()中也有各項(xiàng)研究表明,抑制基因的表達(dá),可促進(jìn)雙肌肉表型的形成[36~41]。在豬()的研究中,Li等[42]使用特異性靶向編輯技術(shù),通過(guò)設(shè)計(jì)特定的sgRNA,對(duì)兩廣小花豬胚胎中的MSTN信號(hào)肽進(jìn)行基因編輯。編輯后的小豬與未編輯的小豬相比,顯示出明顯增加的肌肉量,同時(shí)其發(fā)育和健康狀態(tài)與未編輯的小豬無(wú)明顯差異。在雞()中,使用D10A-Cas9 nickase介導(dǎo)的方法,選擇性地引入DSB,從而生成了基因敲除的雞群,這些敲除突變雞的肌肉生長(zhǎng)顯著增加,生長(zhǎng)和繁殖均正常[43]。在馬()中,一般會(huì)通過(guò)編輯基因來(lái)增強(qiáng)肌肉生長(zhǎng)和改善運(yùn)動(dòng)表現(xiàn)[44]。
CRISPR/Cas9基因編輯技術(shù)除對(duì)基因進(jìn)行編輯之外,還在肌原細(xì)胞分化蛋白1(myogenic differentiation 1,MYOD1)[45]、胰島素樣生長(zhǎng)因子1(insulin-like growth factor 1,IGF1)[46]、胰島素樣生長(zhǎng)因子2(insulin-like growth factor 2,IGF2)[47,48]和抗肌肉生長(zhǎng)因子抗體(follistatin,F(xiàn)ST)[49]等編碼與肌肉發(fā)育或分化相關(guān)蛋白的基因功能調(diào)控上得到了應(yīng)用。
過(guò)氧化物酶增殖物激活受體(peroxisome proliferator-activated receptor,PPAR)是調(diào)控脂肪細(xì)胞分化的關(guān)鍵因子,可通過(guò)激活脂肪細(xì)胞分化調(diào)節(jié)因子(如FABP4和CCAAT增強(qiáng)子結(jié)合蛋白)以及增強(qiáng)和基因的表達(dá)來(lái)促進(jìn)脂肪細(xì)胞分化,從而調(diào)控脂肪沉積。Gu等[50]通過(guò)隨機(jī)插入和CRISPR/Cas9轉(zhuǎn)基因克隆程序在兩個(gè)豬模型中成功地肌肉特異性過(guò)表達(dá)了過(guò)氧化物酶增殖物激活受體γ (peroxisome proliferator-activated receptor gamma,PPARγ),該編輯豬肌內(nèi)脂肪含量顯著增加,瘦肉比例無(wú)變化。此外,在肉牛中成功地實(shí)現(xiàn)了對(duì)基因的位點(diǎn)定向突變的同時(shí)進(jìn)行了位點(diǎn)的定向敲入,突變對(duì)生長(zhǎng)性狀和肌肉發(fā)展產(chǎn)生了顯著的影響[51],而敲入對(duì)這些性狀的影響較小[52]。
綿羊和山羊作為重要的畜禽資源,為人類提供了用于生產(chǎn)各種服裝和紡織品的寶貴的纖維來(lái)源。成纖維細(xì)胞生長(zhǎng)因子5 (fibroblast growth factor 5,F(xiàn)GF5)是影響羊毛長(zhǎng)度的主要因子。目前,通過(guò)CRISPR/Cas9技術(shù)成功生成了敲除綿羊。該敲除綿羊所有細(xì)胞系都存在基因突變,同時(shí)還檢測(cè)到5、13和33個(gè)堿基對(duì)的基因缺失,這些結(jié)果導(dǎo)致FGF5蛋白高級(jí)結(jié)構(gòu)發(fā)生變化,影響其正常功能,從而引起敲除綿羊的羊毛長(zhǎng)度明顯長(zhǎng)于WT綿羊[53]。另外,Li[54]等和Wang等[55]的研究也確認(rèn)了這一事實(shí),即CRISPR/Cas9介導(dǎo)的基因缺失不僅導(dǎo)致其活性的喪失,還能促進(jìn)綿羊毛和山羊絨的生長(zhǎng),從而增加它們的長(zhǎng)度和產(chǎn)量。刺鼠信號(hào)蛋白(agouti signaling protein,ASIP)是調(diào)節(jié)皮膚和毛發(fā)色素的蛋白,其主要功能是調(diào)控皮膚和毛囊中色素產(chǎn)生。Zhang等[56]成功地干擾了中國(guó)美利奴羊ASIP的正常功能,導(dǎo)致羊毛的顏色發(fā)生了變化,這一突破為產(chǎn)生具有理想羊毛顏色的品種培育提供了機(jī)會(huì)。
有研究表明,在位點(diǎn)敲入血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF),并使用和的組合能夠顯著提高CRISPR/Cas9介導(dǎo)的同源定向修復(fù)效率,通過(guò)該技術(shù)獲得了一只在位點(diǎn)整合了基因的具有突出絨毛性能的絨山羊[57]。此外,通過(guò)將胸腺素4 (thymosin β4,Tβ4)基因特異性插入山羊趨化因子受體(chemokine receptor 5,CCR5)基因位點(diǎn),培育出了高產(chǎn)絨山羊,羊絨產(chǎn)量提高了74.5%[58],細(xì)度和質(zhì)量不受影響。在雙基因敲除絨山羊模型中,Wang等[59]使用CRISPR/Cas9技術(shù),在受精卵中引入了設(shè)計(jì)好的特異性靶向RNA和DNA片段。這些靶向RNA和DNA片段與目標(biāo)基因的特定區(qū)域匹配,并促使CRISPR/Cas9系統(tǒng)發(fā)生基因編輯作用,成功地敲除了基因和基因,這使得絨山羊的肌肉發(fā)育得到顯著改善,并且觀察到了更多的次級(jí)毛囊的形成和更長(zhǎng)的羊絨纖維,從而提高了絨山羊的商業(yè)價(jià)值和經(jīng)濟(jì)效益。
人體對(duì)牛奶或羊奶過(guò)敏主要是由于人體免疫系統(tǒng)對(duì)奶中的蛋白質(zhì)產(chǎn)生異常免疫反應(yīng)所造成的。β-乳球蛋白(beta-lactoglobulin,BLG)被認(rèn)為是一種重要的致敏性物質(zhì),因此可以通過(guò)基因編輯技術(shù)對(duì)乳品質(zhì)進(jìn)行改善??蒲腥藛T使用CRISPR/Cas9基因編輯技術(shù),通過(guò)對(duì)牛的基因進(jìn)行修改來(lái)改變牛奶的成分和性質(zhì)。例如:Alessio等[60]將引入轉(zhuǎn)座子中,催化合成ω-3和ω-6酸,然后,通過(guò)CRISPR/ Cas9技術(shù),實(shí)現(xiàn)靶向敲除BLG蛋白,成功地修改了牛的基因,提高了牛奶中的脂肪和蛋白質(zhì)含量。Silaeva等[61]著重于減少牛奶中引起過(guò)敏的成分,在BLG中引入雙鏈gap,從而產(chǎn)生了過(guò)敏原含量更低的牛奶。Singina等[62]在牛胚胎成纖維細(xì)胞中成功獲得了敲除BLG蛋白和β-乳球蛋白樣蛋白基因細(xì)胞集落,未來(lái)將被用于生產(chǎn)缺乏BLG蛋白的牛。在山羊上,將Cas9 mRNA和sgRNA共注射到胚胎中生成BLG蛋白敲除山羊,發(fā)現(xiàn)在雙鏈sgRNA引導(dǎo)的靶向?qū)嶒?yàn)的編輯效率比單鏈sgRNA低,并且基因以及其他乳蛋白編碼基因在敲除山羊乳腺中的相對(duì)表達(dá)顯著降低,此外,大部分編輯的胎兒是嵌合體,表明編輯效果可以在多個(gè)組織中實(shí)現(xiàn)[63]。
山羊奶含有豐富的不飽和脂肪酸,是合成乳脂的必需因子。而硬脂酰輔酶A去飽和酶1 (stearoyl- CoA desaturase 1,SCD1)是催化單不飽和脂肪酸合成的關(guān)鍵酶,對(duì)乳脂代謝至關(guān)重要。Tian等[64]使用CRISPR/Cas9技術(shù)在山羊乳腺上皮細(xì)胞(goat mam-mary epithelial cells,GMEC)中敲除了SCD1酶,導(dǎo)致三酰甘油、膽固醇含量降低和脂肪酸的去飽和酶指數(shù)減少,但對(duì)其他乳汁成分沒(méi)有影響。通過(guò)乳脂質(zhì)組學(xué)分析發(fā)現(xiàn),SCD1敲除降低了三酰甘油和二酰甘油水平,并在甘油脂和甘油磷脂代謝途徑中引起了差異。此外,Tian等[65]還揭示了SCD1通過(guò)影響脂質(zhì)代謝基因表達(dá)和脂質(zhì)代謝途徑來(lái)調(diào)控山羊乳脂和不飽和脂肪酸的合成。MicroRNA(miRNA)可通過(guò)調(diào)節(jié)脂肪酸代謝途徑中的關(guān)鍵基因來(lái)調(diào)控乳腺細(xì)胞的脂肪酸代謝,敲除和后,可以上調(diào)靶基因,同時(shí)上調(diào)并影響脂肪酸代謝關(guān)鍵基因的表達(dá)。這些作用有助于調(diào)節(jié)脂滴、甘油三酯和膽固醇的合成,并對(duì)C18:0、C18:2以及C20多不飽和脂肪酸的含量產(chǎn)生了影響[66~68]。敲除GMEC中的ASIP蛋白也可以促進(jìn)中長(zhǎng)鏈脂肪酸合成增加,而敲除丙二酰/乙酰轉(zhuǎn)移酶(malonyl/ acetyltransferase,MAT)降低甘油三酯和中鏈脂肪酸的含量??傮w而言,這些因子在調(diào)節(jié)GMEC的脂質(zhì)代謝中起著關(guān)鍵作用,這可能會(huì)進(jìn)一步影響山羊奶中脂質(zhì)的成分。
全球范圍內(nèi)畜禽傳染病會(huì)降低動(dòng)物生產(chǎn)能力和質(zhì)量,導(dǎo)致農(nóng)業(yè)經(jīng)濟(jì)巨大損失。宿主可以通過(guò)特定的基因編碼的抗微生物肽或蛋白質(zhì),直接破壞或抑制病原微生物,或者阻斷病原微生物進(jìn)入宿主細(xì)胞所需的受體。此外,還可以通過(guò)干擾病原微生物的生命周期過(guò)程,阻礙正常生存和復(fù)制,從而降低其對(duì)宿主的傷害程度。這兩種策略都是宿主自身的機(jī)制來(lái)保護(hù)自己免受感染。因此,如何從源頭上進(jìn)行疾病的預(yù)防是目前農(nóng)牧業(yè)面臨的關(guān)鍵問(wèn)題[69]。
黑色素瘤分化相關(guān)蛋白5 (melanoma differentiation-associated protein 5,MDA5)、線粒體抗病毒信號(hào)(mitochondrial antiviral signaling protein,MAVS)蛋白和干擾素基因刺激因子(stimulator of interferon genes,STING)均為細(xì)胞對(duì)抗病原微生物感染相關(guān)的蛋白質(zhì),它們?cè)诩?xì)胞內(nèi)形成一個(gè)信號(hào)傳遞網(wǎng)絡(luò),促進(jìn)免疫反應(yīng)的激活和病原微生物的清除。雞的先天免疫系統(tǒng)具有兩種主要的病原體識(shí)別受體,即Toll樣受體3(toll-like receptor 3,TLR3)和MDA5,通過(guò)敲除雞DF-1成纖維細(xì)胞中和MDA5蛋白,與WT細(xì)胞相比,發(fā)現(xiàn)雙敲除細(xì)胞中AOAV-1病毒的復(fù)制率明顯提高[70]。粘病毒抵抗基因(myxovirus resistance,Mx)被證明具有廣泛的抗病毒和GTP酶活性。為了研究雞對(duì)新城疫病毒(Newcastle disease virus,NDV)感染的影響,使用CRISPR/Cas9基因編輯系統(tǒng)構(gòu)建了敲除基因的DF-1細(xì)胞系。發(fā)現(xiàn)敲除的細(xì)胞中NDV的病毒滴度更高,并促進(jìn)了一些免疫因子的表達(dá)。表明在防止病毒侵入中發(fā)揮了重要的作用[71]。此外,敲除基因后,牛乳腺上皮細(xì)胞對(duì)鳥(niǎo)分枝桿菌副結(jié)核病(subsp.,MAP)菌株細(xì)胞溶解物的炎癥反應(yīng)減弱,表現(xiàn)出更低的炎癥因子的產(chǎn)生,這暗示在MAP感染誘導(dǎo)的牛乳腺炎癥反應(yīng)中發(fā)揮重要作用,可能對(duì)抗MAP菌株感染具有潛在保護(hù)作用[72]。敲除也影響牛乳腺上皮細(xì)胞的形態(tài)、增殖、遷移和β-酪蛋白分泌,能夠減少乳腺炎的發(fā)生[73]。對(duì)患有糖原分支酶缺乏癥(glycogen branching enzyme deficiency,GBED)的馬進(jìn)行基因組篩查,檢測(cè)到這些馬在GBE1基因有一個(gè)點(diǎn)突變,隨后,使用CRISPR/ Cas9系統(tǒng)來(lái)針對(duì)這個(gè)點(diǎn)突變進(jìn)行修復(fù),成功地恢復(fù)了基因的正常表達(dá)和功能,并實(shí)現(xiàn)了對(duì)GBED馬的治療,這項(xiàng)研究也暗示,CRISPR/Cas9系統(tǒng)是對(duì)畜禽遺傳疾病進(jìn)行研究和治療的有效工具[74]。
豬β-防御素2(porcine beta-defensin 2,PBD-2)是一種重要的天然免疫分子,具有廣譜的抗菌活性和免疫調(diào)節(jié)功能。研究人員使用CRISPR/Cas9和Cre/loxP系統(tǒng)生成無(wú)標(biāo)記的PBD-2敲入豬的基因座,再通過(guò)體細(xì)胞核移植產(chǎn)生克隆仔豬,發(fā)現(xiàn)PBD-2在轉(zhuǎn)基因仔豬不同組織中的表達(dá)水平顯著高于WT仔豬,并且克隆豬的豬耳成纖維細(xì)胞的抗菌特性顯著增加[75]。在一項(xiàng)關(guān)于非洲豬瘟病毒(African swine fever virus,ASFV)研究中,發(fā)現(xiàn)了5種豬干擾素誘導(dǎo)的跨膜蛋白(SwIFITM1a、-1b、-2、-3和-5)敲除增強(qiáng)了ASFV的復(fù)制,這表明SwIFITMs對(duì)ASFV具有強(qiáng)烈的抗病毒作用[76]。自然抵抗相關(guān)巨噬細(xì)胞蛋白1 (natural resistance-associated macrophage protein 1,NRAMP1)在抗菌免疫中發(fā)揮重要作用。通過(guò)使用Cas9剪切酶的單個(gè)活性位點(diǎn),在牛的基因組中插入NRAMP1蛋白,顯著降低離靶效應(yīng)并提高基因編輯的精確性,獲得了具有強(qiáng)抗結(jié)核病的轉(zhuǎn)基因牛[77]。利用CRISPR/Cas9技術(shù)建立組蛋白脫乙酰酶9(histone deacetylases 9,HDAC9)敲除BHK-21細(xì)胞,發(fā)現(xiàn)在口蹄疫病毒感染后各病毒相關(guān)指標(biāo)均增長(zhǎng),這說(shuō)明HDAC9在宿主抗病毒先天免疫應(yīng)答中有至關(guān)重要的作用[78]。
馬立克病病毒(Marek’s disease virus,MDV)是家禽中一種常見(jiàn)的傳染性疾病,對(duì)家禽產(chǎn)業(yè)造成了嚴(yán)重的經(jīng)濟(jì)損失。通過(guò)敲除MDV關(guān)鍵基因,研究人員成功阻斷了MDV的復(fù)制和傳播,從而有效抑制了馬立克病病毒的感染。這項(xiàng)研究為控制馬立克病的傳播和疫苗開(kāi)發(fā)提供了新的思路和方法[79]。在牛病毒性腹瀉病(bovine viral diarrhoea virus,BVDV)方面,一篇研究探討了黃病毒科瘟病毒屬內(nèi)不同病毒在宿主細(xì)胞中的進(jìn)入機(jī)制。該報(bào)道顯示,牛補(bǔ)體調(diào)節(jié)蛋白46 (complement regulatory protein 46,CD46BOV)在不同病毒中具有不同的作用。CD46BOV作為HoBi樣瘟病毒(HoBi-like pestiviruses,HoBiPeV)的主要細(xì)胞進(jìn)入因子,而不是起源于肯尼亞的長(zhǎng)頸鹿瘟病毒(giraffe pestivirus,GPeV)。此外,他們還發(fā)現(xiàn),、、和的病毒分離株能夠通過(guò)使用硫酸乙酰肝素進(jìn)入宿主細(xì)胞來(lái)適應(yīng)細(xì)胞培養(yǎng)條件。這表明不同的牛瘟病毒使用不同的宿主細(xì)胞進(jìn)入機(jī)制[80]。偽狂犬病病毒(pseudorabies virus,PRV)是一種嗜神經(jīng)病毒,可引起豬的神經(jīng)系統(tǒng)疾病。在PRV進(jìn)入宿主細(xì)胞的過(guò)程中,血小板反應(yīng)蛋白3 (thrombospondin 3,THBS3)起著重要作用。THBS3是一種新的PRV的共受體,可以與PRV的包膜糖蛋白相互作用,啟動(dòng)PRV進(jìn)入細(xì)胞的過(guò)程。通過(guò)在不同細(xì)胞中敲除或過(guò)表達(dá)THBS3來(lái)驗(yàn)證其在PRV感染中的作用,結(jié)果顯示THBS3通過(guò)與PRV的特定蛋白相互作用,促進(jìn)了病毒與宿主細(xì)胞的結(jié)合和膜融合[81]。
通過(guò)多基因編輯可以使家畜對(duì)多種主要病毒具有抗性。豬繁殖與呼吸綜合征病毒(porcine reprodu-ctive and respiratory syndrome virus,PRRSV)和傳染性腸胃炎病毒(transmissible gastroenteritis virus,TGEV)是兩種對(duì)全球養(yǎng)豬產(chǎn)業(yè)造成重大經(jīng)濟(jì)損失的高傳染性病毒。對(duì)CD163和pAPN進(jìn)行雙基因敲除的豬,發(fā)現(xiàn)DKO豬對(duì)PRRSV和TGEV具有完全耐藥性。在肉質(zhì)和繁殖性能方面,野生型和雙基因敲除豬沒(méi)有差異,并且敲除豬對(duì)豬德?tīng)査跔畈《?porcine deltacoronavirus,PDCoV)的易感性也降低了[82]。
執(zhí)行動(dòng)物福利的必要性是基于人們對(duì)動(dòng)物的道德責(zé)任和尊重。動(dòng)物是有感知和情感的生物,應(yīng)該受到適當(dāng)?shù)年P(guān)愛(ài)和保護(hù)。隨著現(xiàn)代畜牧業(yè)的發(fā)展,基因編輯技術(shù)可以避免牲畜遭受一些比如犢牛去角、雄性閹割、奶牛去尾、墮胎或剔除不需要的性別等不必要的痛苦[83]。
安格斯牛的1號(hào)染色體上P等位基因的變異由212 bp的DNA重復(fù)序列組成,取代了無(wú)角位點(diǎn)的10 bp序列導(dǎo)致了其自然無(wú)角。Hennig等[84]通過(guò)CRISPR/Cas9技術(shù)采用雙sgRNA刪除了一個(gè)包括在無(wú)角位點(diǎn)缺失的10 bp的133 bp區(qū)域,隨后進(jìn)行133 bp缺失胚胎的移植,最終獲得了缺失133 bp的雙等位基因胎兒,但均顯示出角芽發(fā)育,因此還需進(jìn)一步研究尋找其他引發(fā)無(wú)角表型的因素。
通常,為了削除腥臭味,用于豬肉供應(yīng)的雄性仔豬會(huì)進(jìn)行手術(shù)閹割。然而,這可能導(dǎo)致雄性仔豬的感染和身體的痛苦。Flórez等[85]將KiSS-1轉(zhuǎn)移抑制因子(KiSS-1 metastasis suppressor,KISS1)作為目標(biāo),通過(guò)使用CRISPR/Cas9技術(shù),在豬的基因組中編輯了基因,成功地導(dǎo)致其功能受損,編輯后的豬表現(xiàn)出下丘腦性性腺功能減退癥(hypogo-nadotropic hypogonadism)的特征,即性腺功能不正常。該研究為提供一種無(wú)需進(jìn)行去勢(shì)的方法來(lái)控制豬的繁殖特征提供了可能性。
熱應(yīng)激可能導(dǎo)致動(dòng)物的脫水、電解質(zhì)紊亂、增加患病風(fēng)險(xiǎn)等健康問(wèn)題,還可能導(dǎo)致如減少活動(dòng)和出現(xiàn)不安行為等行為改變,并且導(dǎo)致如生長(zhǎng)速度減緩、產(chǎn)蛋量下降。因此,亟需采取相應(yīng)的措施解決熱應(yīng)激對(duì)家養(yǎng)動(dòng)物的影響,從而保障健康、行為和生產(chǎn)能力。催乳素受體(prolactin receptor,PRLR)和熱休克蛋白(heat shock 70 kDa protein 1-like,HSPA1L)的突變可賦予牛良好的體溫調(diào)節(jié)和細(xì)胞保護(hù)能力。通過(guò)基因編輯技術(shù)將這些特定基因轉(zhuǎn)移給無(wú)法適應(yīng)高溫氣候的品種,有望減少熱應(yīng)激對(duì)牛類生產(chǎn)的影響[86]。
盡管CRISPR/Cas9技術(shù)在基因組編輯領(lǐng)域的應(yīng)用被認(rèn)為是一項(xiàng)具有巨大潛力的革命性進(jìn)展,但在學(xué)術(shù)領(lǐng)域和公眾之間仍存在分歧,這些分歧包括技術(shù)應(yīng)用的安全性和可靠性問(wèn)題。首先,安全性方面的問(wèn)題主要涉及到對(duì)編輯動(dòng)物基因組的全面評(píng)估。這包括檢查編輯基因?qū)?dòng)物本身以及周圍環(huán)境的潛在影響,并評(píng)估潛在的風(fēng)險(xiǎn)。此外,還需要關(guān)注導(dǎo)入基因組的穩(wěn)定性和遺傳多樣性的維持,以避免不可逆的遺傳塑造和遺傳缺陷。通過(guò)全面的安全評(píng)估,可以確保編輯動(dòng)物在健康和繁殖能力方面與非編輯群體一致,并減少任何可能的不良遺傳影響。其次,可靠性方面的問(wèn)題涉及到技術(shù)本身的精確性和效率。CRISPR/Cas9技術(shù)在基因編輯方面具有準(zhǔn)確性和高效性的優(yōu)點(diǎn),但仍需繼續(xù)改進(jìn)。除此之外,也需要集中精力解決編輯技術(shù)中的潛在誤差和副作用,以提高技術(shù)的可靠性和預(yù)測(cè)性。CRISPR/Cas9技術(shù)在基因編輯畜禽動(dòng)物中未來(lái)發(fā)展的重要方向?yàn)檫M(jìn)一步研究基因功能和基因網(wǎng)絡(luò)的理解,以及CRISPR/ Cas9與其他基因編輯技術(shù)的結(jié)合。這些方向?qū)⒂兄谶M(jìn)一步拓寬畜禽遺傳改良的可能性??傮w而言,隨著CRISPR/Cas9基因編輯技術(shù)的不斷發(fā)展和改進(jìn),相信它將在畜牧業(yè)遺傳改良中發(fā)揮越來(lái)越重要的作用,并為提高畜禽生產(chǎn)效率和質(zhì)量做出貢獻(xiàn)。
[1] Singh P, Ali SA. Impact of CRISPR-Cas9-based genome engineering in farm animals., 2021, 8(7): 122.
[2] Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases., 2003, 300(5620): 764.
[3] Hockemeyer D, Wang HY, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng XD, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases., 2011, 29(8): 731–734.
[4] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9., 2014, 346(6213): 1258096.
[5] Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes., 2014, 32(4): 347–355.
[6] Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review)., 2018, 53(2): 443–468.
[7] Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J. CRISPR/Cas9 technology as an emerging tool for targeting amyotrophic lateral sclerosis (ALS)., 2018, 19(3): 906.
[8] Belk JA, Yao W, Ly N, Freitas KA, Chen YT, Shi QM, Valencia AM, Shifrut E, Kale N, Yost KE, Duffy CV, Daniel B, Hwee MA, Miao Z, Ashworth A, Mackall CL, Marson A, Carnevale J, Vardhana SA, Satpathy AT. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence., 2022, 40(7): 768–786.
[9] Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells., 2021, 22(4): 216–234.
[10] Nu?ez JK, Lee ASY, Engelman A, Doudna JA. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity.e, 2015, 519(7542): 193–198.
[11] Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems., 2015, 1311: 47–75.
[12] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product., 1987, 169(12): 5429–5433.
[13] Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A., 1991, 252(5007): 809–817.
[14] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain., 1996, 93(3): 1156–1160.
[15] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea., 2010, 327(5962): 167– 170.
[16] Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes., 2002, 43(6): 1565–1575.
[17] Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases., 2002; 161(3): 1169–1175.
[18] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes., 2007, 315(5819): 1709–1712.
[19] Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases., 2010, 186(2): 757–761.
[20] Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao YJ, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III., 2011, 471(7340): 602–607.
[21] Li TM, Du B. CRISPR-Cas system and coevolution of bacteria and phages., 2011, 33(3): 213–218.
[22] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9., 2013, 339(6121): 823–826.
[23] Koike-Yusa H, Li YL, Tan EP, Velasco-Herrera MDC, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library., 2014, 32(3): 267–273.
[24] Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage., 2016, 533(7603): 420–424.
[25] Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA., 2019, 576(7785): 149–157.
[26] Liu Y, Zou RS, He SX, Nihongaki Y, Li XG, Razavi S, Wu B, Ha T. Very fast CRISPR on demand., 2020, 368(6496): 1265–1269.
[27] Kunin V, Sorek R, Hugenholtz P. Evolutionary conser-vation of sequence and secondary structures in CRISPR repeats., 2007, 8(4): R61.
[28] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity., 2012, 337(6096): 816–821.
[29] Garneau JE, Dupuis Mè, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA., 2010, 468(7320): 67–71.
[30] Rouet P, Smih F, Jasin M. Introduction of double- strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease., 1994, 14(12): 8096–8106.
[31] Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity., 2010, 463(7280): 568–571.
[32] Yu JSL, Yusa K. Genome-wide CRISPR-Cas9 screening in mammalian cells., 2019, 164–165: 29–35.
[33] Ge LX, Dong XC, Gong XT, Kang J, Zhang Y, Quan FS. Mutation in myostatin 3'UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN., 2020, 154: 634–643.
[34] Zhou SW, Kalds P, Luo Q, Sun KX, Zhao XE, Gao YW, Cai B, Huang SH, Kou QF, Petersen B, Chen YL, Ma BH, Wang XL. Optimized Cas9: sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality., 2022, 23(1): 348.
[35] Gim GM, Kwon DH, Eom KH, Moon J, Park JH, Lee WW, Jung DJ, Kim DH, Yi JK, Ha JJ, Lim KY, Kim JS, Jang G. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9., 2022, 17(7): e2100198.
[36] Lyu M, Wang X, Meng XY, Qian HR, Li Q, Ma BX, Zhang ZY, Xu K. chi-miR-487b-3p inhibits goat myoblast proliferation and differentiation by targeting IRS1 through the IRS1/PI3K/Akt signaling pathway., 2021, 23(1): 115.
[37] Zhang J, Liu J, Yang WL, Cui ML, Dai B, Dong YH, Yang J, Zhang XM, Liu DJ, Liang H, Cang M. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats., 2019, 132: 1–11.
[38] Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L, Chen Y. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass., 2018, 49(1): 43–51.
[39] Guo RH, Wan Y,J Xu D, Cui LB, Deng MT, Zhang GM, Jia RX, Zhou WJ, Wang Z, Deng KP, Huang MR, Wang F, Zhang YL. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system., 2016, 6: 29855.
[40] Li C, Zhou SW, Li Y, Li GW, Ding YG, Li L, Liu J, Qu L, Sonstegard T, Huang XX, Jiang Y, Chen YL, Petersen B, Wang XL. Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats., 2018, 9: 449.
[41] He ZY, Zhang T, Jiang L, Zhou MY, Wu DJ, Mei JY, Cheng Y. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats., 2018, 38(6): BSR20180742.
[42] Li RQ, Zeng W, Ma M, Wei ZX, Liu HB, Liu XF, Wang M, Shi X, Zeng JH, Yang LF, Mo DL, Liu XH, Chen YS, He ZY. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs., 2020, 29(1): 149– 163.
[43] Kim GD, Lee JH, Song SM, Kim SW, Han JS, Shin SP, Park BC, Park TS. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase., 2020, 34(4): 5688–5696.
[44] Moro LN, Viale DL, Bastón JI, Arnold V, Suvá M, Wiedenmann E, Olguín M, Miriuka S, Vichera G. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer., 2020, 10(1): 15587.
[45] Zhou D, Wang Y, Yang R, Wang F, Zhao ZH, Wang X, Xie LL, Tian XZ, Wang GZ, Li B, Gong Y. The MyoD1 promoted muscle differentiation and generation by activating CCND2 in Guanling cattle., 2022, 12(19): 2571.
[46] Roberston MJ, Raghunathan S, Potaman VN, Zhang F, Stewart MD, McConnell BK, Schwartz RJ. CRISPR- Cas9-induced IGF1 gene activation as a tool for enhancing muscle differentiation via multiple isoform expression., 2020, 34(1): 555–570.
[47] Zou HY, Yu DW, Yao S, Ding FR, Li JL, Li L, Li X, Zhao SJ, Pang YW, Hao HS, Du WH, Zhao XM, Dai YP, Zhu HB. Efficient editing of the ZBED6-binding site in intron 3 of IGF2 in a bovine model using the CRISPR/Cas9 system., 2022, 13(7): 1132.
[48] Xiang GH, Ren JL, Hai T, Fu R, Yu DW, Wang J, Li W, Wang HY, Zhou Q. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs., 2018, 75(24): 4619–4628.
[49] Li MJ, Tang XC, You WN, Wang YB, Chen YW, Liu Y, Yuan HM, Gao C, Chen X, Xiao ZW, Ouyang HS, Pang DX. Erratum: HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine., 2021, 26: 49–62.
[50] Gu H, Zhou Y, Yang JZ, Li JN, Peng YX, Zhang X, Miao YL, Jiang W, Bu GW, Hou LM, Li T, Zhang L, Xia XL, Ma ZY, Xiong YZ, Zuo B. Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition., 2021, 35(2): e21308.
[51] Zhao YF, Yang L, Su GH, Wei ZY, Liu XF, Song LS, Hai C, Wu D, Hao ZT, Wu YX, Zhang L, Bai CL, Li GP. Growth traits and sperm proteomics analyses of myostatin gene-edited Chinese Yellow Cattle., 2022, 12(5): 627.
[52] Ge LX, Kang J, Dong XC, Luan DJ, Su GH, Li GP, Zhang Y, Quan FS. Myostatin site-directed mutation and simultaneous PPARγ site-directed knockin in bovine genome., 2021, 236(4): 2592–2605.
[53] Hu R, Fan ZY, Wang BY, Deng SL, Zhang XS, Zhang JL, Han HB, Lian ZX. RAPID COMMUNICATION: generation of FGF5 knockout sheep via the CRISPR/Cas9 system., 2017, 95(5): 2019–2024.
[54] Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, Lin JP, Han B, Wang LQ, Huang JC, Liu MJ. CRISPR/ Cas9-mediated loss of FGF5 function increases wool staple length in sheep., 2017, 284(17): 2764– 2773.
[55] Wang XL, Cai B, Zhou JK, Zhu HJ, Niu YY, Ma BH, Yu HH, Lei AM, Yan HL, Shen QY, Shi L, Zhao XE, Hua JL, Huang XX, Qu L, Chen YL. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers., 2016, 11(10): e0164640.
[56] Zhang XM, Li WR, Liu CX, Peng XR, Lin JP, He SG, Li XJ, Han B, Zhang N, Wu YS, Chen L, Wang LQ, MaYila, Huang JC, Liu MJ. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9., 2017, 7(1): 8149.
[57] Hu X, Hao F, Li XC, Xun ZY, Gao Y, Ren BX, Cang M, Liang H, Liu D. Generation of VEGF knock-in cashmere goat via the CRISPR/Cas9 system., 2021, 17(4): 1026–1040.
[58] Li XC, Hao F, Hu X, Wang H, Dai B, Wang X, Liang H, Cang M, Liu DJ. Generation of Tβ4 knock-in cashmere goat using CRISPR/Cas9., 2019, 15(8): 1743–1754.
[59] Wang XL, Yu HH, Lei AM, Zhou JK, Zeng WX, Zhu HJ, Dong ZM, Niu YY, Shi BB, Cai B, Liu JW, Huang S, Yan HL, Zhao XE, Zhou GX, He XL, Chen XX, Yang YX, Jiang Y, Shi L, Tian X, Wang YJ, Ma BH, Huang XX, Qu L, Chen YL. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system., 2015, 5: 13878.
[60] Alessio A, Pericuesta E, Llamas-Toranzo I, Forcato D, Fili A, Liaudat C, Rodriguez N, Kues W, Bermejo-álvarez P, Bosch P. 203 genome modifications by sleeping beauty transposition and CRISPR/Cas9 to improve cow milk composition for human consumption., 2018, 30(1): 242.
[61] Silaeva YY, Kubekina MV, Bruter AV, Isaeva AG, Koshchaev AG. Gene editing CRISPR/Cas9 system for producing cows with hypoallergenic milk on the back-ground of a beta-lactoglobulin gene knockout., 2020, 176: 01006.
[62] Singina GN, Sergiev PV, Lopukhov AV, Rubtsova MP, Taradajnic NP, Ravin NV, Shedova EN, Taradajnic TE, Polejaeva IA, Dozev AV, Brem G, Dontsova OA, Zinovieva NA. Production of a cloned offspring and CRISPR/Cas9 genome editing of embryonic fibroblasts in cattle., 2021, 496(1): 48–51.
[63] Zhou WJ, Wan YJ, Guo RH, Deng MT, Deng KP, Wang Z, Zhang YL, Wang F. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9., 2017, 12(10): e0186056.
[64] Tian HB, Luo J, Zhang ZF, Wu J, Zhang TY, Busato S, Huang L, Song N, Bionaz M. CRISPR/Cas9-mediated stearoyl-CoA desaturase 1 (SCD1) deficiency affects fatty acid metabolism in goat mammary epithelial cells., 2018, 66(38): 10041–10052.
[65] Tian HB, Niu HM, Luo J, Yao WW, Chen XY, Wu J, Geng YN, Gao WC, Lei AM, Gao ZM, Tian X, Zhao X, Shi HP, Li C, Hua JL. Knockout of stearoyl-CoA desaturase 1 decreased milk fat and unsaturated fatty acid contents of the goat model generated by CRISPR/Cas9., 2022, 70(13): 4030–4043.
[66] Huang L, Tian HB, Luo J, Song N, Wu J. CRISPR/Cas9 based knockout of miR-145 affects intracellular fatty acid metabolism by targeting INSIG1 in goat mammary epithelial cells., 2020, 68(18): 5138– 5146.
[67] Huang L, Luo J, Gao WC, Song N, Tian HB, Zhu L, Jiang QM, Loor JJ. CRISPR/Cas9-induced knockout of miR-24 reduces cholesterol and monounsaturated fatty acid content in primary goat mammary epithelial cells., 2022, 11(14): 2012.
[68] Huang L, Luo J, Song N, Gao WC, Zhu L, Yao WW. CRISPR/Cas9-mediated knockout of miR-130b affects mono- and polyunsaturated fatty acid content via PPARG-PGC1α axis in goat mammary epithelial cells., 2022, 23(7): 3640.
[69] Gao F, Li P, Yin Y, Du XG, Cao GS, Wu S, Zhao YF. Molecular breeding of livestock for disease resistance., 2023, 587: 109862.
[70] Lee CW, Kc M, Ngunjiri JM, Ghorbani A, Lee K. TLR3 and MDA5 knockout DF-1 cells enhance replication of avian orthoavulavirus 1., 2023, 67(1): 94–101.
[71] Wang L, Xue Z, Wang JP, Jian YW, Lu HZ, Ma HD, Wang SS, Zeng WX, Zhang T. Targeted knockout of Mx in the DF-1 chicken fibroblast cell line impairs immune response against Newcastle disease virus., 2023, 102(9): 102855.
[72] Shandilya UK, Sharma A, Mallikarjunappa S, Guo J, Mao Y, Meade KG, Karrow NA. CRISPR-Cas9-mediated knockout of TLR4 modulates Mycobacterium avium ssp. paratuberculosis cell lysate-induced inflammation in bovine mammary epithelial cells., 2021, 104(10): 11135–11146.
[73] Wang H, Wang XX, Li XR, Wang QW, Qing SZ, Zhang Y, Gao MQ. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis., 2019, 286(9): 1780–1795.
[74] Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR. Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9., 2020, 10(1): 7411.
[75] Huang J, Wang AT, Huang C, Sun YF, Song BX, Zhou R, Li L. Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems., 2020, 11(8): 951.
[76] Cai SQ, Zheng ZZ, Cheng JJ, Zhong LT, Shao R, Zheng FY, Lai ZY, Ou JJ, Xu L, Zhou P, Lu G, Zhang GH. Swine interferon-inducible transmembrane proteins potently inhibit African swine fever virus replication., 2022, 13: 827709.
[77] Gao YP, Wu HB, Wang YS, Liu X, Chen LL, Li Q, Cui CC, Liu X, Zhang JC, Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects., 2017, 18(1): 13.
[78] Hou ST, Wang XW, Ren SH, Meng XL, Yin XP, Zhang J, Tarasiuk K, Pejsak Z, Jiang T, Mao RQ, Zhang YG, Sun YF. Knockout of HDAC9 gene enhances foot-and-mouth disease virus replication., 2022, 13: 805606.
[79] Hagag IT, Wight DJ, Bartsch D, Sid H, Jordan I, Bertzbach LD, Schusser B, Kaufer BB. Abrogation of Marek’s disease virus replication using CRISPR/Cas9., 2020, 10(1): 10919.
[80] Leveringhaus E, Cagatay GN, Hardt J, Becher P, Postel A. Different impact of bovine complement regulatory protein 46 (CD46bov) as a cellular receptor for members of the speciesand., 2022, 11(1): 60–72.
[81] Pan YD, Guo LJ, Miao Q, Wu L, Jing ZY, Tian J, Feng L. Association of THBS3 with glycoprotein D promotes pseudorabies virus attachment, fusion, and entry., 2023, 97(2): e0187122.
[82] Xu K, Zhou YR, Mu YL, Liu ZG, Hou SH, Xiong YJ, Fang LR, Ge CL, Wei YH, Zhang XL, Xu CJ, Che JJ, Fan ZY, Xiang GM, Guo JK, Shang HT, Li H, Xiao SB, Li JL, Li K. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance., 2020, 9: e57132.
[83] Menchaca A. Sustainable food production: the contri-bution of genome editing in livestock., 2021, 13(12): 6788.
[84] Hennig SL, Owen JR, Lin JC, McNabb BR, Van Eenennaam AL, Murray JD. A deletion at the polled PClocus alone is not sufficient to cause a polled phenotype in cattle., 2022, 12(1): 2067.
[85] Flórez JM, Martins K, Solin S, Bostrom JR, Rodríguez- Villamil P, Ongaratto F, Larson SA, Ganbaatar U, Coutts AW, Kern D, Murphy TW, Kim ES, Carlson DF, Huisman A, Sonstegard TS, Lents CA. CRISPR/Cas9- editing of KISS1 to generate pigs with hypogonadotropic hypogo-nadism as a castration free trait., 2022, 13: 1078991.
[86] Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle., 2020, 154: 190–202.
Progress on CRISPR/Cas9 system in the genetic improvement of livestock and poultry
Yanchun Bao1,2, Lingli Dai2,3, Zaixia Liu1,2, Fengying Ma1,2, Yu Wang4, Yongbin Liu5, Mingjuan Gu1,2, Risu Na1,2, Wenguang Zhang1,2,6
CRISPR/Cas9 gene editing technology, as a highly efficient genome editing method, has been extensively employed in the realm of animal husbandry for genetic improvement. With its remarkable efficiency and precision, this technology has revolutionized the field of animal husbandry. Currently, CRISPR/Cas9-based gene knockout, gene knock-in and gene modification techniques are widely employed to achieve precise enhancements in crucial production traits of livestock and poultry species. In this review, we summarize the operational principle and development history of CRISPR/Cas9 technology. Additionally, we highlight the research advancements utilizing this technology in muscle growth and development, fiber growth, milk quality composition, disease resistance breeding, and animal welfare within the livestock and poultry sectors. Our aim is to provide a more comprehensive understanding of the application of CRISPR/Cas9 technology in gene editing for livestock and poultry.
CRISPR/Cas9; gene editing; livestock and poultry; genetic improvement;economic traits
2024-01-17;
2024-02-25;
2024-02-29
內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(編號(hào):2021ZD05),內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)目(編號(hào):2021GG0008),內(nèi)蒙古自治區(qū)科技重大專項(xiàng)項(xiàng)目(編號(hào):2021ZD0009),內(nèi)蒙古農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院高水平成果培育專項(xiàng)(編號(hào):BZX202201)和內(nèi)蒙古自治區(qū)直屬高?;究蒲袠I(yè)務(wù)費(fèi)(編號(hào):BR221024)資助[Supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2021ZD05), the Science and Technology Plan Project of Inner Mongolia Autonomous Region (No. 2021GG0008), the Major Science and Technology Project of Inner Mongolia Autonomous Region (No. 2021ZD0009), the High Level Achievement Cultivation Project of College of Animal Science of Inner Mongolia Agricultural University (No. BZX202201) and the Basic Research Expenses of Universities Directly of Inner Mongolia Autonomous Region (No. BR221024)]
鮑艷春,博士研究生,專業(yè)方向:動(dòng)物遺傳育種與繁殖。E-mail: byc107054@163.com
谷明娟,博士,講師,研究方向:肉牛分子育種。E-mail: gmj0119@yeah.net
娜日蘇,博士,副教授,研究方向:牛羊遺傳育種與繁殖。E-mail: narisu@swu.edu.cn
張文廣,博士,教授,研究方向:數(shù)量基因組學(xué)與生物信息學(xué)。E-mail: actgnmbi@aliyun.com
10.16288/j.yczz.24-021
(責(zé)任編委: 姜雨)